Your Printed name indicates you read Chapter 6 of the notes:

Assume \mathbb{F} is a field and $n \in \mathbb{N}$ and V is a vector space over \mathbb{F} with dual space $V^* = \mathcal{L}(V, \mathbb{F})$.

Problem 51 If $x, y \in V$ and $\alpha, \beta \in V^*$ then $\alpha \otimes \beta : V \times V \to \mathbb{F}$ and $x \otimes y : V^* \times V^* \to \mathbb{F}$ are given by:

$$(\alpha \otimes \beta)(x,y) = \alpha(x)\beta(y)$$
 $(x \otimes y)(\alpha,\beta) = \alpha(x)\beta(y).$

It is simple to prove $\alpha \otimes \beta : V \times V \to \mathbb{F}$ is bilinear on V and $x \otimes y : V^* \times V^* \to \mathbb{F}$ is bilinear on V^* . Furthermore, if $\alpha_1, \alpha_2, \beta \in V^*$ and $c \in \mathbb{F}$ then $(c\alpha_1 + \alpha_2) \otimes \beta = c(\alpha_1 \otimes \beta) + \alpha_2 \otimes \beta$ and $\beta \otimes (c\alpha_1 + \alpha_2) = c\beta \otimes \alpha_1 + \beta \otimes \alpha_2$. Likewise, if $x, y, z \in V$ and $c \in \mathbb{F}$ then $(cx + y) \otimes z = c(x \otimes z) + y \otimes z$ and $z \otimes (cx + y) = cz \otimes x + z \otimes y$.

Suppose V is a finite dimensional vector space with basis $\Upsilon = \{v_1, \dots, v_n\}$ and dual basis $\Upsilon^* = \{v^1, \dots, v^n\}$ defined by $v^i(v_j) = \delta_{ij}$ extended linearly. Prove the following:

- (a.) If $B: V \times V \to \mathbb{F}$ is bilinear then $\exists B_{ij} \in \mathbb{F}$ for which $B = \sum_{i,j=1}^n B_{ij} v^i \otimes v^j$.
- **(b.)** If $T: V^* \times V^* \to \mathbb{F}$ is bilinear then $\exists T_{ij} \in \mathbb{F}$ for which $T = \sum_{i,j=1}^n T^{ij} v_i \otimes v_j$.
- **Problem 52** Consider $\alpha \in V^*$ where (V, \langle , \rangle) is an inner product space. Then we define $\sharp \alpha$ to be the unique vector for which $\alpha(x) = \langle x, \sharp \alpha \rangle$. The vector $\sharp \alpha$ is sometimes called the **Riesz'** vector of α . Calculate $\sharp \alpha$ for the following:
 - (a.) $V = \mathbb{R}^3$, $\alpha(x) = x_1 + 2x_2 + 3x_3$
 - **(b.)** $V = \mathbb{C}^2, \ \alpha(z) = z_1 + iz_2$
 - (c.) $V = P_2(\mathbb{R})$ with $\langle f(x), h(x) \rangle = \int_0^1 f(t)h(t) dt$ given $\alpha(f) = f(0) + f'(1)$.
- **Problem 53** Suppose (V, g) is a real geometry meaning that V is a real vector space paired with a bilinear, symmetric, nondegenerate form g. Given basis $\Upsilon = \{v_1, \ldots, v_n\}$ for V and $\alpha \in V^*$ we define $\sharp \alpha \in V$ by $\alpha(x) = g(x, \sharp \alpha)$ for each $x \in V$.
 - (a.) Prove $\sharp: V^* \to V$ defines an isomorphism.
 - **(b.)** If $\flat = \sharp^{-1}$ then find the explicit formula for $\flat(x)$ when $x = \sum_{i=1}^n x^i v_i$
 - (c.) Show (V^*, g^*) is also a real geometry given we define $g^*(\alpha, \beta) = g(\sharp \alpha, \sharp \beta)$.
- **Problem 54** Let S_n be the symmetric and A_n be the antisymmetric $n \times n$ matrices over \mathbb{F} . Prove that $\mathbb{R}^{n \times n}/S_n \cong A_n$ and $\mathbb{R}^{n \times n}/A_n \cong S_n$.
- **Problem 55** Consider $V = \mathbb{R}[x]$ and $W = x^4 \mathbb{R}[x]$. Show V/W is a finite dimensional vector space. To begin, find a careful criteria for

$$f(x) + W = g(x) + W$$

then propose a basis and prove it is a linearly independent spanning set for V/W.

- **Problem 56** Suppose $W \leq V$ where V is a vector space over \mathbb{F} . Also, let $T: V \to V$ be a linear transformation. If we define S(x+W) = T(x) + W for each $x+W \in V/W$ then does S define a linear transformation on V/W? Discuss.
- **Problem 57** Let (V, \langle , \rangle) be a finite dimensional real inner product space. Suppose $W \leq V$. Let $ann(W) = \{\alpha \in V^* \mid \alpha(w) = 0 \text{ for all } w \in W\}$. Construct an explicit isomorphism from ann(W) to $W^{\perp} = \{v \in V \mid \langle v, w \rangle = 0 \text{ for all } w \in W\}$.
- **Problem 58** Let vector $v = \langle a, b, c \rangle$ and define

$$\omega_v = adx + bdy + cdz$$
 & $\Phi_v = ady \wedge dz + bdz \wedge dx + cdx \wedge dy$.

Here we use the notation dx, dy, dz for the dual basis to the standard basis e_1, e_2, e_3 for \mathbb{R}^3 . I usually call ω_v the **work form** and Φ_v the **flux form** corresponding to v. Show:

- (a.) Show $\omega_v \wedge \omega_w = \Phi_{v \times w}$ where $v \times w$ denotes the usual cross-product of vectors in \mathbb{R}^3
- **(b.)** Show $\omega_u \wedge \omega_v \wedge \omega_w = u \cdot (v \times w) dx \wedge dy \wedge dz$

Problem 59 Let
$$A \oplus B = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$$
 where $A \in \mathbb{F}^{m \times m}$ and $B \in \mathbb{F}^{k \times k}$. Prove that

$$\det(A \oplus B) = \det(A)\det(B)$$

using the wedge product algebra definition of the determinant.

- **Problem 60** Suppose $S = \{(1,0,1,0), (4,3,5,2), (a,b,c,d)\}$. What condition(s) on (a,b,c,d) are needed for S to be linearly dependent?
 - (a) find the condition(s) via the row-reduction technique,
 - (b) find the condition(s) from the fact that x, y, z linearly dependent iff $x \wedge y \wedge z = 0$.