Please follow the format which was announced in Blackboard. Thanks!

Your PRINTED NAME indicates you have read through Chapter 7 of the notes:

- **Problem 91** Let $W_1 = \text{span}\{x + x^2, 1 + x^3\}$ and $W_2 = \text{span}\{1 + x, x^2 + x^3\}$. Find a basis for $W_1 \cap W_2$.
- **Problem 92** Find a basis for $W_1 + W_2$ where W_1, W_2 are the subspaces of $P_3(\mathbb{R})$ described in the previous problem. Do your calculations check against Theorem 6.7.8?
- **Problem 93** Example 7.6.3 shows a calculational technique to find bases β, γ for which $T : \mathbb{R}^n \to \mathbb{R}^m$ has a matrix $[T]_{\beta,\gamma} = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ where $r = \operatorname{rank}(T)$. Follow that example (use technology for the row reductions!) to find such β, γ for $T : \mathbb{R}^4 \to \mathbb{R}^3$ with

$$[T] = \begin{bmatrix} 1 & 0 & -2 & 0 \\ 1 & 3 & -2 & 6 \\ 2 & 0 & -4 & 0 \end{bmatrix}$$

- **Problem 94** Let v = (7, 9) and suppose $\beta = \{(2, 2), (-1, 1)\}$. Calculate $[v]_{\beta}$.
- **Problem 95** Consider bases $\beta = \{x^2, x, 1\}$ and $\bar{\beta} = \{1, x 2, (x 2)^2\}$. Find the coordinate change matrix $P_{\beta,\bar{\beta}}$ for which $[v]_{\bar{\beta}} = P_{\beta,\bar{\beta}}[v]_{\beta}$ for each $v \in P_2(\mathbb{R})$
- **Problem 96** Consider $\mathbb{R}^{2\times 2}$. We have the usual basis

$$\beta = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right\}$$

and less usual basis

$$\bar{\beta} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}.$$

- (a.) Find the coordinate change matrix $P_{\beta,\bar{\beta}}$ for which $[A]_{\bar{\beta}} = P_{\beta,\bar{\beta}}[A]_{\beta}$ for each $A \in \mathbb{R}^{2\times 2}$
- **(b.)** Consider the mapping $L(A) = A^T$. Calculate $[L]_{\beta,\bar{\beta}}$.

Problem 97 Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that:

$$T(v_1) = v_1,$$
 $T(v_2) = 2v_1,$ $T(v_3) = 3v_3$

where $v_1 = (1, 1, 0)$ and $v_2 = (1, -1, 0)$ and $v_3 = (0, 0, 1)$. Find the standard matrix of T by an appropriate use of Proposition 7.5.7.

Problem 98 Suppose T(f(x)) = f'(x) + f''(x) for $f(x) \in P_2(\mathbb{R})$.

- (a.) Can you find a basis β for $P_2(\mathbb{R})$ such that $[T]_{\beta,\beta} = I_3$?
- (b.) Find a subspace W with basis β_W and basis γ for $P_2(\mathbb{R})$ such that $T|_W: W \to P_2(\mathbb{R})$ has $[T|_W]_{\beta_W,\gamma} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$

- **Problem 99** Suppose T has matrix $[T]_{\beta,\gamma} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ with respect to $\beta = \{1, x, x^2, x^3\}$ and $\gamma = \{E_{12} + E_{21}, I\} \subseteq \mathbb{R}^{2 \times 2}$. Find the formula for $T : P_3(\mathbb{R}) \to \mathbb{R}^{2 \times 2}$ and find $[T]_{\bar{\beta},\bar{\gamma}}$ where $\bar{\beta} = \{x^3, x^2, x, 1\}$ and $\bar{\gamma} = \{2(E_{12} + E_{21}), 3I\}$.
- **Problem 100** Suppose $T: V \to W$ has $\text{Null}([T]_{\beta,\gamma}) = \text{span}\{(1,1,0),(0,1,2)\}$ and $\text{Col}([T]_{\beta,\gamma}) = \text{span}\{(1,0,1)\}$ where $\beta = \{1, x, x^2\}$ and $\gamma = \{e^t, \sin(t), \cos(t)\}$ are bases for V and W respective.
 - (a.) find Ker(T) and Range(T)
 - **(b.)** find the formula for $T(a + bx + cx^2)$
- **Problem 101** Dual space has very nice applications to coordinate maps. In particular, given basis $\beta = \{v_1, \ldots, v_n\}$ for V we define dual basis $\beta^* = \{v^1, \ldots, v^n\} \subseteq V^*$ by the rule $v^i(v_j) = \delta_{ij}$ for $1 \leq i, j \leq n$.
 - (a.) explain why $v^i(v_j) = \delta_{ij}$ for $1 \leq j \leq n$ suffices to define the linear map $v^i : V \to \mathbb{F}$,
 - (b.) prove $\Phi_{\beta}(x) = \sum_{i=1}^n v^i(x) p_i$ \(\tag{v}_i \) \(\tag{vposed} \) be e_i
 - (c.) explain why $[x]_{\beta} = (v^1(x), \dots, v^n(x)).$
- **Problem 102** The annihilator of a subspace is naturally constructed in the dual space. In particular, if $W \leq V$ then define $ann(W) = \{\alpha \in V^* \mid \alpha(w) = 0 \text{ for each } w \in W\}$
 - (a.) show $ann(W) \leq V^*$
 - **(b.)** if $W_1 \leq W_2 \leq V$ then show $ann(W_2) \subseteq ann(W_1)$

