Please follow the format which was announced in Blackboard. Thanks!

Your PRINTED NAME indicates you have read through Chapter 7 of the notes:

- **Problem 91** Let $W_1 = \text{span}\{x + x^2, 1 + x^3\}$ and $W_2 = \text{span}\{1 + x, x^2 + x^3\}$. Find a basis for $W_1 \cap W_2$.
- **Problem 92** Find a basis for $W_1 + W_2$ where W_1, W_2 are the subspaces of $P_3(\mathbb{R})$ described in the previous problem. Do your calculations check against Theorem 6.7.8?
- **Problem 93** Example 7.6.3 shows a calculational technique to find bases β, γ for which $T: \mathbb{R}^n \to \mathbb{R}^m$ has a matrix $[T]_{\beta,\gamma} = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ where $r = \operatorname{rank}(T)$. Follow that example (use technology for the row reductions!) to find such β, γ for $T: \mathbb{R}^4 \to \mathbb{R}^3$ with

$$[T] = \begin{bmatrix} 1 & 0 & -2 & 0 \\ 1 & 3 & -2 & 6 \\ 2 & 0 & -4 & 0 \end{bmatrix}$$

- **Problem 94** Let v = (7, 9) and suppose $\beta = \{(2, 2), (-1, 1)\}$. Calculate $[v]_{\beta}$.
- **Problem 95** Consider bases $\beta = \{x^2, x, 1\}$ and $\bar{\beta} = \{1, x 2, (x 2)^2\}$. Find the coordinate change matrix $P_{\beta,\bar{\beta}}$ for which $[v]_{\bar{\beta}} = P_{\beta,\bar{\beta}}[v]_{\beta}$ for each $v \in P_2(\mathbb{R})$
- **Problem 96** Consider $\mathbb{R}^{2\times 2}$. We have the usual basis

$$\beta = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right\}$$

and less usual basis

$$\bar{\beta} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}.$$

- (a.) Find the coordinate change matrix $P_{\beta,\bar{\beta}}$ for which $[A]_{\bar{\beta}} = P_{\beta,\bar{\beta}}[A]_{\beta}$ for each $A \in \mathbb{R}^{2\times 2}$
- **(b.)** Consider the mapping $L(A) = A^T$. Calculate $[L]_{\beta,\bar{\beta}}$.

Problem 97 Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that:

$$T(v_1) = v_1,$$
 $T(v_2) = 2v_1,$ $T(v_3) = 3v_3$

where $v_1 = (1, 1, 0)$ and $v_2 = (1, -1, 0)$ and $v_3 = (0, 0, 1)$. Find the standard matrix of T by an appropriate use of Proposition 7.5.7.

Problem 98 Suppose T(f(x)) = f'(x) + f''(x) for $f(x) \in P_2(\mathbb{R})$.

- (a.) Can you find a basis β for $P_2(\mathbb{R})$ such that $[T]_{\beta,\beta} = I_3$?
- **(b.)** Find a subspace W with basis β_W and basis γ for $P_2(\mathbb{R})$ such that $T|_W: W \to P_2(\mathbb{R})$

has
$$[T|_W]_{\beta_W,\gamma} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

- **Problem 99** Suppose T has matrix $[T]_{\beta,\gamma} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ with respect to $\beta = \{1, x, x^2, x^3\}$ and $\gamma = \{E_{12} + E_{21}, I\} \subseteq \mathbb{R}^{2 \times 2}$. Find the formula for $T : P_3(\mathbb{R}) \to \mathbb{R}^{2 \times 2}$ and find $[T]_{\bar{\beta},\bar{\gamma}}$ where $\bar{\beta} = \{x^3, x^2, x, 1\}$ and $\bar{\gamma} = \{2(E_{12} + E_{21}), 3I\}$.
- **Problem 100** Suppose $T: V \to W$ has $\text{Null}([T]_{\beta,\gamma}) = \text{span}\{(1,1,0),(0,1,2)\}$ and $\text{Col}([T]_{\beta,\gamma}) = \text{span}\{(1,0,1)\}$ where $\beta = \{1, x, x^2\}$ and $\gamma = \{e^t, \sin(t), \cos(t)\}$ are bases for V and W respective.
 - (a.) find Ker(T) and Range(T)
 - **(b.)** find the formula for $T(a + bx + cx^2)$
- **Problem 101** Dual space has very nice applications to coordinate maps. In particular, given basis $\beta = \{v_1, \dots, v_n\}$ for V we define dual basis $\beta^* = \{v^1, \dots, v^n\} \subseteq V^*$ by the rule $v^i(v_j) = \delta_{ij}$ for $1 \le i, j \le n$.
 - (a.) explain why $v^i(v_j) = \delta_{ij}$ for $1 \leq j \leq n$ suffices to define the linear map $v^i: V \to \mathbb{F}$,
 - **(b.)** prove $\Phi_{\beta}(x) = \sum_{i=1}^{n} v^{i}(x)e_{i}$,
 - (c.) explain why $[x]_{\beta} = (v^1(x), \dots, v^n(x)).$
- **Problem 102** The annihilator of a subspace is naturally constructed in the dual space. In particular, if $W \leq V$ then define $ann(W) = \{\alpha \in V^* \mid \alpha(w) = 0 \text{ for each } w \in W\}$
 - (a.) show $ann(W) \leq V^*$
 - **(b.)** if $W_1 \leq W_2 \leq V$ then show $ann(W_2) \subseteq ann(W_1)$

