
Math 321: least squares, spectral theorem, applications Mission 9

Please follow the format which was announced in Blackboard. Thanks!

Problem 145 Find the best-fit line to the data (1, 1), (2, 4), (3, 0), (4, 5), (10, 6) via the method of least
squares as discussed in my notes.

Problem 146 Suppose Q(x, y) = 5x2 + 5y2 + 8xy. Write Q(v) = vTAv for a symmetric matrix A.
Find an orthonormal eigenbasis β = {u1, u2} for A and find coordinates x̄, ȳ such that
v = x̄u1 + ȳu2 gives Q(v) = λ1x̄

2 + λ2ȳ
2.

Problem 147 Suppose Q(x, y, z) = 5x2 + 5y2 + 2z2 + 8xy + 4xz + 4yz. Write Q(v) = vTAv for a
symmetric matrix A. Find an orthonormal eigenbasis for A and find coordinates x̄, ȳ, z̄
for which Q(v) = x̄2 + ȳ2 + 10z̄2.
Hint: for this question to make sense, it must be that the matrix of Q has e-values 1, 1, 10.

Problem 148 Calculus of functions of several variables is best understood with the aid of linear algebra.
In particular, if f : Rn → R is a smooth function (meaning you can take as many partial
derivatives as you wish) then the multivariate Taylor theorem tells us:

f(x) = f(p) + (∇f)(p) • (x− p) +H(p)(x− p) + · · ·

where ∇f is the gradient of f at p and H(p) is the Hessian of f at p. Both the gradient
and Hessian are assembled from appropriate partial derivatives:

∇f =

〈
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

〉
& [H]ij =

∂2f

∂xi∂xj
.

Notice, if p is a critical point then ∇f(p) = 0 and hence f(x) = f(p)+H(p)(x−p)+ · · ·
thus the behavior of f is dominated by H(p) for x near p. In fact, H(p)(x − p) =
(x− p)T [H](x− p) where [H]T = [H] so the quadratic term is a quadratic form. It follows
there exist eigencoordinates y1, . . . , yn with respect to the eigenbasis {v1, . . . , vn} for [H]
such that y = y1v1 + · · ·+ ynvn = x− p and

H(p)(x− p) = λ1y
2
1 + · · ·+ λny

2
n ? .

It is then simple to judge whether a given critical point provides a local minimum or
maximum for the function. Looking at ?,

(i.) if λ1, . . . , λn > 0 then f(p) is a local minimum.

(ii.) if λ1, . . . , λn < 0 then f(p) is a local maximum.

(iii.) if λ1, . . . , λn are all nonzero, yet differ in sign, then f(p) neither local max nor min.

Unfortunately, if the spectrum of the Hessian includes eigenvalue zero then we are unable
to offer a conclusion. In that case the third order terms could go either way.



Find critical points for the functions below and analyze the eigenvalues of the Hessian to
classify the nature of the critical points as either max, min or saddle (case (iii.) is known
as a saddle point)

(a.) let f(x, y) = 5x2 + 8xy − 10x+ 5y2 − 8y + 5,

(b.) let f(x, y, z) = x2 + y2 + z2 + 4xy + 4xz + 4yz

Remark: if you never saw partial differentiation in previous course work, I am happy to
teach you in office hours. Or, ask me in class.

Problem 149 Let A =

[
0.9 0.02
0.1 0.98

]
.

(a.) diagonalize A,

(b.) calculate limn→∞A
n,

(c.) let xo = (0.7, 0.3). Define xn = Anxo hence x1 = Axo and x2 = Ax1 = AAxo etc.
Calculate x1, x10 and x100. What is limn→∞ xn ? How does this relate to things you
found in (a.)

The vectors you find in (c.) are an example of a Markov chain. Notice A is a transition
matrix and xo is a probability vector.

Problem 150 A matrix A ∈ Rn×n is called normal if ATA = AAT .

(a.) show a symmetric matrix is normal,

(b.) find an example of a 2× 2 matrix which is normal, but, not symmetric,

(c.) show if A ∈ Rn×n is normal then ||Ax|| = ||ATx|| for all x ∈ Rn,

(d.) show if A ∈ Rn×n is normal then A− cI is normal for all c ∈ R,

(e.) show if λ ∈ R is e-value of normal matrix A ∈ Rn×n then λ is also an e-value of AT

(f.) show if λ1, λ2 are distinct real e-valued of a normal matrix A ∈ Rn×n then the
corresponding e-vectors are orthogonal.

Problem 151 The last problem counts double (aka Problem 149 does not exist)

Problem 152 The Riesz Representation Theorem in a finite dimensional inner product space (V, 〈, 〉)
states that each linear functional φ : V → F has the form φ(x) = 〈x, z〉 for a unique
z ∈ V . We call z the Riesz vector of φ and denote z = ]φ. Conversely, we denote
[z = φ in this case. The maps ] : V ∗ → V and [ : V → V ∗ are sometimes called the
musical morphisms as they provide natural isomorphisms between and inner product
space1 and its dual space.