Remark: part (b.) of the above problem has a natural analog with the construction of the perpendicular space for a given $S \subseteq \mathbb{R}^n$. For example, the x-axis (W_1) is perpendicular to the yz-plane (W_1^{\perp}) . Whereas the xy-plane (W_2) is perpendicular to the z-axis (W_2^{\perp}) . So, note $W_1 \leq W_2$ has $W_2^{\perp} \leq W_1^{\perp}$. In view of this, perhaps the following problem is not too surprising:

- **Problem 103** Find an isomorphism from $W^{\perp} = \{x \in \mathbb{R}^n \mid x \cdot w = 0, \text{ for all } w \in W\}$ and $ann(W) = \{\alpha \in V^* \mid \alpha(w) = 0 \text{ for each } w \in W\}.$
- **Problem 104** Consider $V = P_3(\mathbb{R}) \times \mathbb{C}^{2 \times 2}$ as a real vector space. If $S_n(\mathbb{R})$ denotes the symmetric $n \times n$ matrices then for what n (if any) is $V \cong S_n \times S_n$?
- **Problem 105** Consider $V = \mathbb{R}^3$ and the subspace $W = \text{span}\{(1,1,1)\}$. Find a basis and coordinate chart for V/W. Describe the geometry of the cosets in V/W
- **Problem 106** Consider $V = P_2(\mathbb{R})$ and the linear transformation T(f(x)) = f'(x) find Ker(T) and find the inverse mapping $S: P_2(\mathbb{R})/Ker(T) \to T(P_2(\mathbb{R}))$ given by S(f(x)+Ker(T)) = T(f(x)). This is a special case of what common slogan from calculus I?
- **Problem 107** Suppose S is a subset of V. If we define $S+W=\{s+W\mid s\in S\}$ for a subspace W of V.
 - (a.) if S is LI then is S + W a LI in V/W? Discuss.
 - (b.) if S is linearly dependent in V then is S+W linearly dependent in V/W? Discuss.

Problem 108 Show $\mathbb{R}^{n \times n}/A_n \cong S_n$ where S_n denoted the set of symmetric matrices and A_n denotes the set of antisymmetric matrices in $\mathbb{R}^{n \times n}$. Hint: use the first isomorphism theorem wisely.

Remark: the problems below are not handed in, but, I almost assigned them. If you need further practice, perhaps it would be wise to work these. I am happy to discuss them in the Help Session.

- (I.) Is the set of rational functions over \mathbb{R} a subspace of the set of continuous functions on \mathbb{R} ?
- (II.) Show $W = \{(a + bx^2, (a + 2b, a b)) \mid a, b \in \mathbb{R}\}$ is a subspace of $P_2(\mathbb{R}) \times \mathbb{R}^2$.
- (III.) Consider $S = \{1 + t^2, 1 t, 1 + t + t^3, 2 + t^3\} \subseteq \mathbb{R}[t]$. Find a basis β for span(S). Also, find the formula for $[a + bt + ct^2 + dt^3]_{\beta}$.
- (IV.) Let $\beta = \{1, (x-1), (x-1)^2\}$. Calculate $[ax^2 + bx + c]_{\beta}$. Hint: be smart, use Taylor's Theorem you learned in Calculus II.
- (V.) Consider the set of quadratic forms in two variables x, y. Let $\gamma = \{x^2, y^2, xy\}$ and define the set of trivariate homogeneous polynomials of order two by

$$W = \operatorname{span}\{x^2, y^2, xy\}.$$

Observe W can be viewed as a function space and as it is a span we find $W \leq \mathcal{F}(\mathbb{R}^2, \mathbb{R})$. If $v = 3x^2 + 2(x - y)y$ then calculate $[v]_{\gamma}$.

