
Math 321: linear transformations, isomorphism Mission 5

Please follow the format which was announced in Blackboard. Thanks!
Your printed name indicates you have read through Chapter 7 of the notes: .

Problem 73 Suppose V and W are vector spaces over F and S, T : V → W are linear transformations.
Show S + cT is a linear transformation for any c ∈ F.

Problem 74 Let T (x, y, z) = (x+ z, y + z, x+ z) for all (x, y, z) ∈ R3. Find the standard matrix of T .
Calculate Ker(T ) and Range(T ). If possible, find T−1.

Problem 75 Let T (x1, x2, x3, x4) = (x1 − 2x2, x3 − 4x4) for all (x1, x2, x3, x4) ∈ R4. Find the standard
matrix of T . Find bases for Ker(T ) and Range(T ).

Problem 76 Suppose T : R3 → R3 is a linear transformation such that T (1, 1, 1) = (8, 6, 7) and
T (1, 2, 2) = (5, 3, 0) and T (1, 2, 1) = (9, 0, 0). Find the standard matrix of T .

Problem 77 Suppose S is a linear transformation on P2(R) for which S(t2−t) = 1 and S(t2+t) = 3t+2
and S(1) = 0. Find the formula for S(at2 + bt+ c).

Problem 78 Let β = {v1, . . . , vn} form a basis for V over a field F. Recall, for each x ∈ V , we defined
[x]β to be the unique vector (c1, . . . , cn) ∈ Fn for which x = c1v1 + · · · + cnvn. Show
Φβ : V → Fn defined by Φβ(x) = [x]β for each x ∈ V defines a linear transformation.

Problem 79 Suppose T (x, y) = (x+ y, x− y, 3y) and define S(u, v, w) = (2u+ 3v, u− w).

(a.) Calculate the formula for (S ◦T )(x, y) from the definition of function composition,

(b.) Find [T ] and [S] and [S ◦T ],

(c.) Verify that [S ◦T ] = [S][T ].

Problem 80 Let T : C→ C be the function defined by T (x+ iy) = x− iy. Find the matrix of T with
respect to the basis β = {1, i}. (here we view C as a real vector space with basis β)

Problem 81 Let Lw(z) = wz where w, z ∈ C. If w = a + ib then find the matrix if Lw with respect
to the basis {1, i} for C (viewed as a two-dimensional real vector space). Is it possible to
choose some w such that Lw = T where T (x+ iy) = x− iy ?

Problem 82 Let T (A) = AE12 where E12 =

[
0 1
0 0

]
. Show T : R2×2 → R2×2 is a linear transforma-

tion. Also, find [T ]β,β where β = {E11, E12, E21, E22}.

Problem 83 Let T (f(x)) = f(x)− f ′(x) for each f(x) ∈ P2(R).

(a.) Find a basis β for the Ker(T ),

(b.) extend β to a basis γ for P2(R) by adjoining appropriate vectors from {1, x, x2},
(c.) Calculate [T ]γ,γ.

Problem 84 Suppose T : P4(R)→ P2(R) is defined by T (f(x)) = f ′′(x).
Prove T is surjective, however T is not injective.



Problem 85 If W ≤ V and T : V → V is a linear transformation such that T (W ) ⊂ W then we
define TW : W → W to be the restriction of T to W with codomain modified to W ;
TW : W → W where TW (x) = T (x) for each x ∈ W . If such W exists then it is known
as an invariant subspace of T . Let T : R2×2 → R2×2 be defined by T (A) = A− AT for
each A ∈ R2×2.

(a.) Show W1 = {A ∈ R2×2 | AT = A} forms and invariant subspace of T . Calculate TW1

and [TW1 ]γ1,γ1 where γ1 = {E11, E22, E12 + E21}
(b.) Show W2 = {A ∈ R2×2 | AT = −A} forms and invariant subspace of T . Calculate

TW2 and [TW2 ]γ2,γ2 where γ2 = {E12 − E21}
(c.) Consider β = γ1 ∪ γ2 = {E11, E22, E12 + E21, E12 − E21} calculate [T ]β,β.

Problem 86 Find an explicit isomorphism from the subspace of 3× 3 real symmetric matrices and C3.
Notice, I must mean C3 as a vector space over R for this question to be reasonable.