(a.) Consider φ(x, y, z) = 3x− y + z. Find ]φ for R3 with the dot-product,

(b.) Consider φ(A) = A11 + A21 for A ∈ R2×2 find ]φ.

1actually, this construction still makes sense for a metric space, but, I’m focusing on inner product spaces for your
course



Problem 153 Calculate T ∗ as defined in Definition 10.6.3 in my notes. It is the unique linear tranfor-
mation on an inner product space V such that 〈T (x), y〉 = 〈x, T ∗(y)〉 for all x, y ∈ V . For
the given V and T find T ∗:

(a.) T (x, y) = (x+ 2y, 3y) for V = R2 with the dot-product,

(b.) T (z1, z2) = (3z1 + iz2, z1 + (2− 7i)z2) for V = C2 with 〈z, w〉 = zTw

(c.) T (f) = f ′ + 3f where f ∈ P1(R) and 〈f, g〉 =
∫ 1

−1 f(t)g(t) dt

Problem 154 Let V be a complex inner product space and suppose T : V → V is a skew-hermitian map
in the sense T ∗ = −T . Prove the following:

(a.) if T has eigenvalue λ then λ = iα for some α ∈ R (that is to say, the eigenvalues of
T are pure-imaginary)

(b.) if Wi = Ker(T−λiIdV ) and Wj = Ker(T−λjIdV ) where λi 6= λj are distinct e-values
of T then Wi ⊥ Wj .

Problem 155 There is another aspect of the real spectral theorem we should explore. For example, if
AT = A for A ∈ R3×3 then there exist rank one matrices E1, E2, E3 for which

A = E1 + E2 + E3

and Col(Ej) = Null(A − λjI) for j = 1, 2, 3 where λ1, λ2, λ3 are the eigenvalues of A.
Suppose u, v, w form an orthonormal eigenbasis for A with eigenvalues λ1, λ2, λ3 respective.
Define:

E1 = λ1uu
T , E2 = λ2vv

T , E3 = λ3ww
T

Show: E1 + E2 + E3 = A and Col(Ej) = Null(A− λjI) for j = 1, 2, 3.
Hint: use the orthonormality of {u, v, w} and the fact you are given Au = λ1u etc.

Problem 156 Notice u = 1√
3
(1,−1, 1) and v = 1√

2
(0, 1, 1) and w = 1√

6
(2, 1,−1) form an orthonormal

basis for R3. Find a matrix A with eigenvalues 12, 2, 18 by making use of the construction
of the last problem.

Problem 157 The matrix exponential is defined by

eM = I +M +
1

2
M2 + · · ·+ 1

n!
Mn + · · · =

∞∑
n=0

1

n!
Mn.

The following calculations make the convergence of this series for any A plausible: first,
I’ll give you an identity you could prove, if AB = BA then eA+B = eAeB. You need this
for (b.).

(a.) if D = diag(λ1, . . . , λn) then eD = diag(eλ1 , . . . , eλ1),

(b.) let Jk(λ) be the k × k Jordan block and write Jk(λ) = λI + N where N is strictly
upper triangular. Calculate eJk(λ), hint: Nk = 0 so that piece is finite

(c.) show A⊕B where A⊕B =

[
A 0
0 B

]
has eA⊕B = eA ⊕ eB,



(d.) show P−1eMP = eP
−1MP ,

(e.) For M ∈ Cn×n there exists P such that P−1MP = Jr1(λ1)⊕ Jr2(λ2)⊕ · · · ⊕ Jrk(λk).
Find a formula for eM .

Remark: I often give a proof that the matrix exponential exists for any A by an analytical
argument in Math 332. The arguments above are probably better since they actually give
us a path to calculate eM provided we know the Jordan form of M .

Problem 158 The problem above is worth double.

Problem 159 One reason the matrix exponential is interesting is its role in relation to the system of
ordinary differential equations dx

dt
= Ax where A ∈ Rn×n. In particular, it can be shown

that etA is a fundamental solution matrix for dx
dt

= Ax. This means each column
xi = coli(e

tA) is a solution to dx
dt

= Ax. The theory of differential equations then states
that x = c1x1 + · · ·+ cnxn forms the general solution to dx

dt
= Ax.

(a.) If A = J3(7) then find the general solution to dx
dt

= Ax.

(b.) If A = J2(3)⊕ J1(1) then find the general solution to dx
dt

= Ax.

Problem 160 In the case A has complex eigenvalues the calculation of the matrix exponential is best
accomplished with the help of the real Jordan form. I’ll let you contrast the calculation

in the 2× 2 case for A =

[
a −b
b a

]
where a, b ∈ R not both zero.