- (VI.) Suppose $T: U \to V$ and $S: V \to W$ are linear transformations. Show that:
 - (a.) Range $(S \circ T) \subseteq \text{Range}(S)$
 - **(b.)** $\operatorname{Ker}(T) \subseteq \operatorname{Ker}(S \circ T)$
- (VII.) Consider $\operatorname{Aut}(V) = \{\Psi : V \to V \mid \Psi \text{ an isomorphism}\}$. Is $\operatorname{Aut}(V) \leq \mathcal{L}(V)$? Here $\mathcal{L}(V)$ denotes the set of all linear mappings from V to V.
- (VIII.) Investigate relation of $ann(W_1 + W_2)$ and $ann(W_1 \cap W_2)$.
 - (IX.) Let V be a vector space and $M, N \leq V$ and $x, y \in V$. Prove:

$$x + M \subseteq y + N$$
 if and only if $M \subseteq N$ and $x - y \in N$.

[P91] $W_1 = Span \{ X + X^2, 1 + X^3 \}$ and $W_2 = Span \} 1 + X, X^2 + X^3 \}$ [Find basis for $W_1 N W_2$

If $f(x) \in W_1 \cap W_2$ then $f(x) \in W_1$ and $f(x) \in W_2$ thus $\exists a,b,c,d \in \mathbb{R}$ s.t. $f(x) = a(x+x^2)+b(1+x^3) = c(1+x)+d(x^2+x^3)$ Thus, $b+ax+ax^2+bx^3=c+cx+dx^2+dx^3$ from which we equate coeff. to find,

b = c, a = c, a = d, b = d

hence a = b = c = d so,

 $f(x) = \alpha(x+x^2) + \alpha(1+x^3) = \alpha(1+x) + \alpha(x^2+x^3)$

any way, $f(x) = a(1+x+x^2+x^3)$ thus

 $W_1 \cap W_2 \subseteq Span \left\{ (+x + x^2 + x^3) \right\}$

Conversely, as $1+x+x^2+x^3=(x+x^2)+(1+x^3)=(1+x)+(x^2+x^3)$ it is clear $1+x+x^2+x^3\in W_1\cap W_2\Rightarrow span\{1+x+x^2+x^3\}\subseteq \overline{W_1\cap W_2}$. In conclusion, $\beta=\{1+x+x^2+x^3\}$ is basis for $\overline{W_1\cap W_2}$.

-//

```
[P92] Find basis for W, + Wz (W, Wz From P91)
   Let f(x) \in W_1 + W_2 then \exists f_1(x) \in W_1 and f_2(x) \in W_2
   S.t. f(x) = f(x) + f(x). But, by construction
    W_1 = Span \beta, and W_2 = Span \beta_2 where \beta_1 = \{x + x^2, 1 + x^3\}
   and \beta_2 = \{1+x, x^2+x^3\} hence \exists C_1, C_2, C_3, C_4 \in \mathbb{R} \text{ s.t.}
                 f(x) = c_1(1+x) + c_2(x^2+x^3) + c_3(x+x^2) + c_4(1+x^3)
      So Y = \beta_1 \cup \beta_2 = \{1+X, X^2+X^3, X+X^2, 1+X^3\} generates
     W, +Wz. To find basis we need to eliminate any
     linear dependencies from Y. I'll use coordinates
     w.r.t. \beta = \{1, X, X^2, X^3\} to analyze \mathcal{X}
M = \left[ [1+x]_{\beta} | (x^2+x^3)_{\beta} | (x+x^2)_{\beta} | [1+x^3]_{\beta} \right] = \left[ \begin{array}{c} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array} \right] \xrightarrow{r_2-r_2} \left[ \begin{array}{c} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{array} \right]

\frac{\Gamma_{2} \leftrightarrow \Gamma_{4}}{0} \begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{bmatrix}

\frac{\Gamma_{3} - \Gamma_{2}}{0} \begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 1 & -1
\end{bmatrix}

\sim \begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{bmatrix}

         thus {col, [m], col, (m), col, (m)} are LI and thus
          as the isomorphism $\overline{\Pi}$ transfers LI sets in IR4
         to LI sets in P3(R) we find
                     \left[\beta_3 = \left\{1 + X, X^2 + X^3, X + X^2\right\}\right) \hookrightarrow \underline{\dim(W_1 + W_2)} = 3
         Server as basis for W, +Wz. Finally,
             \dim(W_1+W_2)=\dim(W_1)+\dim(W_2)-\dim(W_1\cap W_2)
```

$$\begin{array}{ll}
\boxed{P9Y} & V = (7,9) & \text{and} & \beta = \{(2,2),(-1,1)\} \\
\boxed{[V]_{\rho}} &= \left[\beta\right]^{-1}V = \left[\frac{2}{2} - 1\right]^{-1}\left[\frac{7}{9}\right] \\
&= \frac{1}{2+2}\left[\frac{1}{-2} - \frac{1}{2}\right]\left[\frac{7}{9}\right] \\
&= \frac{1}{4}\left[\frac{16}{4}\right] \\
\vdots & \boxed{[V]_{\rho}} &= \begin{bmatrix}\frac{4}{1}\end{bmatrix} \\
\boxed{[V]_{\rho}} &= \begin{bmatrix}\frac{1}{1}\end{bmatrix} \\
\boxed$$

