Your Printed name indicates you read Chapter 3 of the notes:

- **Problem 21** Let $S: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be defined by $S(f(x)) = f''(0) + f'(0)x + f(0)x^2$.
 - (a.) if $\beta = \{1, x, x^2\}$ then find $[S]_{\beta,\beta}$
 - **(b.)** Find the formula for $S^2(ax^2 + bx + c)$ where $S^2 = S \circ S$.
- **Problem 22** Let $T: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ be defined by T(A) = BA where $\det(B) \neq 0$. Show T is a linear transformation and prove or disprove that T is injective.
- **Problem 23** Consider $S: \mathbb{R}^{m \times n} \to \mathbb{R}^{n \times m}$ defined by $S(A) = A^T$. Prove S is an isomorphism.
- **Problem 24** Suppose $\Phi_{\beta} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = (a+b,b+c,c+d,a-b-c)$ defines a coordinate map on $\mathbb{R}^{2\times 2}$. Find β .
- **Problem 25** (20pts) Let $V = \mathbb{C} \times P_1(\mathbb{R})$ be the real vector space formed by pairs of the form (a+ib, cx+d).
 - (a.) Find a basis β for V as a real vector space.
 - **(b.)** If possible, find an isomorphism from V to $\mathbb{R}^{n\times n}$ for appropriate n.
- **Problem 26** Consider a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ for which $T(v_1) = 3v_1$ and $T(v_2) = 2v_2$ and $T(v_3) = v_3$ for nonzero vectors v_1, v_2, v_3 . Prove:
 - (a.) $\{v_1, v_2, v_3\}$ is linearly independent.
 - **(b.)** If $\beta = \{v_1, v_2, v_3\}$ then find $[T]_{\beta,\beta}$ and find [T] in terms of the given data.
 - (c.) Calculate tr([T]) and det([T]).

- **Problem 27** Suppose $T: P_2(\mathbb{R}) \to \mathbb{R}^{2\times 2}$ is defined by $T(1) = E_{11} + E_{22}$ and $T(x) = 2E_{11} + 2E_{22}$ and $T(x^2) = E_{12} + E_{21}$ extended linearly.
 - (a.) Find the formula for $T(ax^2 + bx + c)$.
 - **(b.)** If $\beta = \{x^2, x, 1\}$ and $\gamma = \{E_{11}, E_{12}, E_{21}, E_{22}\}$ then find $[T]_{\beta, \gamma}$
 - (c.) Find a basis for Ker(T).
 - (d.) Construct bases δ for $P_2(\mathbb{R})$ and σ for $\mathbb{R}^{2\times 2}$ for which $[T]_{\delta,\sigma} = \begin{bmatrix} I_k & 0 \\ \hline 0 & 0 \end{bmatrix}$ where k is the rank of T.
- **Problem 28** Let $V = \operatorname{span}_{\mathbb{R}}\{1, x, y, x^2, xy, y^2\}$ and $W \leq \mathbb{R}^{4\times 4}$ be the set of antisymmetric matrices. Define $T: V \to W$ by

$$T(f(x,y)) = \begin{bmatrix} 0 & f(0,0) & f(1,0) & f(0,1) \\ -f(0,0) & 0 & f_y(0,1) & 0 \\ -f(1,0) & -f_y(0,1) & 0 & -f_x(1,0) \\ -f(0,1) & 0 & -f_x(1,0) & 0 \end{bmatrix}$$

Let $\beta = \{1, x, y, x^2, y^2, xy\}$ and $\gamma = \{E_{ij} - E_{ji} | 1 \le i < j \le 4\}$ given the lexographic ordering beginning with $E_{12} - E_{21}$ and ending with $E_{34} - E_{43}$.

- (a.) Calculate $[T]_{\beta,\gamma}$,
- **(b.)** Find a basis for Ker(T),
- (c.) What is the dimension of T(V)?

Problem 29 Consider $V = \mathbb{R}[x]$. Find linear transformations on V such that

- (a.) $T: V \to V$ is injective, but not surjective
- (b.) $T: V \to V$ is surjective, but not injective.

Problem 30 Let U, V, W be vector spaces and $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$. Prove:

- (a.) If $S \circ T$ is surjective then S is surjective,
- **(b.)** If $S \circ T$ is injective then T is injective.