
Math 321: geometry and orthgonality Mission 8

Please follow the format which was announced in Blackboard. Thanks!

Problem 127 Suppose β = { 1√
12

(1, 1, 3, 1), 1√
12

(1,−3, 1,−1), 1√
6
(−1,−1, 0, 2), v4}. Find v4 such that β

forms an orthonormal basis for R4 then calculate [(0, 0, 1, 0)]β.

Problem 128 Let W = span{(2, 2, 1, 0), (1, 1, 1, 0)}.

(a.) Find an orthonormal basis βW for W in R4 with the standard Euclidean geometry,

(b.) Calculate ProjW (a, b, c, d),

(c.) Find the point on W closest to (3, 3, 2, 4).

Problem 129 Let W = span

{[
0 1
−1 0

]}
for a subspace in R2×2 with the standard Frobenius inner

product 〈A,B〉 = trace(ABT ).

(a.) Find an orthonormal basis for W⊥

(b.) Calculate ProjW⊥

[
a b
c d

]
(c.) Calculate ProjW

[
a b
c d

]
(d.) Find the matrix in W which is closest to

[
1 1
−1 2

]
Problem 130 Consider the plane P in R4 given by w + x + y + z = 0 and w − x − y − z = 0. Notice

(1, 1, 1, 1) /∈ P . Find the point in P which is closest to (1, 1, 1, 1).

Problem 131 Show that 〈f(x), g(x)〉 =
∫ 1

0
f(x)g(x)dx defines an inner product on R[x]. Explain why

the same formula fails to define an inner product on the space of continuous real-valued
functions on R.

Problem 132 Let W = P2(R) and use 〈f(x), g(x)〉 =
∫ 1

0
f(x)g(x)dx for the inner product on W . Run

the GSA on {1, x, x2} with respect to the given inner product.

Problem 133 Consider V = P2(R) ∪ {ex} this is naturally a subspace of the continuous functions on R
as V = span{1, x, x2, ex}. Furthermore, V with 〈f(x), g(x)〉 =

∫ 1

0
f(x)g(x)dx is an inner

product space (the counter-example for two problems back requires continuous functions
not found in V ). Calculate the projection of ex onto the subspace P2(R) of V .
please give an approximate answer two two decimal places, you may use technology to
compute the relevant integrals

Problem 134 Cauchy Schwarz Inequality Let V be an inner product space over F (either F = R or
F = C) with inner product 〈, 〉 and induced norm ‖x‖ =

√
〈x, x〉. Prove |〈x, y〉| ≤ ‖x‖ ‖y‖

for all x, y ∈ V . Let me give you a path:

(a.) show 0 ≤ ‖x− cy‖2 = ‖x‖2 − c〈y, x〉 − c〈x, y〉+ |c|2‖y‖2 for all x, y ∈ V and c ∈ F,



(b.) when y 6= 0 can set c = 〈x,y〉
〈y,y〉 in the inequality in (a.)

(c.) rearrange the inequality to derive the Cauchy Schwarz inequality in the case y 6= 0.

This is just a sketch, you need to connect these thoughts with a proper proof narrative.

Problem 135 Triangle Inequality: Let (V, 〈, 〉) be an inner product space with the usual induced norm
‖x‖ =

√
〈x, x〉. Prove ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V .

Problem 136 Let V be a complex inner product space with inner product 〈, 〉. If x, y ∈ V then there
are at least two competing ideas to describe the angle between these vectors:

(1.) we can calculate the so-called complex angle defined by cos θ̃ = |〈x,y〉|
‖x‖‖y‖ for x, y

nonzero in V. Notice 0 ≤ θ̃ ≤ π/2 since the cosine of the complex angle is by-
construction non-negative.

(2.) we could view V as a real vector space with inner product given by 〈x, y〉R = Re〈x, y〉
then the real angle between x, y nonzero is given by cos θ = 〈x,y〉R

‖x‖R‖y‖R
where

‖x‖R =
√
〈x, x〉R. Notice, θ so-constructed ranges over [−π/2, π/2].

For the standard complex vector spaces below and the given vectors calculate the complex
and real angle between the vectors:

(a.) x = 〈1, 1 + i〉 and y = 〈1− i, 2〉 in C2

(b.) A =

[
1 4
4 4

]
and B =

[
i 4i
4i 4i

]
in C2×2

Problem 137 Consider the vectors studied in the above problem,

(a.) is {x, y} a linearly independent set in C2 as a complex vector space ?

(b.) is {x, y} a linearly independent set in C2 as a real vector space ?

(c.) is {A,B} a linearly independent set in C2×2 as a complex vector space ?

(d.) is {A,B} a linearly independent set in C2×2 as a real vector space ?

Problem 138 Suppose V is a finite dimensional inner product space over1 R. Let g : V ×V → R denote
the inner product for V . If W ≤ V is a nontrivial subspace then show g|W : W ×W → R
defined by g|W (x, y) = g(x, y) for all x, y ∈ W is an inner product.

Remark: in words, the restriction of an inner product is once more an inner product. If
we study natural generalizations of inner products then we find this restriction property
fails. That is the point of the next problem.

