
Math 321: CCP aka the linear correspondence, determinants Mission 3

Please follow the format which was announced in Blackboard. Thanks!
Your printed name indicates you have read through Chapter 4 and 5 of the notes: .

Problem 37 What condition is needed for (a, b, c) ∈ span{(1, 2, 0), (1, 0, 1)} ?

Problem 38 Is (1, 2, 3, 4, 5, 6) ∈ span((1, 1, 1, 1, 1, 1), (0, 1, 0, 1, 0, 2), (6, 5, 4, 3, 2, 1))? Use technology
paired with the CCP to answer this question.

Problem 39 Find a matrix A for which rref [A] =

 1 0 2 3 0
0 1 4 −1 0
0 0 0 0 0

 and col1(A) = [7, 5, 3]T and

col2(A) = [2, 0, 2]T . Is your answer unique?

Problem 40 Plot the vectors a = 〈1, 2〉 and b = 〈−1, 3〉 in the xy-plane. Calculate det(a|b) and
det(b|a). Explain the significance of the sign and magnitude of your answers.

Problem 41 Let a = (1, 2, 2) and b = (1, 0, 7) and c = (1,−3,−6). Calculate the volume of the
parallel-piped with sides a, b, c.

Problem 42 Find all values of k for which S(k) = {(k, 2, 2), (2, k, 1), (3, 3, 3)} a LI set.

Problem 43 Remember, we have many properties to use in addition to the cofactor formulae,

(a.) Calculate det(A) where A =

 2 2 0
0 2 2
5 3 1



(b.) Calculate det(B) where B =


2 4 2 3 1
0 8 6 7 2
0 10 3 9 0
0 7 0 4 0
0 5 0 0 0


(c.) Let A,B be as given in the previous problems. If M =

[
2A 0
0 3B

]
then calculate

det(M) via application of properties of determinants given in the lecture notes and
the results of the previous pair of problems.

Problem 44 Let a = (1, 1, 1) and b = (0, 1, 1). Form M = [a|b] ∈ R3×2. Let M̂i be the submatrix of

M formed by taking M and removing the i-th row of M . For example, M̂3 =

[
1 0
1 1

]
.

Calculate:

(a.) det(M̂1)

(b.) det(M̂2)

(c.) det(M̂3)



Problem 45 Let a = (1, 1, 1, 1) and b = (0, 1, 1, 0) and c = (2, 3, 3, 2). Form M = [a|b|c] ∈ R4×3. Let

M̂i be the submatrix of M formed by taking M and removing the i-th row of M . For

example, M̂4 =

 1 0 2
1 1 3
1 1 3

. Calculate:

(a.) det(M̂1)

(b.) det(M̂2)

(c.) det(M̂3)

(d.) det(M̂4)

Remark: Apparently we can use determinants to test LI of subsets of k-vectors in Rn

where k < n. Based on the calculations in the two problems above, we conjecture S ⊆ Rn

is linearly independent if and only if there exists i for which det([̂S]i) 6= 0. This means we
need to calculate a number of determinants to decide the LI of a set via direct computation.

Problem 46 In this problem I give you a brief introduction into the exterior algebra. These calcula-
tions can be made rigorous, but, that is beside the point here. We can define ∧ of vectors.
Given two vectors a, b the a∧b is a so-called 2-vector. Likewise, a∧b∧c is a 3-vector. This
wedge product enjoys the usual distributive laws with respect to addition and scalar
multiplication of vectors,

(sa + tb) ∧ c = sa ∧ c + tb ∧ c & a ∧ (sb + tc) = sa ∧ b + ta ∧ c.

It is also assocative,
a ∧ (b ∧ c) = (a ∧ b) ∧ c

However, a ∧ b = −b ∧ a for any pair of vectors. In particular a ∧ a = 0. If we have many
vectors then we generate a negative sign for each transposition of vectors:

a ∧ b ∧ c = −a ∧ c ∧ b = c ∧ a ∧ b = −c ∧ b ∧ a = b ∧ c ∧ a = −b ∧ a ∧ c

For more vectors, similar calculations hold:

v1 ∧ · · · ∧ vk−1 ∧ vk ∧ vk+1 ∧ · · · ∧ vm = (−1)kvk ∧ v1 ∧ · · · ∧ vk−1 ∧ vk+1 ∧ · · · ∧ vm.

(a.) Let a = e1 + e3 and b = e1 + e2 and c = 2e1 + e2 + e3. Calculate a ∧ b ∧ c.

