
Math 321 Mission 9 (B-rank)

Same rules as Homework 1. However, do keep in mind you are free to use technology to calculate
row-reductions. There are many online resources to help you check your work. It would be wise to
make use of them (Gram Schmidt has a lot of arithmetic, it’s easy to make mistakes).

Problem 141 Your signature below indicates you have:

(a.) I read Section 26 of Curtis: .

(b.) I am reading Chapters 9 and 10 of Cook’s Lecture Notes: .

Problem 142 Let S = {(1, i + 2, 1), (i + 1, 0, 0)} be a subset of C3. If W = spanC(S) then find an
orthonormal basis β for W .

Problem 143 Extend the basis β to γ a basis for C3. Find the formula for ProjW⊥(a, b, c) .

Problem 144 Prove that linearity 〈cx + y, z〉 = c〈x, z〉 + 〈y, z〉 and the reality condition 〈x, y〉 = 〈y, x〉
imply the conjugate homogeneity property 〈x, cy〉 = c〈x, y〉. The identities just stated
are to hold for all x, y, z ∈ V where V is a complex inner product space. Furthermore, if
c = a+ ib for a, b ∈ R then c = a− ib.

Problem 145 Find eigenvalues and orthonormal eigenvectors for Q(x, y) = x2+4xy. Change the formula
for Q to eigencoordinates (I used x̄, ȳ for this concept in lecture). Geometrically, what is
x2 + 4xy = 1 ?

Problem 146 Write the formula for Q(x, y, z) = 2x2 + 4y2 + 6z2 + 8xy+ 10xz+ 12yz in eigencoordinates
x̄, ȳ, z̄ to two decimal places. I want you to use technology and the theorem we proved
in lecture about the diagonalization of the form. I do not want you to explicitly find the
coordinate formulas relating x, y, z and x̄, ȳ, z̄.

Problem 147 Suppose Q(x, y, z) = 5x2 + 5y2 + 2z2 + 8xy + 4xz + 4yz. Write Q(v) = vTAv for a
symmetric matrix A. Find an orthonormal eigenbasis for A and find coordinates x̄, ȳ, z̄
for which Q(v) = x̄2 + ȳ2 + 10z̄2.
Hint: for this question to make sense, it must be that the matrix of Q has e-values 1, 1, 10.

Problem 148 There is another aspect of the real spectral theorem we should explore. For example, if
AT = A for A ∈ R3×3 then there exist rank one matrices E1, E2, E3 for which

A = E1 + E2 + E3

and Col(Ej) = Null(A − λjI) for j = 1, 2, 3 where λ1, λ2, λ3 are the eigenvalues of A.
Suppose u, v, w form an orthonormal eigenbasis for A with eigenvalues λ1, λ2, λ3 respective.
Define:

E1 = λ1uu
T , E2 = λ2vv

T , E3 = λ3ww
T

Show: E1 + E2 + E3 = A and Col(Ej) = Null(A− λjI) for j = 1, 2, 3.
Hint: use the orthonormality of {u, v, w} and the fact you are given Au = λ1u etc.



Problem 149 Notice u = 1√
3
(1,−1, 1) and v = 1√

2
(0, 1, 1) and w = 1√

6
(2, 1,−1) form an orthonormal

basis for R3. Find a matrix A with eigenvalues 12, 2, 18 by making use of the construction
of the last problem.

Problem 150 Let V be a vector space and M,N ≤ V and x, y ∈ V . Prove:

x+M ⊆ y +N if and only if M ⊆ N and x− y ∈ N.

