Your Printed name indicates you read Chapter 5 of the notes:

Problem 41 Explain why the following formulas do not define an inner product:

- (a.) $\langle (a,b),(c,d)\rangle = ac bd$ on \mathbb{R}^2
- **(b.)** $\langle A, B \rangle = tr(A+B)$ on $\mathbb{R}^{2\times 2}$
- (c.) $\langle (z_1, z_2), (w_1, w_2) \rangle = z_1 w_1 + z_2 w_2 \text{ on } \mathbb{C}^2(\mathbb{C})$
- (d.) $\langle (z_1, z_2), (w_1, w_2) \rangle = z_1 w_1 + z_2 w_2 \text{ on } \mathbb{C}^2(\mathbb{R})$

Problem 42 Let β be a basis for an inner product space (V, \langle , \rangle) . Prove:

- (a.) If $x \in V$ and $\langle x, z \rangle = 0$ for all $z \in \beta$ then x = 0.
- **(b.)** If $\langle x, z \rangle = \langle y, z \rangle$ for all $z \in \beta$ then x = y.
- **Problem 43** Suppose $\{v_1, \ldots, v_k\}$ is an orthogonal subset of the inner product space (V, \langle , \rangle) and suppose a_1, \ldots, a_k are scalars. Show $\|\sum_{i=1}^k a_i v_i\|^2 = \sum_{i=1}^k |a_i|^2 \|v_i\|^2$.

Problem 44 Let W_1 and W_2 be subspaces of finite dimensional vector space V. Prove the following:

- (a.) $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$
- **(b.)** $(W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$
- **Problem 45** Let V be the vector space of continuous real-valued functions on [-1,1]. Let W_e be the subspace of even functions in V and let W_o be the subspace of odd functions in V. Prove $W_e^{\perp} = W_o$ with respect to $\langle f, g \rangle = \int_{-1}^1 f(t)g(t) \, dt$.
- **Problem 46** Let $W = \operatorname{span} \left\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$ for a subspace in $\mathbb{R}^{2 \times 2}$ with the standard Frobenius inner product $\langle A, B \rangle = \operatorname{trace}(AB^T)$.
 - (a.) Find an orthonormal basis for W^{\perp}
 - **(b.)** Calculate $Proj_{W^{\perp}} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$
 - (c.) Calculate $Proj_W \begin{bmatrix} a & b \\ c & d \end{bmatrix}$
 - (d.) Find the matrix in W which is closest to $\begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$
- **Problem 47** Let T be a linear transformation on a finite dimensional real inner product space (V, \langle , \rangle) . Suppose T has an orthornormal eigenbasis. Prove T is self-adjoint. That is, prove $T = T^*$.
- **Problem 48** Let $SO(3) = \{R \in \mathbb{R}^{3\times 3} \mid R^T R = I, det(R) = 1\}$. Show that: If $R \in SO(3)$ and $R \neq I$ then R has only two e-vectors of unit length for which $\lambda = 1$.

Problem 49 There is another aspect of the real spectral theorem we should explore. For example, if $A^T = A$ for $A \in \mathbb{R}^{3\times 3}$ then there exist rank one matrices E_1, E_2, E_3 for which

$$A = E_1 + E_2 + E_3$$

and $\operatorname{Col}(E_j) = \operatorname{Null}(A - \lambda_j I)$ for j = 1, 2, 3 where $\lambda_1, \lambda_2, \lambda_3$ are the distinct eigenvalues of A. Suppose u, v, w form an orthonormal eigenbasis for A with eigenvalues $\lambda_1, \lambda_2, \lambda_3$ respective. Define:

$$E_1 = \lambda_1 u u^T, \qquad E_2 = \lambda_2 v v^T, \qquad E_3 = \lambda_3 w w^T$$

Show: $E_1 + E_2 + E_3 = A$ and $Col(E_j) = Null(A - \lambda_j I)$ for j = 1, 2, 3. Hint: use the orthonormality of $\{u, v, w\}$ and the fact you are given $Au = \lambda_1 u$ etc.

- **Problem 50** Let $T:V\to V$ be a linear transformation on the finite dimensional inner product space $(V,\langle\;,\;\rangle)$. Show the following are equivalent:
 - (a.) $T^*T = Id$,
 - **(b.)** $TT^* = Id$,
 - (c.) $\langle T(x), T(y) \rangle = \langle x, y \rangle$ for all $x, y \in V$
 - (d.) If β is an orthonormal basis for V then $T(\beta)$ is an orthonormal basis for V
 - (e.) ||T(x)|| = ||x|| for all $x \in V$