(a.) find complex P such that P−1AP =

[
a+ ib 0

0 a− ib

]
= D,

(b.) note etA = et(PDP
−1) = PetDP−1 hence calculate etA (this ought to be real since A is

real, somehow the complex quantities all reduce to a real result). Reminder: if you
didn’t know already, e(a+ib)t = eat(cos bt+ i sin bt)

(c.) Alternatively notice A = aI + bJ where J =

[
0 −1
1 0

]
and clearly aI commutes

with bJ and J2 = −I so direct calculation of etA = et(aI+bJ) goes nicely.

(d.) Find the general solution of dx
dt

= ax− by and dy
dt

= bx+ay using the spoils of battles
already won.

Problem 161 Let V and W be finite-dimensional vector spaces over R with bases β and γ respective.
Also, define dual spaces V ∗ = L(V,R) and W ∗ = L(W,R). If T : V → W is a linear
transformation and S : W ∗ → V ∗ is defined by

(S(α))(v) = α(T (v))

for all α ∈ W ∗ and v ∈ V . Then show S is a linear transformation and find [S]γ∗,β∗.
Here, we define dual bases β∗ and γ∗ as follows: if β = {f1, . . . , fn} and γ = {g1, . . . , gm}
then f j : V → R and gj : W → R are defined by linearly extending the formulas below:

f j(fi) = δij & gj(gi) = δij.



Note, we set-aside the usual notation for exponents in this context; ci is not the number
c raised to the i-th power. A useful lemma is given by the following observation, if
x =

∑n
i=1 c

ifi then f i(x) = ci. In other words, the dual vector f i gives the i-coordinate
of x upon evaluation. (your answer should relate the matrix for S to the matrix [T ]β,γ )

Problem 162 Consider S and T as in the previous problem once more. Show:

(a.) if T is surjective then S is injective

(b.) if S is injective then T is surjective

(c.) T is an isomorphism iff S is a isomorphism

Remark: the problems below are not handed in, but, I almost assigned them. If you need further
practice, perhaps it would be wise to work these. I am happy to discuss them in the Help Session.

(I.) Let A =

 5 −5 −5
−1 4 2
3 −5 −3

. Find an complex eigenbasis for A. Also, construct a real basis β

for which [β]−1A[β] is in real Jordan form.

(II.) Solve dx
dt

= Ax where A is the matrix in the previous problem.

(III.) Consider A = J4(3). Find diagonalizable matrix D and a nilpotent matrix N for which A =
D +N and DN = ND. Calculate etA with the help of the A = D +N decomposition.

(IV.) Once more consider A = J4(3). Let B = A2. What is the Jordan form of B? How is it related
to A ?

(V.) Let A =

 2 1 0
0 2 1
0 0 2

. Calculate etA and write the general solution to d~r
dt

= A~r

(VI.) Suppose T : V → V has characteristic polynomial p(x) = (x2 +9)2(x−3)3. Make a table which
lists the possible real Jordan forms for T . For each case, determine the minimal polynomial.
For which case(s) is TC diagonalizable? For which case(s) is T diagonalizable?

(VII.) Let V be finite dimensional over F. Two linear operators T, U : V → V are simultaneously
diagonalizable if there exists a basis β for V such that both [U ]β,β and [T ]β,β are diagonal.

(a.) Prove that simultaneously diagonalizable linear transformations commute; UT = TU

(b.) Suppose T, U : V → V are commuting diagonalizable linear transformations on the finite
dimensional vector space V over F. Prove: T and U are simultaneously diagonalizable.

Hint (for part (b.) which is considerably more difficult than (a.)): for any eigenvalue λ of
T show that Eλ(T ) is U-invariant, then notice that the restriction of a diagonalizable linear
operator to an of its invariant subspaces is once more diagonalizable. These observations are
useful towards the desired argument here.



(VIII.) A stochastic or transition matrix is a matrix A ∈ Rn×n such that Aij ≥ 0 and

A1j + A2j + · · ·+ Anj = 1

for each j = 1, 2, . . . , n. In words, a transition matrix is a non-negative matrix where each
column’s entries sum to 1. A vector with non-negative entries which sum to 1 is called a
probabilty vector. Thus, a transtion matrix is a square matrix formed by concatenating
probability vectors. With the above terminology in mind:

(a.) show the product of transition matrices is a transition matrix,

(b.) show the product of a transition matrix and a probablility vector is a probability vector,

(IX.) A sequence of matrices is a matrix-valued of N; n 7→ An. As with real or complex se-
quences, we can calculate the limn→∞An. It turns out that such a limit exists iff the limit
of each component sequence n 7→ (An)ij exist. In particular, limn→∞An = L if and only if
limn→∞(An)ij = Lij for all 1 ≤ i, j ≤ n. If limn→∞An = L and P,Q are square matrices then
it is known:

lim
n→∞

(PAn) = PL & lim
n→∞

(AnQ) = LQ

Limits of complex matrices have a few simple guidelines. Let

S = {λ ∈ C | |λ| < 1 or λ = 1}.

