Your Printed Name indicates you read Chapter 3 of the notes:

We assume \mathbb{F} is a field and V, W are vector spaces over \mathbb{F} .

Problem 33 We let V_1, \ldots, V_k be subspaces of a vector space V over \mathbb{F} . Define

$$V_1 + \dots + V_k = \{x_1 + \dots + x_k \mid x_i \in V_i \text{ for } 1 \le i \le k\}$$

Prove $V_1 + \cdots + V_k < V$.

Problem 34 Let $W_1 = \operatorname{span}\{x + x^2, 1 + x^3\}$ and $W_2 = \operatorname{span}\{1 + x, x^2 + x^3\}$ define subspaces of $P_3(\mathbb{R})$.

- (a) Find a basis for $W_1 \cap W_2$.
- (b) Find a basis for $W_1 + W_2$
- (c) Verify $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) \dim(W_1 \cap W_2)$

Problem 35 Define $T: P_3(\mathbb{R}) \to \mathbb{R}^{1\times 3}$ by T(f(x)) = [f(1), f(2), f(1) + f(2)]. Find a basis β for $P_3(\mathbb{R})$ and γ for $\mathbb{R}^{1\times 3}$ for which $[T]_{\beta,\gamma} = \begin{bmatrix} I_p & 0 \\ \hline 0 & 0 \end{bmatrix}$ where p = rank(T).

Problem 36 (use of technology encouraged to perform matrix calculations here) Use the matrix technology niques shown in Example 3.6.4 in order to illustrate the straightening theorem for L_A :

niques shown in Example 3.6.4 in order to illustrate the straightening theorem for
$$L_A$$
:
$$\mathbb{R}^3 \to \mathbb{R}^4 \text{ for } A = \begin{bmatrix} 0 & 2 & -2 \\ 4 & 3 & 1 \\ 6 & 6 & 0 \\ 3 & -1 & 4 \end{bmatrix}. \text{ In particular, find bases } \beta, \gamma \text{ for which } [L_A]_{\beta,\gamma} = \begin{bmatrix} I_p & 0 \\ 0 & 0 \end{bmatrix} \text{ where } I_p \text{ is the } p \times p \text{ identity matrix and } p = rank(L_A). \text{ Keep Proposition 3.5.7}$$

 $\begin{bmatrix} I_p & 0 \\ 0 & 0 \end{bmatrix}$ where I_p is the $p \times p$ identity matrix and $p = rank(L_A)$. Keep Proposition 3.5.7 in mind as you find the vectors in the desired bases.

Problem 37 Consider bases $\beta = \{x^2, x, 1\}$ and $\bar{\beta} = \{1, x - 2, (x - 2)^2\}$. Let T = d/dx restricted to $P_2(\mathbb{R}).$

- (a.) Find the coordinate change matrix $P_{\beta,\bar{\beta}}$ for which $[v]_{\bar{\beta}} = P_{\beta,\bar{\beta}}[v]_{\beta}$ for each $v \in P_2(\mathbb{R})$
- **(b.)** find $[T]_{\beta,\beta}$
- (c.) find $[T]_{\bar{\beta},\bar{\beta}}$
- (d.) explain why the trace of both matrices is the same.

Problem 38 Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that:

$$T(v_1) = v_1,$$
 $T(v_2) = 2v_1,$ $T(v_3) = 3v_3$

where $v_1 = (1, 1, 0)$ and $v_2 = (1, -1, 0)$ and $v_3 = (0, 0, 1)$. Find the standard matrix of T by an appropriate use of Proposition 3.5.7.

Problem 39 Suppose T(f(x)) = f'(x) + f''(x) for $f(x) \in P_2(\mathbb{R})$.

- (a.) Can you find a basis β for $P_2(\mathbb{R})$ such that $[T]_{\beta,\beta} = I_3$?
- **(b.)** Find a subspace W with basis β_W and basis γ for $P_2(\mathbb{R})$ such that $T|_W: W \to P_2(\mathbb{R})$

has
$$[T|_W]_{\beta_W,\gamma} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

- **Problem 40** Consider $V = \mathbb{R}^3$ and the subspace $W = \text{span}\{(1,1,1)\}$. Find a basis and coordinate chart for V/W. Describe the geometry of the cosets in V/W
- **Problem 41** Let T(f(x)) = f(x) + xf'(x) for $f(x) \in P_3(\mathbb{R})$. Let $\beta_1 = \{1, x^2\}$ and $\beta_2 = \{x, x^3\}$ provide bases for $W_1 = \operatorname{span}(\beta_1)$ and $W_2 = \operatorname{span}(\beta_2)$.
 - (a.) show W_1 and W_2 are invariant subspaces of T,
 - **(b.)** Find $[T_{W_1}]_{\beta_1,\beta_1}$ and $[T_{W_2}]_{\beta_2,\beta_2}$
 - (c.) verify $[T]_{\beta,\beta} = [T_{W_1}]_{\beta_1,\beta_1} \oplus [T_{W_2}]_{\beta_2,\beta_2}$ where $\beta = \beta_1 \cup \beta_2$
- **Problem 42** Let $A \in \mathbb{F}^{n \times n}$ and define $T : \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}$ by $T(A) = A + A^T$
 - (a.) show that $S_n = \{A \in \mathbb{F}^{n \times n} \mid A^T = A\}$ is an invariant subspace of T.
 - **(b.)** show that $A_n = \{A \in \mathbb{F}^{n \times n} \mid A^T = -A\}$ is contained in Ker(T).
 - (c.) Let β_s and β_a be bases for the symmetric and antisymmetric $n \times n$ matrices over \mathbb{F} . Form basis $\beta = \beta_s \cup \beta_a$ and find the block-structure of the matrix $[T]_{\beta,\beta}$
- **Problem 43** Let $V = \mathcal{F}(\mathbb{R})$ be the set of all real-valued functions of a real variable whose domain is \mathbb{R} . Define $(T(f))(x) = \frac{1}{2}(f(x) f(-x))$ for all $x \in \mathbb{R}$ and $f \in V$. What does the first isomorphism theorem applied to T reveal?
- **Problem 44** Let V be a vector space over \mathbb{F} and define $T: V \times V \to V$ by T(x,y) = y x for all $(x,y) \in V$. Apply the first isomorphism theorem to T and explain what truth it reveals.
- **Problem 45** Let $T: \mathbb{R}[x] \to \mathbb{R}[x]$ be defined by $T(f) = D^2 f$ where D = d/dx. Let $\overline{T}: \mathbb{R}[x]/\mathrm{Ker}(T) \to \mathbb{R}[x]$ be the mapping defined by:

$$\overline{T}([f]) = T(f)$$

for each [f] = f + Ker(T). Prove \bar{T} is an isomorphism and find the formula for

$$\overline{T}^{-1}(c_nx^n + \dots + c_2x^2 + c_1x + c_0).$$

- **Problem 46** Suppose $W_1, W_2 \leq V$. Prove $\operatorname{ann}(W_1 + W_2) = \operatorname{ann}(W_1) \cap \operatorname{ann}(W_2)$.
- **Problem 47** Suppose V is a finite dimensional vector space and $V = W_1 \oplus W_2$. Does it follow that $ann(W_1) \oplus ann(W_2) = V^*$? Prove or disprove.
- **Problem 48** Friedberg, Insel and Spence 5th edition, §2.6#17, page 127.