Same rules as Homework 1.

- Problem 71 Your signature below indicates you have:
 - (a.) I read what Cook has posted of Chapters 3 and 4 of the Lecture Notes:
 - (b.) I read parts of Chapter 3 of Curtis:
- **Problem 72** Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be defined by T(x,y,z) = (x+y,x-y+z,x,x+y-2z) for all $(x,y,z) \in \mathbb{R}^3$. Find [T] and discuss if T is injective, surjective or neither. Also, find the rank and nullity of T.
- **Problem 73** Let $T: \mathbb{R}^n \to \mathbb{R}$ be defined by $T(x) = x_1 + 2x_2 + \cdots + nx_n$ for all $x \in \mathbb{R}^n$. Find [T] and discuss if T is injective, surjective or neither. Also, find the rank and nullity of T.
- **Problem 74** Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be defined by its values on the standard basis; $T(e_j) = e_j + e_{j+1}$ for $j = 1, \ldots, n-1$ and $T(e_n) = e_n$. Find [T] (use the dot-dot-dot type notation) and calculate the rank and nullity of T. Is T injective, surjective or neither? Find the formula for T^{-1} if possible.
- **Problem 75** Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be defined by T(f(x)) = f''(x) + 2f(x). Find a basis for Ker(T) and find a basis for Range(T). Finally, find a bases β, γ for $P_2(\mathbb{R})$ for which $[T]_{\beta\gamma}$ is formed by concantenating the standard basis and columns of Zero(s). (this illustrates Theorem 4.6.2). Note: the empty set \emptyset is the basis for the zero space.
- **Problem 76** Consider $W = \text{span}\{e^x, \cos(x), \sin(x)\}$ and define $T, S \in L(W)$ as follows T = D 1 and $S = D^2 + 1$ where D = d/dx the product denoted the composition of operators. For example, $(D^2 + 1)[y] = D^2[y] + y = D[D[y]] + y = y'' + y$. Let $\beta = \{e^x, \cos(x), \sin(x)\}$.
 - (a) find $[T]_{\beta\beta}$
 - (b) find $[S]_{\beta\beta}$
 - (c) Calculate $T \circ S$ (set $f(x) = ae^x + b\cos x + c\sin x$ and simplify $(T \circ S)(f(x))$)
 - (d) Calculate $[T]_{\beta\beta}[S]_{\beta\beta}$
- **Problem 77** Let $W = \{f(x) \in P_5(\mathbb{R}) \mid P(1) = 0, P'(1) = 0, \& P(2) = 0\}$. Find a basis β for W and write the coordinate map Φ_{β} for W. Hint: I'll try to use Taylor's Theorem and the factor theorem, but, it might just be ugly.
- **Problem 78** Consider the set of quadratic forms in three variables x, y, z. Let $\gamma = \{x^2, y^2, z^2, xy, xz, yz\}$ and define the set of trivariate homogeneous polynomials of order two by

$$W = \text{span}\{x^2, y^2, z^2, xy, xz, yz\}.$$

Observe W is a function space and as it is a span we find $W \leq \mathcal{F}(\mathbb{R}^3, \mathbb{R})$. If $v = 3x^2 + (x - y)(y + z)$ then calculate $[v]_{\gamma}$.

Problem 79 Suppose $T: P_2 \to T(P_2) \leq \mathbb{R}[t]$ be defined by $T(f(x)) = \int_0^t f(x) dx$. Let P_2 have basis $\beta = \{3x^2, 2x, 1\}$ and find a basis γ for Range(T). Finally, calculate $[T]_{\beta,\gamma}$

- **Problem 80** Let $C = \begin{bmatrix} 8 & 6 \\ 7 & -5 \end{bmatrix}$ and define $T : \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ by T(X) = CX. Suppose $\beta = \{E_{11}, E_{12}, E_{21}, E_{22}\}$. Calculate $[T]_{\beta,\beta}$.
- **Problem 81** Suppose $P_2(\mathbb{R})$ has basis β and $f(x) \in P_2$ has $[f(x)]_{\beta} = (3, 3, 12)$. If $\gamma = \{g_1, g_2, g_3\}$ is a basis for which $[g_1]_{\beta} = (1, 1, 1)$ and $[g_2]_{\beta} = (0, 1, 1)$ and $[g_3]_{\beta} = (0, 0, 1)$ then find $[f(x)]_{\gamma}$.
- **Problem 82** Let $\beta = \{(t-2)^2, (t-2), 1\}$ form the basis for $P_2 \leq \mathbb{R}[t]$. Suppose that $f(t) = at^2 + bt + c$. Calculate the coordinates of f(t) with respect to β ; that is, find $[f(t)]_{\beta}$.
- **Problem 83** Let v = (a, b) and find the coordinates of v in the $\beta = \{(1, 2), (3, -1)\}$ basis.
- **Problem 84** Define T(f(x)) = f(x) + f'(x) + f''(x) for each $f(x) \in P_2$. If possible, find a basis β for $P_2 = \text{span}\{1, x, x^2\}$ for which $[T]_{\beta,\beta} = I$. (or show why it can't be done)
- **Problem 85** Let S be a set of objects then $S^{m\times n}$ is the set of $m\times n$ matrices of objects in S. For example, if $S=P_2$ then $S^{2\times 2}$ is the set of 2×2 matrices with quadratic polynomial components. Let $V=\{A\in (P_2)^{2\times 2}\mid \mathrm{trace}(A)=0\ \&\ A=A^T\}$ find an isomorphism from V to $W=\{X\in\mathbb{R}^{3\times 3}\mid X^T=X\}$.
- **Problem 86** Find an isomorphism from the set V of 3×3 antisymmetric matrices to the set W of 4×4 traceless diagonal matrices.
- **Problem 87** Curtis §13 #2 on page 107 (this is likely easier than it looks)
- **Problem 88** Curtis §13 #7 on page 108 (definitions, logic, math glorious math)
- **Problem 89** Curtis §13 #9 on page 108 (definitions, logic, math glorious math)
- **Problem 90** We say $\operatorname{tr}(M)$ is the **trace** of M and define $\operatorname{tr}(M) = \sum_{i=1}^n M_{ii}$ for each $M \in \mathbb{F}^{n \times n}$. Show that $\operatorname{tr} \in L(\mathbb{F}^{n \times n}, \mathbb{F})$ and prove the fascinating identity $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ for multipliable matrices $A \in \mathbb{F}^{m \times n}$, $B \in \mathbb{F}^{n \times m}$.