Problem 87 We define hyperbolic numbers H = {x + jy | x, y ∈ R} where j2 = 1. In particular,
we add and multiply in the natural fashion:

(a+ bj) + (x+ jy) = a+ x+ j(b+ y)

(a+ bj)(x+ jy) = ax+ by + j(ay + bx)

for all a+jb, x+jy ∈ H. Scalar multiplication is a special case of the vector multiplication
in H; c(a + bj) = ca + j(cb). It is straightforward to verify H forms a vector space over

R. Prove Ψ(x + jy) =

[
x y
y x

]
is a vector space isomorphism from H to V = Ψ(H)

viewed as a subset of R2×2 with respect to the usual addition and scalar multiplication of
matrices. Also, show:

Ψ ((x+ jy)(a+ jb)) = Ψ(a+ jy)Ψ(a+ jb)

Remark: a vector space V paired with a multiplication is called an algebra. For example,
C is an algebra since C is a vector space where we also have a natural method to multiply
vectors. Likewise, Rn×n or Cn×n form algebras with respect to the usual matrix multipli-
cation. When given two algebras it is interesting to ask if they are isomorphic as algebras.
This requires they have the same linear structure (which is the sense of isomorphism this
course focuses primarily upon) and the multiplication is preserved in the natural fashion.
To be precise, if A has multiplication ? and B has multiplication ◦ then Ψ : A → B is an
algebra isomorphism if

Ψ(x+ cy) = Ψ(x) + cΨ(y), Ψ(x ? y) = Ψ(x) ◦Ψ(y)

for all x, y ∈ A and c ∈ F. We also insist that when A has a multiplicative identity 1A and

likewise 1B for B then Ψ(1A) = 1B. In the above problem, we see Ψ(1) =

[
1 0
0 1

]
hence

Ψ is an algebra isomorphism of hyperbolic numbers and the subspace of 2× 2 matrices of

the special form

[
x y
y x

]
. This discussion echos Example 7.3.17 in my notes.



Problem 88 Let V be a finite dimensional vector space over F of dimension n. Prove L(V ) is iso-
morphic to Fn×n as algebras over F. In particular, find an isomorphism which preserves
addition, scalar multiplication, and has Ψ(T ◦S) = Ψ(T )Ψ(S) for all T, S : V → V and
has Ψ(IdV ) = I. Here the product Ψ(T )Ψ(S) is that of matrix multiplication.

Hint: think about how to create maps from V → V which naturally correspond to the
matrix units Eij. Remember, we know Fn×n has basis formed by Eij for 1 ≤ i, j ≤ n.
Probably picking a basis for V is a good starting point. If you’re lost, try n = 1 or n = 2
to get started

Problem 89 Let SL(3,R) = {A ∈ R3×3 | det(A) = 1}. Suppose T (x) = Ax. Show T preserves the
volume of a parallel-piped.

Problem 90 Consider β = {1, e1, e2, e1 ∧ e2} serve to generate V = span(β) as a real vector space of
dimension 4. I’ll arrange the ∧ products in a table:

∧ 1 e1 e2 e1 ∧ e2
1 1 e1 e2 e1 ∧ e2
e1 e1 0 e1 ∧ e2 0
e2 e2 −e1 ∧ e2 0 0

e1 ∧ e2 e1 ∧ e2 0 0 0

Linear transformations on V naturally correspond to 4×4 matrices. Notice, we can define
the left multiplication maps with respect to the wedge product: Lx(y) = x∧ y. Then, the
set of [Lx]β,β ∈ R4×4. I’ll set it up:

[Lx]β,β = [[Lx(1)]β|[Lx(e1)]β|[Lx(e2)]β|[Lx(e1 ∧ e2)]β]

= [[x]β|[x ∧ e1]β|[x ∧ e2]β|[x ∧ e1 ∧ e2]β]

For example,

[Le1 ]β,β = [[e1]β|[e1 ∧ e1]β|[e1 ∧ e2]β|[e2 ∧ e1 ∧ e2]β] = [[e1]β|0|[e1 ∧ e2]β|0] =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0


(a.) Complete my work by finding [Le2 ]β,β, [Le1∧e2 ]β,β and the far more relaxing [L1]β,β.

(b.) Check that ([Le1 ]β,β)2 = 0, ([Le2 ]β,β)2 = 0 and [Le1 ]β,β[Le2 ]β,β = [Le1∧e2 ]β,β whereas
[Le2 ]β,β[Le1 ]β,β = −[Le1∧e2 ]β,β

Remark: I know that part (b.) will work out since we can easily calculate in general that
Lx ◦Ly(z) = Lx(y∧z) = x∧y∧z = Lx∧y(z). The neat thing here is that if you forget about
the abstract e1 ∧ e2 and just think about these 4 × 4 matrices then you can see that the
algebra of the wedge product on R2 is easily implemented with 4× 4 matrices. Generally,
we can follow much the same construction to build the wedge product algebra on Rn by
representing it on 2n × 2n matrices. That said, that’s not really how I think about the
wedge product. Ask me in office hours sometime if you’d like to know more.