Problem 151 Define Ψ : Fn×n → Fn×n by Ψ(X) = X −XT for each X ∈ Fn×n. Show that

Fn×n/Ker(Ψ) ≈ An
where An = {X ∈ Fn×n | XT = −X} are the antisymmetric n × n matrices over F.
Explain (via a theorem in Chapter 10 of my notes) why it follows that Fn×n = Sn ⊕ An
where Sn denotes the symmetric n× n matrices over F.
hint: use the first isomorphism theorem

Problem 152 Let V = spanR{ex, e2x, cos(x), sin(x)} and consider T = D+ 1 where D = d/dx : V → V .
Show that U = spanR{ex, e2x} forms an invariant subspace of V with respect to T and
find the matrix of T |U as well as TV/U using the language of §26 of Curtis (page 231-233
especially)

Problem 153 Let W ≤ V where V is a finite dimensional vector space over a field F. Also, define
ann(W ) = {α ∈ V ∗ | ∀ x ∈ W, α(x) = 0}. Prove dim(W ) + dim(ann(W )) = dim(V ).

Problem 154 Let U ≤ W ≤ V where V is a vector space over F and define
ann(U) = {α ∈ V ∗ | ∀ x ∈ U, α(x) = 0} and ann(W ) = {α ∈ V ∗ | ∀ x ∈ W, α(x) = 0}.
Show ann(W ) ≤ ann(U).

Problem 155 Suppose U ≤ W ≤ V where V is a real inner product space. Show W⊥ ≤ U⊥.

I should warn, if we drop the positive definite condition and merely consider nondegenerate
scalar products then the theory gets considerable more complicated. See the texts by Steve
Roman (many pages in Advanced Linear Algebra) or Serge Lang (see Chapter VII §4 of
Linear Algebra).

Problem 156 Let V and W be finite-dimensional vector spaces over R with bases β and γ respective.
Also, define dual spaces V ∗ = L(V,R) and W ∗ = L(W,R). If T : V → W is a linear
transformation and S : W ∗ → V ∗ is defined by

(S(α))(v) = α(T (v))

for all α ∈ W ∗ and v ∈ V . Then show S is a linear transformation and find [S]γ∗,β∗.
Here, we define dual bases β∗ and γ∗ as follows: if β = {f1, . . . , fn} and γ = {g1, . . . , gm}
then f j : V → R and gj : W → R are defined by linearly extending the formulas below:

f j(fi) = δij & gj(gi) = δij.

Note, we set-aside the usual notation for exponents in this context; ci is not the number
c raised to the i-th power. A useful lemma is given by the following observation, if
x =

∑n
i=1 c

ifi then f i(x) = ci. In other words, the dual vector f i gives the i-coordinate
of x upon evaluation. (your answer should relate the matrix for S to the matrix [T ]β,γ )



Problem 157 Consider S and T as in the previous problem once more. Show:

(a.) if T is surjective then S is injective

(b.) if S is injective then T is surjective

(c.) T is an isomorphism iff S is a isomorphism

Problem 158 Note that that trace : Rn×n → R is a linear function hence trace ∈ (Rn×n)∗. Recall
〈A,B〉 = trace(ABT ) defines an inner product on Rn×n. Find the Riesz vector for the
trace functional.

Problem 159 Let V be a complex inner product space and suppose T : V → V is a skew-hermitian
map in the sense T † = −T . We define T † to be the endomorphism implicitly given by
the condition 〈T (x), y〉 = 〈x, T †(y)〉 for all x, y ∈ V . Given this data about T , prove the
following:

(a.) if T has eigenvalue λ then λ = iα for some α ∈ R (that is to say, the eigenvalues of
T are pure-imaginary)

(b.) if Wi = Ker(T − λi) and Wj = Ker(T − λj) where λi 6= λj are distinct e-values of T
then Wi ⊥ Wj .

Problem 160 A matrix A ∈ Rn×n is called normal if ATA = AAT .

(a.) show a symmetric matrix is normal,

(b.) find an example of a 2× 2 matrix which is normal, but, not symmetric,

(c.) show if A ∈ Rn×n is normal then ||Ax|| = ||ATx|| for all x ∈ Rn,

(d.) show if A ∈ Rn×n is normal then A− cI is normal for all c ∈ R,

(e.) show if λ ∈ R is e-value of normal matrix A ∈ Rn×n then λ is also an e-value of AT

(f.) show if λ1, λ2 are distinct real e-valued of a normal matrix A ∈ Rn×n then the
corresponding e-vectors are orthogonal.


