Your PRINTED NAME indicates you read Chapter 4 of the notes: _____

- **Problem 31** Let $W_1 = \{tI \mid t \in \mathbb{R}\}$ where I is the $n \times n$ identity matrix and W_2 is defined by $W_2 = \{A \in \mathbb{R}^{n \times n} \mid A^T = A, \ tr(A) = 0\}$ and $W_3 = \{A \in \mathbb{R}^{n \times n} \mid A^T = -A\}$.
 - (a.) Show $W_1 + W_2 + W_3 = \mathbb{R}^{n \times n}$
 - (b.) Show W_1, W_2, W_3 are independent subspaces
- **Problem 32** Let T(f(x)) = f(x) + xf'(x) for $f(x) \in P_3(\mathbb{R})$. Let $\beta_1 = \{1, x^2\}$ and $\beta_2 = \{x, x^3\}$ provide bases for $W_1 = \operatorname{span}(\beta_1)$ and $W_2 = \operatorname{span}(\beta_2)$.
 - (a.) show W_1 and W_2 are invariant subspaces of T,
 - **(b.)** Find $[T_{W_1}]_{\beta_1,\beta_1}$ and $[T_{W_2}]_{\beta_2,\beta_2}$
 - (c.) verify $[T]_{\beta,\beta} = [T_{W_1}]_{\beta_1,\beta_1} \oplus [T_{W_2}]_{\beta_2,\beta_2}$ where $\beta = \beta_1 \cup \beta_2$
- **Problem 33** Let $T: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ be defined by T(A) = tr(A)I. Show T is diagonalizable.
- **Problem 34** Let $V = \text{span}\{2^t, 3^t, 4^t\}$. Define T by linearly extending the rules

$$T(2^t) = 2^t$$
, $T(3^t) = 2(2^t) + 2(3^t)$, $T(4^t) = 3(2^t + 3^t + 4^t)$.

Find an eigenbasis β for T and show $[T]_{\beta,\beta}$ is diagonal.

- **Problem 35** Suppose $A \in \mathbb{R}^{14 \times 14}$ and $rk((A-7I)^5) = 4$, $rk((A-7I)^4) = 4$, $rk((A-7I)^3) = 5$, $rk((A-7I)^2) = 7$, rk(A-7I) = 10 and $rk((A-3I)^2) = 10$, rk(A-3I) = 12. Here rk(M) = dim(Col(M)) is the **rank** of the matrix M.
 - (a.) Find the Jordan form of A.
 - **(b.)** If $P_A(x) = det(xI A)$ then find the formula for $P_A(x)$ in factored form.
 - (c.) Let $m_A(x)$ be the **minimal polynomial** of A; that is, let $m_A(x)$ be the monic polynomial of least degree for which $m_A(A) = 0$. Find $m_A(x)$.
- **Problem 36** Let $A = J_2(2) \oplus J_2(6)$ and $B = J_2(6) \oplus M$. If A and B are similar then prove $M = J_2(2)$.
- **Problem 37** Recall $e^{(\alpha+i\beta)t} = e^{\alpha t}\cos\beta t + ie^{\alpha t}\sin\beta t$. Suppose T is a linear transformation on $V = \operatorname{span}_{\mathbb{R}}\Upsilon$ where $\Upsilon = \{e^t\cos 2t, e^t\sin 2t, \cos 3t, \sin 3t\}$. Given that the complexification of T has

$$T_{\mathbb{C}}(e^{(1+2i)t}) = (4+5i)e^{(1+2i)t}$$
 & $T_{\mathbb{C}}(e^{3it}) = (7+8i)e^{3it}$

Find the real Jordan form of T.

- **Problem 38** Suppose $A = J_3(7) \oplus R_4(1+3i)$. Calculate e^{tA} and solve $\frac{dx}{dt} = Ax$.
- **Problem 39** Let $T: V \to V$ have Jordan basis β . Let $S = T + cId_V$ where c is a scalar. Find the Jordan form of S.
- **Problem 40** Let $T, U \in \mathcal{L}(V)$. Prove T and U are simultaneously diagonalizable iff TU = UT. Note, simultaneous diagonalizability of U and T means there exists basis β for which $[T]_{\beta,\beta}$ and $[U]_{\beta,\beta}$ are both diagonal.