Same rules as Homework 1. However, do keep in mind you are free to use technology to calculate row-reductions. There are many online resources to help you check your work. It would be wise to make use of them (Gram Schmidt has a lot of arithmetic, it's easy to make mistakes).

- Problem 121 Your signature below indicates you have:
 - (a.) I read Sections 15, 30, 32 (just p.278 282) of Curtis: ______
 - (b.) I read Chapter 8 of Cook's Lecture Notes:
- **Problem 122** Consider $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. Calculate $e^{J\theta}$ by explicit calculation from the definition of the matrix exponential. Simplify your answer using sine and cosine.
- **Problem 123** Let $S = \{(1,1,1), (0,2,2)\}$. Find an orthonormal basis β for $W = \operatorname{span}(S)$. Also, extend β to an orthonormal basis for \mathbb{R}^3 and write W^{\perp} as a span.
- **Problem 124** Let $S = \{(1, 1, 0, 0), (1, 2, 2, 2)\}$. Let W = span(S).
 - (a) find an orthonormal basis β_1 for W
 - (b) find an orthonormal basis β_2 for W^{\perp}
- **Problem 125** Continuing the previous problem. Find the formula for $Proj_W : \mathbb{R}^4 \to W$. Also, find the point on W which is closest to (a, b, c, d). Likewise, find projection onto W^{\perp} and the point which is closest to (a, b, c, d)
- **Problem 126** Define $\langle A, B \rangle = \operatorname{trace}(AB^T)$ and $||A|| = \sqrt{\langle A, A \rangle}$. Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$. Calculate $\langle A, B \rangle$, ||A|| and ||B||. Verify the inequality $|\langle A, B \rangle| \le ||A|| \, ||B||$.
- **Problem 127** Let $S = \{x + x^2\} \subset P_2(\mathbb{R})$ where $\langle f(x), g(x) \rangle = \int_0^1 f(x)g(x) dx$. Find a basis for S^{\perp} .
- **Problem 128** Let \mathcal{L} be the line which connects the points (1, 2, 3, 4) and (5, 5, 5, 5). Find the Euclidean distance from (2, 2, 2, 2) to \mathcal{L} .
- **Problem 129** Find the line closest to (1, 2), (2, 0), (3, -2), (4, -7).
- **Problem 130** Curtis $\S15$ exercise #10 on page 130.
- **Problem 131** If $L: \mathbb{R}^n \to \mathbb{R}^n$ satisfies $L(x) \cdot L(y) = x \cdot y$ for all $x, y \in \mathbb{R}^n$ then L is an **orthogonal transformation**. Show that if L is an orthogonal transformation on \mathbb{R}^n then L is a linear transformation with $[L]^T[L] = I$.

Incidentally, $[L]^T[L] = I$ indicates [L] is an **orthogonal matrix**; the set of all orthogonal matrices is denoted $O(n) = \{R \mid R^T R = I\}$. The reason for this name is hopefully clear.

Problem 132 Let $SO(n) = \{R \in \mathbb{R}^{n \times n} \mid R^T R = I \& \det(R) = 1\}$ denote the set of **special orthogonal matrices**. Show that SO(n) forms a group under matrix multiplication. (see page 82 of Curtis for definition of group if you forgot)

Incidentally, the linear transformations with matrices in SO(n) are **rotations**. Consequently, we sometimes call SO(n) the group of rotation matrices.