Remark: part (b.) of the above problem has a natural analog with the construction of the perpendicular space for a given $S \subseteq \mathbb{R}^n$. For example, the x-axis (W_1) is perpendicular to the yz-plane (W_1^{\perp}) . Whereas the xy-plane (W_2) is perpendicular to the z-axis (W_2^{\perp}) . So, note $W_1 \leq W_2$ has $W_2^{\perp} \leq W_1^{\perp}$. In view of this, perhaps the following problem is not too surprising:

- **Problem 103** Find an isomorphism from $W^{\perp} = \{x \in \mathbb{R}^n \mid x \cdot w = 0, \text{ for all } w \in W\}$ and $ann(W) = \{\alpha \in V^* \mid \alpha(w) = 0 \text{ for each } w \in W\}.$
- **Problem 104** Consider $V = P_3(\mathbb{R}) \times \mathbb{C}^{2 \times 2}$ as a real vector space. If $S_n(\mathbb{R})$ denotes the symmetric $n \times n$ matrices then for what n (if any) is $V \cong S_n \times S_n$?
- **Problem 105** Consider $V = \mathbb{R}^3$ and the subspace $W = \text{span}\{(1,1,1)\}$. Find a basis and coordinate chart for V/W. Describe the geometry of the cosets in V/W
- **Problem 106** Consider $V = P_2(\mathbb{R})$ and the linear transformation T(f(x)) = f'(x) find Ker(T) and find the inverse mapping $S: P_2(\mathbb{R})/Ker(T) \to T(P_2(\mathbb{R}))$ given by S(f(x)+Ker(T)) = T(f(x)). This is a special case of what common slogan from calculus I?
- **Problem 107** Suppose S is a subset of V. If we define $S + W = \{s + W \mid s \in S\}$ for a subspace W of V.
 - (a.) if S is LI then is S + W a LI in V/W? Discuss.
 - (b.) if S is linearly dependent in V then is S+W linearly dependent in V/W? Discuss.

Problem 108 Show $\mathbb{R}^{n \times n}/A_n \cong S_n$ where S_n denoted the set of symmetric matrices and A_n denotes the set of antisymmetric matrices in $\mathbb{R}^{n \times n}$. Hint: use the first isomorphism theorem wisely.

Remark: the problems below are not handed in, but, I almost assigned them. If you need further practice, perhaps it would be wise to work these. I am happy to discuss them in the Help Session.

- (I.) Is the set of rational functions over \mathbb{R} a subspace of the set of continuous functions on \mathbb{R} ?
- (II.) Show $W = \{(a + bx^2, (a + 2b, a b)) \mid a, b \in \mathbb{R}\}$ is a subspace of $P_2(\mathbb{R}) \times \mathbb{R}^2$.
- (III.) Consider $S = \{1 + t^2, 1 t, 1 + t + t^3, 2 + t^3\} \subseteq \mathbb{R}[t]$. Find a basis β for span(S). Also, find the formula for $[a + bt + ct^2 + dt^3]_{\beta}$.
- (IV.) Let $\beta = \{1, (x-1), (x-1)^2\}$. Calculate $[ax^2 + bx + c]_{\beta}$. Hint: be smart, use Taylor's Theorem you learned in Calculus II.
- (V.) Consider the set of quadratic forms in two variables x, y. Let $\gamma = \{x^2, y^2, xy\}$ and define the set of trivariate homogeneous polynomials of order two by

$$W = \operatorname{span}\{x^2, y^2, xy\}.$$

Observe W can be viewed as a function space and as it is a span we find $W \leq \mathcal{F}(\mathbb{R}^2, \mathbb{R})$. If $v = 3x^2 + 2(x - y)y$ then calculate $[v]_{\gamma}$.

- (VI.) Suppose $T: U \to V$ and $S: V \to W$ are linear transformations. Show that:
 - (a.) Range($S \circ T$) \subseteq Range(S)
 - **(b.)** $\operatorname{Ker}(T) \subseteq \operatorname{Ker}(S \circ T)$
- (VII.) Consider $\operatorname{Aut}(V) = \{\Psi : V \to V \mid \Psi \text{ an isomorphism}\}$. Is $\operatorname{Aut}(V) \leq \mathcal{L}(V)$? Here $\mathcal{L}(V)$ denotes the set of all linear mappings from V to V.
- **(VIII.)** Investigate relation of $ann(W_1 + W_2)$ and $ann(W_1 \cap W_2)$.
 - (IX.) Let V be a vector space and $M, N \leq V$ and $x, y \in V$. Prove:

$$x+M\subseteq y+N$$
 if and only if $M\subseteq N$ and $x-y\in N.$