Alternatively,
$$P_{\beta,\overline{\rho}} = \begin{bmatrix} [x^2]_{\overline{\rho}} & [x]_{\overline{\rho}} & [1]_{\overline{\rho}} \end{bmatrix} = \begin{bmatrix} 4 & 2 & 1 \\ 4 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
Notice $ax^2 + bx + c \stackrel{*}{=} (4a + 2b + c)1 + (4a + b)(x - 2) + a(x - 2)^2$
So $\overline{\Phi}_{\overline{\rho}}(ax^2 + bx + c) = (4a + 2b + c, 4a + b, a)$
* Taylor's $1h^m$ at a .

(b.)
$$L\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}_{\overline{\rho}}$$

$$[L(A)]_{\overline{\rho}} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}_{\overline{\rho}} = \begin{bmatrix} a E_{11} + dE_{22} + c(\frac{f_3 + f_4}{2}) + b(\frac{f_3 - f_4}{2}) \end{bmatrix}_{\overline{\rho}}$$

$$\Rightarrow [L(A)]_{\overline{\rho}} = (a, d, \frac{b + c}{2}, \frac{C - b}{2})$$

$$Need [L(A)]_{\overline{\rho}} = [L]_{\rho, \overline{\rho}} [A]_{\rho} \quad \text{where} \quad [A]_{\rho} = (a, b, c, d)$$

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} a \\ d \\ \frac{1}{2}(c + b) \\ \frac{1}{2}(c - b) \end{bmatrix}$$

$$\begin{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\$$

[P98] T(f(x)) = f'(x) + f''(x) for $f(x) \in P_2(IR)$ (a) $T(ax^2 + bx + c) = 2ax + b + 2a$ We $(T) = \begin{cases} ax^2 + bx + c \\ 2ax + b + 2a = 0 \end{cases} = span \begin{cases} 1/s \\ 0 \end{cases}$ Thus $[T]_{pp} = I_3 = \begin{cases} 1/s \\ 0 \end{cases} \begin{cases} 0 \\ 0 \end{cases}$ is impossible. We find V(T) = dim(V(T)) = 1 thus Ch(T) = 3 - 1 = 2and $Color (T)_{pp} = I_3 = dim(Range(T)) = 2$ so $(T)_{pp} = I_3$ is not possible.

(b.) Let $\beta_{W'} = \{x^2, x\}$ then $T(x^2) = 2x+2 = W$, and $T(x) = 1 = W_2$. Lething $Y = \{W_1, W_2, x^2\}$ we have basis for P_2 (\mathbb{R}) and $[T|_{W'}]_{\beta_{W'}, Y} = [T(x^2)]_{Y} | [T(x)]_{Y}]$ $= [2x+2]_{Y} | [1]_{Y}]$ $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$

Remark: I chose to adjoin X^2 to $\{T(x), T(x^2)\} = \{1, 2X+2\}$ since clearly $X^2 \notin Span \{1, 2X+2\} \Rightarrow \{1, 2X+2, X^2\}$ is LI hence serves as basis for 3-dim'll $P_2(\mathbb{R})$. My choices for constructing β_W and Y are certainly <u>not</u> unique.

[P99] T has
$$[T]_{Q,Y} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

where $G = \{1, X, X^2, X^2\}$ and $Y = \{0, 1\}, [0, 1]\}$

find formula for T and also calculate $[T]_{Q,Y}$ where

 $\overline{Q} = \{X^2, X^2, X, 1\}$ and $\overline{Y} = \{2, 0, 1\}, [T(X)]_Y | T(X)]_Y | T(X)]_Y |$

We find $[T(1)]_Y = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} T(1) & 1 & 1 \\ T(1) & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$

and $[T(X)]_Y = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \Rightarrow T(1) = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$

Thus $T(a + bx + cx^2 + dx^2) = \begin{bmatrix} b & a \\ a & b \end{bmatrix}$

I'll calculate $[T]_{\overline{Q},\overline{Y}}$ directly,

 $T(dx^2 + cx^2 + bx + a) = \begin{bmatrix} b & a \\ a & b \end{bmatrix} = \frac{da}{2} \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} + \frac{b}{3} \begin{pmatrix} 2 & 0 \\ 0 & 7 \end{pmatrix}$

from which T read,

$$\begin{bmatrix} T \end{bmatrix}_{\overline{Q},\overline{Y}} = \begin{bmatrix} 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{3} & 0 \end{bmatrix}$$