- **Problem 133** If (V, \langle , \rangle) is a real inner product space and $L: V \to V$ is linear transformation then we say L is an **isometry** of V if $\langle L(x), L(y) \rangle = \langle x, y \rangle$ for all $x, y \in V$. Suppose $V = W_1 \oplus W_2$ where W_1, W_2 are orthogonal subspaces. Prove $L(W_1)$ and $L(W_2)$ are also orthogonal.
- **Problem 134** Suppose T is invertible and T has e-value λ . Show $\frac{1}{\lambda}$ is an e-value for T^{-1} .
- **Problem 135** Suppose $A \in \mathbb{C}^{n \times n}$. Show A^T and A have the same e-values. Do A and A^T share the same e-vectors for a given e-value? Prove or disprove.
- **Problem 136** Consider $R = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Find the e-values and real e-vectors of R.
- **Problem 137** Let $SO(3) = \{R \in \mathbb{R}^{3\times 3} \mid R^T R = I\}$. Show that: If $R \in SO(3)$ and $R \neq I$ then R has only two e-vectors of unit length for which $\lambda = 1$.
- **Problem 138** Let $R \in SO(3)$ with trace(R) = 0. By what angle does R rotate?
- **Problem 139** Formally, we have the identity: for $-1 \le x \le 1$

$$x^{2} = \sum_{n=0}^{\infty} \left(\frac{\langle x^{2}, \cos(n\pi x) \rangle}{\langle \cos(n\pi x), \cos(n\pi x) \rangle} \right) \cos(n\pi x) + \sum_{n=1}^{\infty} \left(\frac{\langle x^{2}, \sin(n\pi x) \rangle}{\langle \sin(n\pi x), \sin(n\pi x) \rangle} \right) \sin(n\pi x)$$
 (*)

where $\langle f(x), g(x) \rangle = \int_{-1}^{1} f(x)g(x) dx$ in this context. I say formally since we've left the world of finite linear algebra here. If we truncated these sums at finite n then we'd have trigonmetric approximations of x^2 within a 2n+1 dimensional subspace of function space. However, we consider the full infinite sum and technically we should justify that the trigonmetric series converges, and, that its limit function does reproduce x^2 on [-1,1]. We leave the formalities to the analysis course. Show (formally) that (\star) yields:

$$x^{2} = \frac{1}{3} + \sum_{n=1}^{\infty} (-1)^{n} \frac{4}{n^{2}\pi^{2}} \cos(n\pi x)$$

on $-1 \le x \le 1$. You can use a CAS to do the integrals which are needed. Use this result to show $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{25} + \cdots = \frac{\pi^2}{6}$ (the p = 2 series converges to this value).

Problem 140 (Hokage) Let $\pi_j : \mathbb{R}^n \to \mathbb{R}^n$ be the projection defined by $\pi(x) = x - (x \cdot e_j)e_j$ for each $x \in \mathbb{R}^n$ for j = 1, ..., n. Suppose \mathcal{P} is an (n-1)-dimensional parallel-piped which is formed by the convex-hull of $v_1, ..., v_{n-1} \in \mathbb{R}^n$ suspended at base-point $p \in (0, \infty)^n$;

$$\mathcal{P} = \left\{ p + \sum_{j=1}^{n-1} \alpha_j v_j \mid \alpha_j \in [0, 1] \& \sum_{j=1}^{n-1} \alpha_j \le 1 \right\}$$

Let $n \in \mathbb{R}^n$ be a unit-vector in $\{v_1, \dots, v_{n-1}\}^{\perp}$. The (n-1)-area of \mathcal{P} is given by $\operatorname{area}(\mathcal{P}) = |\det[v_1| \dots |v_{n-1}|n]|$. We can study the area of the shadows formed by \mathcal{P} on the coordinate hyperplanes. Let $\mathcal{P}_j = \pi_j(\mathcal{P})$ define the shadow of \mathcal{P} on the $x_j = 0$ coordinate plane. Notice,

$$\mathcal{P}_{j} = \left\{ \pi_{j}(p) + \sum_{i=1}^{n-1} \alpha_{i} \pi_{j}(v_{i}) \mid \alpha_{j} \in [0, 1] \& \sum_{j=1}^{n-1} \alpha_{j} \leq 1 \right\}$$

which shows \mathcal{P}_j is formed by the convex-hull $\pi_j(v_1), \ldots, \pi_j(v_n)$ of attached at basepoint $\pi_j(p)$. It follows that the (n-1)-area of the \mathcal{P}_j can be calculated as follows:

$$\mathbf{area}(\mathcal{P}_j) = |\det[\pi_j(v_1)| \cdots |\pi_j(v_{n-1})|e_j]|.$$

since e_j is perpendicular to \mathcal{P}_j . In the case n=2 the 1-dimensional parallel-piped is just a line-segment. For example, if $v_1=(1,1)$ then $(1/\sqrt{2},-1/\sqrt{2})$ is perpendicular to v_1 and

$$\det \begin{bmatrix} 1 & 1/\sqrt{2} \\ 1 & -1/\sqrt{2} \end{bmatrix} = -2/\sqrt{2} = -\sqrt{2} \implies \mathbf{area}(\mathcal{P}) = \sqrt{2}.$$

Of course, this is actually the length of the line-segment. Also, notice

$$\mathbf{area}(\mathcal{P}_1)^2 + \mathbf{area}(\mathcal{P}_2)^2 = 1^2 + 1^2 = \sqrt{2}^2 = \mathbf{area}(\mathcal{P})^2.$$

This is not suprising. However, perhaps the fact this generalizes to n-dimensions in the following sense is not already known to you:

$$\operatorname{area}(\mathcal{P}_1)^2 + \operatorname{area}(\mathcal{P}_2)^2 + \cdots \operatorname{area}(\mathcal{P}_n)^2 = \operatorname{area}(\mathcal{P})^2$$

Prove it. You might call this the generalized Pythagorean identity, I'm not sure its history or formal name. That said, the formula I give for generalized area could just as well be termed generalized volume. Also, you could **define**

$$v_1 \times v_2 \times \cdots \times v_{n-1} = \det \left[\begin{array}{c|c} v_1 \mid v_2 \mid \cdots \mid v_{n-1} \mid \begin{array}{c} e_1 \\ e_2 \\ \vdots \\ e_n \end{array} \right] \in \mathbb{R}^n$$

where we insist the determinant is calculated via the Laplace expansion by minors along the last column. You can show $v_1 \times v_2 \times \cdots \times v_{n-1} \in \{v_1, \dots, v_{n-1}\}^{\perp}$. But, if n is a unit-vector which spans $\{v_1, \dots, v_{n-1}\}^{\perp}$ then the (n-1)-ry cross-product must be a vector parallel to n and thus:

$$v_1 \times v_2 \times \cdots \times v_{n-1} = [(v_1 \times v_2 \times \cdots \times v_{n-1}) \cdot n] n$$

Note, $n \cdot n = 1$ as we assumed n is unit-vector and we can show

$$(v_1 \times v_2 \times \cdots \times v_{n-1}) \cdot n = \det[v_1|v_2|\dots|v_{n-1}|n]$$

Notice this generalized cross-product is just an extension of the heurstic determinant commonly used in multivariate calculus to define the standard cross-product. In particular, the following is equivalent to the column-based definition

$$v_1 \times v_2 \times \cdots \times v_{n-1} = \det \begin{bmatrix} e_1 & e_2 & \cdots & e_n \\ & v_1^T & \\ & v_2^T & \\ & \vdots & \\ & v_{n-1}^T & \end{bmatrix}$$

where we insist the determinant is calculated via the Laplace expansion by minors along the first row. In any event, my point in this discussion is merely that we can calculate higher-dimensional volumes with determinants and these go hand-in-hand with generalized tertiary cross-products. In particular,

$$||v_1 \times v_2 \times \cdots \times v_{n-1}|| = \mathbf{vol}(\mathcal{P})$$

where \mathcal{P} is formed by the convex hull of v_1, \ldots, v_{n-1} . When n=2 this gives vector length, when n=3 this is the familiar result that the area of the parallelogram with sides \vec{A}, \vec{B} is just $||\vec{A} \times \vec{B}||$.