In complex analysis you learn limn→∞ z
n exists if and only if z ∈ S. Given some time, you can

show: for A ∈ Cn×n the limn→∞An exists if and only if the following two conditions hold

(i.) every eigenvalue of A is contained in S,

(ii.) if 1 is an eigenvalue of A then the geometric and algebraic multiplicity of λ = 1 agree.

Given the discussion above, complete the following:

(a.) if Q is invertible and limn→∞Bn = L then limn→∞Q
−1BnQ = Q−1LQ,

(b.) if A is diagonalizable and each eigenvalue of A is contained in S then limn→∞A
n exists.

(c.) Show A =

[
1 1
0 1

]
gives a divergent sequence An. Comment on the meaning of this

calculation as it relates to (i.) and (ii.).

The Hokage-Level Problem: Let πj : Rn → Rn be the projection defined by π(x) = x − (x • ej)ej
for each x ∈ Rn for j = 1, . . . , n. Suppose P is an (n − 1)-dimensional paralell-piped which is formed
by the convex-hull of v1, . . . , vn−1 ∈ Rn suspended at base-point p ∈ (0,∞)n;

P =

{
p+

n−1∑
j=1

αjvj

∣∣∣∣ αj ∈ [0, 1] &
n−1∑
j=1

αj ≤ 1

}

Let n ∈ Rn be a unit-vector in {v1, · · · , vn−1}⊥. The (n − 1)-area of P is given by area(P) =
|det[v1| · · · |vn−1|n]|. We can study the area of the shadows formed by P on the coordinate hyperplanes.
Let Pj = πj(P) define the shadow of P on the xj = 0 coordinate plane. Notice,

Pj =

{
πj(p) +

n−1∑
i=1

αiπj(vi)

∣∣∣∣ αj ∈ [0, 1] &
n−1∑
j=1

αj ≤ 1

}



which shows Pj is formed by the convex-hull πj(v1), . . . , πj(vn) of attached at basepoint πj(p). It follows
that the (n− 1)-area of the Pj can be calculated as follows:

area(Pj) = |det[πj(v1)| · · · |πj(vn−1)|ej]|.
since ej is perpendicular to Pj. In the case n = 2 the 1-dimensional paralell-piped is just a line-segment.
For example, if v1 = (1, 1) then (1/

√
2,−1/

√
2) is perpendicular to v1 and

det

[
1 1/

√
2

1 −1/
√

2

]
= −2/

√
2 = −

√
2 ⇒ area(P) =

√
2.

Of course, this is actually the length of the line-segment. Also, notice

area(P1)
2 + area(P2)

2 = 12 + 12 =
√

2
2

= area(P)2.

This is not suprising. However, perhaps the fact this generalizes to n-dimensions in the following sense
is not already known to you:

area(P1)
2 + area(P2)

2 + · · · area(Pn)2 = area(P)2

Prove it. You might call this the generalized Pythagorean identity, I’m not sure its history or formal
name. That said, the formula I give for generalized area could just as well be termed generalized
volume. Also, you could define

v1 × v2 × · · · × vn−1 = det

 v1 | v2 | · · · | vn−1

e1
e2
...
en

 ∈ Rn

where we insist the determinant is calculated via the Laplace expansion by minors along the last
column. You can show v1 × v2 × · · · × vn−1 ∈ {v1, . . . , vn−1}⊥. But, if n is a unit-vector which spans
{v1, . . . , vn−1}⊥ then the (n− 1)-ry cross-product must be a vector parallel to n and thus:

v1 × v2 × · · · × vn−1 = [(v1 × v2 × · · · × vn−1) •n]n

Note, n •n = 1 as we assumed n is unit-vector and we can show

(v1 × v2 × · · · × vn−1) •n = det[v1|v2| . . . |vn−1|n]

Notice this generalized cross-product is just an extension of the heurstic determinant commonly used
in multivariate calculus to define the standard cross-product. In particular, the following is equivalent
to the column-based definition

v1 × v2 × · · · × vn−1 = det


e1 e2 · · · en

vT1
vT2
...

vTn−1


where we insist the determinant is calculated via the Laplace expansion by minors along the first row.
In any event, my point in this discussion is merely that we can calculate higher-dimensional volumes
with determinants and these go hand-in-hand with generalized tertiary cross-products. In particular,

||v1 × v2 × · · · × vn−1|| = vol(P)

where P is formed by the convex hull of v1, . . . , vn−1. When n = 2 this gives vector length, when n = 3
this is the familar result that the area of the parallelogram with sides ~A, ~B is just || ~A× ~B||.