(b.) Let a = e1 + e2 + e3 and b = e1 + e2 and c = e3. Calculate a ∧ b ∧ c

(c.) Show that if S = {v1, v2, . . . , vk} is linearly dependent then v1 ∧ v2 ∧ · · · ∧ vk = 0

Remark: in fact, if v1∧v2∧· · ·∧vk 6= 0 then {v1, v2, . . . , vk} is LI. I haven’t asked you to
prove that as it requires me to discuss more of the construction of ∧ than I am currently
interested in describing. We may return to this topic once we have a few more tools.

Problem 47 Now I’ll focus on R3 where the algebra is most familar. We define correspondence between
2-vectors and vectors by:

Φ〈v1,v2,v3〉 = v1e2 ∧ e3 + v2e3 ∧ e1 + v3e1 ∧ e2.



In case you have not had Math 231 (again, so sorry if you were cheated out of this
important course in your education) you should know the dot-product of two vectors
gives a number whose size roughly describes how parallel the given vectors are:

〈a1, a2, a3〉 • 〈b1, b2, b3〉 = a1b1 + a2b2 + a3b3

and the cross-product is a vector which points in the direct perpendicular to the given
vectors according to the right-hand-rule. The vector a× b is longest when a and b are
perpendicular and a× b = 0 when a and b are colinear. Anyway, all you need here is that:

〈a1, a2, a3〉 × 〈b1, b2, b3〉 = 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉

(a.) Let a = (a1, a2, a3) and b = (b1, b2, b3) and show a ∧ b = Φa×b.

(b.) Consider vectors a, b, c ∈ R3, show a ∧ b ∧ c = a • (b× c)e1 ∧ e2 ∧ e3.

Remark: Can you see how the components of a× b (and hence the coefficients of a ∧ b)
relate to subdeterminants of [a|b]?

Problem 48 Background: One of my favorite applications of Cramer’s Rule is found in advanced
calculus. In particular, when dealing with several nonlinear equations in multiple un-
knowns then the question arises when you can solve for certain variables in terms of the
other variables. Furthermore, if you can solve for the variable then what are the partial
derivatives of the given dependent variable in terms of the independent variables ? This
question arises in many contexts of applied mathematics and especially thermodynamics.

The calculational procedure is fairly simple:

(1.) take the total differential of the given equations which constrain the variables,

(2.) solve for the differentials of the desired dependent variables.

This is a problem of linear algebra because (1.) returns an equation which is linear in the
differentials. Moreover, (2.) is nicely accomplished by Cramer’s Rule.

I’ll state your problem: find partial derivatives of u in terms of x, y given that:

u2 + v2 − x2 − y2 + z2 = 1,
v + z − xy = 0
xv + yz = 0

I’ll do the calculus part: (I take the total differential of the given constraint equations)

2udu + 2vdv − 2xdx− 2ydy + 2zdz = 0,
dv + dz − ydx− xdy = 0
vdx + xdv + zdy + ydz = 0

Complete the calculation via the following steps:



(a.) rearrange the equation with differentials into the form ∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 du
dv
dz

 =

 (∗)dx + (∗)dy
(∗)dx + (∗)dy
(∗)dx + (∗)dy


(here the ∗′s simply denote particular expressions involving u, v, x, y, z)

(b.) solve for du via Cramer’s Rule on the system you found in (a.)

(c.) Calculus tells us that du = ∂u
∂x
dx + ∂u

∂y
dy. Compare with your result in (b.) to

calculate the desired partial derivatives ∂u
∂x

and ∂u
∂y

.

Problem 49 Let A =

[
M 0
0 N

]
where M =

[
2 3
−3 2

]
and N =

[
7 8
0 9

]
. Find all x ∈ C for which

the matrix A− xI is not invertible.

Problem 50 We say square matrices A and B are similar if there is an invertible matrix P for which
B = PAP−1. Suppose A has det(A) = 2 whereas B has det(B) = 7. Is it possible that A
is similar to B? Explain your claim.

Problem 51 Show {e1, e1 + e2, e1 + e2 + e3, . . . , e1 + e2 + · · ·+ en} is a LI subset of Rn for any n ∈ N.

Problem 52 Prove part (4.) of Theorem 2.3.11 in my notes.

Problem 53 Find a careful description of S = {A ∈ Rn×n | AB = BA for all B ∈ Rn×n}.

Problem 54 Find all cubic polynomials whose graphs contain the points (1, 2), (2, 2).


