
Math 321 Mission 8 (mostly C-rank, Problems 136-139 are A-rank)

Same rules as Homework 1. However, do keep in mind you are free to use technology to calculate
row-reductions. There are many online resources to help you check your work. It would be wise to
make use of them (Gram Schmidt has a lot of arithmetic, it’s easy to make mistakes).

Problem 121 Your signature below indicates you have:

(a.) I read Sections 15, 30, 32 ( just p.278− 282) of Curtis: .

(b.) I read Chapter 8 of Cook’s Lecture Notes: .

Problem 122 Consider I =

[
1 0
0 1

]
and J =

[
0 1
−1 0

]
. Calculate eJθ by explicit calculation from the

definition of the matrix exponential. Simplify your answer using sine and cosine.

Problem 123 Let S = {(1, 1, 1), (0, 2, 2)}. Find an orthonormal basis β for W = span(S). Also, extend
β to an orthonormal basis for R3 and write W⊥ as a span.

Problem 124 Let S = {(1, 1, 0, 0), (1, 2, 2, 2)}. Let W = span(S).

(a) find an orthonormal basis β1 for W

(b) find an orthonormal basis β2 for W⊥

Problem 125 Continuing the previous problem. Find the formula for ProjW : R4 → W . Also, find the
point on W which is closest to (a, b, c, d). Likewise, find projection onto W⊥ and the point
which is closest to (a, b, c, d)

Problem 126 Define 〈A,B〉 = trace(ABT ) and ||A|| =
√
〈A,A〉. Let A =

[
1 1
1 1

]
and B =

[
1 −1
0 0

]
.

Calculate 〈A,B〉, ||A|| and ||B||. Verify the inequality |〈A,B〉| ≤ ||A|| ||B||.

Problem 127 Let S = {x+ x2} ⊂ P2(R) where 〈f(x), g(x)〉 =
∫ 1

0
f(x)g(x) dx. Find a basis for S⊥.

Problem 128 Let L be the line which connects the points (1, 2, 3, 4) and (5, 5, 5, 5). Find the Euclidean
distance from (2, 2, 2, 2) to L.

Problem 129 Find the line closest to (1, 2), (2, 0), (3,−2), (4,−7).

Problem 130 Curtis §15 exercise #10 on page 130.

Problem 131 If L : Rn → Rn satisfies L(x) •L(y) = x • y for all x, y ∈ Rn then L is an orthogonal
transformation. Show that if L is an orthogonal transformation on Rn then L is a linear
transformation with [L]T [L] = I.

Incidentally, [L]T [L] = I indicates [L] is an orthogonal matrix; the set of all orthogonal
matrices is denoted O(n) = {R | RTR = I}. The reason for this name is hopefully clear.



Problem 132 Let SO(n) = {R ∈ Rn×n | RTR = I & det(R) = 1} denote the set of special orthogonal
matrices. Show that SO(n) forms a group under matrix multiplication. (see page 82 of
Curtis for definition of group if you forgot)

Incidentally, the linear transformations with matrices in SO(n) are rotations. Conse-
quently, we sometimes call SO(n) the group of rotation matrices.

Problem 133 If (V, 〈 , 〉) is a real inner product space and L : V → V is linear transformation then we
say L is an isometry of V if 〈L(x), L(y)〉 = 〈x, y〉 for all x, y ∈ V . Suppose V = W1⊕W2

where W1,W2 are orthogonal subspaces. Prove L(W1) and L(W2) are also orthogonal.

Problem 134 Suppose T is invertible and T has e-value λ. Show 1
λ

is an e-value for T−1.

Problem 135 Suppose A ∈ Cn×n. Show AT and A have the same e-values. Do A and AT share the same
e-vectors for a given e-value? Prove or disprove.

Problem 136 Consider R =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

. Find the e-values and real e-vectors of R.

Problem 137 Let SO(3) = {R ∈ R3×3 | RTR = I}. Show that: If R ∈ SO(3) and R 6= I then R has
only two e-vectors of unit length for which λ = 1.

Problem 138 Let R ∈ SO(3) with trace(R) = 0. By what angle does R rotate?