Problem 139 A scalar product or metric on R4 is a symmetric bilinear form which is nondegenerate.
In particular, g : V × V → R is nondegenerate if g(v, w) = 0 for all w ∈ V implies
v = 0. Nondegeneracy is equivalent to the condition that the matrix of g has nonzero
determinant. It can be shown that every inner product is a metric, however, the converse

1this problem likely makes sense over C as well, but, I limit our scope for your convenience.



fails. This problem intends to illustrate some of the differences. The metric given below
is the so-called Minkowski Metric of time-space. Let g : R4 × R4 → R be defined by:

g(v, w) = vTηw where η =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(a.) show g is a symmetric bilinear form on R4

(b.) why is g is not an inner product on R4 ?

(c.) let W = span{e2, e3, e4} and show g|W is an inner product (and hence a metric).

(d.) let C = span{e2 − e1} and show g|C is not an metric.

Problem 140 We define SO(2,R) = {A ∈ R2×2 | ATA = I, det(A) = 1}.

(a.) show A ∈ SO(2,R) has the form A =

[
cos θ sin θ
− sin θ cos θ

]
for some θ ∈ R.

(b.) Given a linear isometry T of R2 has trace(T ) =
√

2 and det(T ) = 1. By what angle
does T rotate?

Problem 141 Suppose θ 6= nπ for n ∈ Z. Consider R =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

. Find the complex

eigenvalues and real e-vectors of R.

Problem 142 Let SO(3) = {R ∈ R3×3 | RTR = I}. Show that: If R ∈ SO(3) and R 6= I then R has
only two e-vectors of unit length for which λ = 1.

Problem 143 Let R ∈ SO(3) with trace(R) = 0. By what angle does R rotate?
Hint: consider T : R3 → R3 where [T ] = R and study the basis where the third vector is
the e-vector of unit-length whose existence you proved in the last problem

Problem 144 An n-parallel piped P with edges v1, . . . , vn is the convex-hull of v1, . . . , vn. That is:

P = {c1v1 + · · ·+ cnvn | 0 ≤ c1, . . . , cn ≤ 1 & c1 + · · ·+ cn = 1}.

Let T : Rn → Rn be an isometry of the Euclidean geometry of Rn. Show T (P) is an
n-parallel piped with the same n-volume as P .
Reminder: the n-volume of an n-parallel piped with edges v1, . . . , vn is given by |det[v1| · · · |vn]|.



Remark: the problems below are not handed in, but, I almost assigned them. If you need further
practice, perhaps it would be wise to work these. I am happy to discuss them in the Help Session.

(I.) Let M be a symmetric matrix and define Υ(A,B) = AB + BA for all A,B ∈ Rn×n show Υ is
a symmetric, bilinear form.

(II.) Let V be a complex vector space with inner product 〈, 〉. Show 〈x, cy〉 = c̄〈x, y〉 for all x, y ∈ V
and c ∈ C.

(III.) Let V be a real vector space with inner product 〈, 〉 and let r be a positive constant. Define
g : V × V → R by g(x, y) = r〈x, y〉 for all x, y ∈ V . Show g defines an inner product on V .
Comment on the geometry given by g as it relates to the geometry given by 〈, 〉. In particular,
compare and constrast the angles between vectors and the length of vectors as measured by 〈, 〉
vs. g

(IV.) Let β = {Eii | 1 ≤ i ≤ n}∪{Eij +Eji | 1 ≤ i < j ≤ n} form a basis for the symmetric matrices
Sn ≤ Rn×n. Show that β is an orthogonal basis with respect to the Frobenius inner product.

(V.) Suppose (V, g) forms a geometry and β is a basis for V for which G is the matrix of g. Further-
more, suppose the linear mapping L : V → V is a g-orthogonal map such that A is its matrix;
[L(x)]β = A[x]β or simply [L]β,β = A. Show ATGA = G.

(VI.) Let A =

[
1 0
0 1

]
and B =

[
i 0
0 i

]
. Find the angle between A and B as measured by the

inner product 〈A,B〉 = trace(AB∗) where B∗ = B̄T .

(VII.) Let S = {(1, 1, 1, 1), (0, 2, 1, 0), (1, 2, 0, 1)}. Find an orthonormal basis β for span(S). If
(a, b, c, d) ∈ span(S) then find the coordinates of (a, b, c, d) with respect to β.

(VIII.) Consider S = {x, ex}. Find an orthonormal basis for W = span(S) where the inner product is

given by 〈f(x), g(x)〉 =
∫ 1

0
f(x)g(x) dx

(IX.) Formally, we have the identity: for −1 ≤ x ≤ 1

x2 =
∞∑
n=0

(
〈x2, cos(nπx)〉

〈cos(nπx), cos(nπx)〉

)
cos(nπx) +

∞∑
n=1

(
〈x2, sin(nπx)〉

〈sin(nπx), sin(nπx)〉

)
sin(nπx) (?)

where 〈f(x), g(x)〉 =
∫ 1

−1 f(x)g(x) dx in this context. I say formally since we’ve left the world
of finite linear algebra here. If we truncated these sums at finite n then we’d have trigonmetric
approximations of x2 within a 2n + 1 dimensional subspace of function space. However, we
consider the full infinite sum and technically we should justify that the trigonmetric series
converges, and, that its limit function does reproduce x2 on [−1, 1]. We leave the formalities
to the analysis course. Show (formally) that (?) yields:

x2 =
1

3
+
∞∑
n=1

(−1)n
4

n2π2
cos(nπx)

on −1 ≤ x ≤ 1. You can use a CAS to do the integrals which are needed. Use this result to
show 1 + 1

4
+ 1

9
+ 1

25
+ · · · = π2

6
(the p = 2 series converges to this value).