Problem 139 Formally, we have the identity: for −1 ≤ x ≤ 1

x2 =
∞∑
n=0

(
〈x2, cos(nπx)〉

〈cos(nπx), cos(nπx)〉

)
cos(nπx) +

∞∑
n=1

(
〈x2, sin(nπx)〉

〈sin(nπx), sin(nπx)〉

)
sin(nπx) (?)

where 〈f(x), g(x)〉 =
∫ 1

−1 f(x)g(x) dx in this context. I say formally since we’ve left the
world of finite linear algebra here. If we truncated these sums at finite n then we’d
have trigonmetric approximations of x2 within a 2n+ 1 dimensional subspace of function
space. However, we consider the full infinite sum and technically we should justify that
the trigonmetric series converges, and, that its limit function does reproduce x2 on [−1, 1].
We leave the formalities to the analysis course. Show (formally) that (?) yields:

x2 =
1

3
+
∞∑
n=1

(−1)n
4

n2π2
cos(nπx)

on −1 ≤ x ≤ 1. You can use a CAS to do the integrals which are needed. Use this result
to show 1 + 1

4
+ 1

9
+ 1

25
+ · · · = π2

6
(the p = 2 series converges to this value).

Problem 140 (Hokage) Let πj : Rn → Rn be the projection defined by π(x) = x − (x • ej)ej for each
x ∈ Rn for j = 1, . . . , n. Suppose P is an (n − 1)-dimensional paralell-piped which is
formed by the convex-hull of v1, . . . , vn−1 ∈ Rn suspended at base-point p ∈ (0,∞)n;

P =

{
p+

n−1∑
j=1

αjvj

∣∣∣∣ αj ∈ [0, 1] &
n−1∑
j=1

αj ≤ 1

}



Let n ∈ Rn be a unit-vector in {v1, · · · , vn−1}⊥. The (n − 1)-area of P is given by
area(P) = |det[v1| · · · |vn−1|n]|. We can study the area of the shadows formed by P
on the coordinate hyperplanes. Let Pj = πj(P) define the shadow of P on the xj = 0
coordinate plane. Notice,

Pj =

{
πj(p) +

n−1∑
i=1

αiπj(vi)

∣∣∣∣ αj ∈ [0, 1] &
n−1∑
j=1

αj ≤ 1

}

which shows Pj is formed by the convex-hull πj(v1), . . . , πj(vn) of attached at basepoint
πj(p). It follows that the (n− 1)-area of the Pj can be calculated as follows:

area(Pj) = |det[πj(v1)| · · · |πj(vn−1)|ej]|.

since ej is perpendicular to Pj. In the case n = 2 the 1-dimensional paralell-piped is just
a line-segment. For example, if v1 = (1, 1) then (1/

√
2,−1/

√
2) is perpendicular to v1 and

det

[
1 1/

√
2

1 −1/
√

2

]
= −2/

√
2 = −

√
2 ⇒ area(P) =

√
2.

Of course, this is actually the length of the line-segment. Also, notice

area(P1)
2 + area(P2)

2 = 12 + 12 =
√

2
2

= area(P)2.

This is not suprising. However, perhaps the fact this generalizes to n-dimensions in the
following sense is not already known to you:

area(P1)
2 + area(P2)

2 + · · · area(Pn)2 = area(P)2

Prove it. You might call this the generalized Pythagorean identity, I’m not sure its
history or formal name. That said, the formula I give for generalized area could just as
well be termed generalized volume. Also, you could define

v1 × v2 × · · · × vn−1 = det

 v1 | v2 | · · · | vn−1

e1
e2
...
en

 ∈ Rn

where we insist the determinant is calculated via the Laplace expansion by minors along
the last column. You can show v1 × v2 × · · · × vn−1 ∈ {v1, . . . , vn−1}⊥. But, if n is a unit-
vector which spans {v1, . . . , vn−1}⊥ then the (n − 1)-ry cross-product must be a vector
parallel to n and thus:

v1 × v2 × · · · × vn−1 = [(v1 × v2 × · · · × vn−1) •n]n

Note, n •n = 1 as we assumed n is unit-vector and we can show

(v1 × v2 × · · · × vn−1) •n = det[v1|v2| . . . |vn−1|n]



Notice this generalized cross-product is just an extension of the heurstic determinant com-
monly used in multivariate calculus to define the standard cross-product. In particular,
the following is equivalent to the column-based definition

v1 × v2 × · · · × vn−1 = det


e1 e2 · · · en

vT1
vT2
...

vTn−1


where we insist the determinant is calculated via the Laplace expansion by minors along
the first row. In any event, my point in this discussion is merely that we can calculate
higher-dimensional volumes with determinants and these go hand-in-hand with generalized
tertiary cross-products. In particular,

||v1 × v2 × · · · × vn−1|| = vol(P)

where P is formed by the convex hull of v1, . . . , vn−1. When n = 2 this gives vector length,
when n = 3 this is the familar result that the area of the parallelogram with sides ~A, ~B is
just || ~A× ~B||.


