Math 321 Test 1

Please show your work and use words to explain your steps where appropriate.

Notational Conventions for Test: V and W denote vector spaces over a field \mathbb{F} . Also, L(V,W) is the set of linear transformations from V to W. $\mathbb{R}[x]$ is the set of real polynomials. $P_n(\mathbb{F}) = span_{\mathbb{F}}\{1, x, x^2, \dots, x^n\}$. Also, $S \leq V$ means S is a subspace of V. LI means Linearly Independent

Problem 1 (5pt) Define what is meant by the statement: β is a basis for V (assume $V \neq 0$)

Problem 2 (10pt) $P_2(\mathbb{R})$ has basis $\beta = \{(x+1)^2, x+1, 1\}$. If $f(x) = 8x^2 + 6x + 21$ then find $[f(x)]_{\beta}$.

Problem 3 (5pt) Is \mathbb{Q} a subspace of $V = \mathbb{R}$ where V is a real vector space. ?

Problem 4 (10pt) Let $W = \{ax^2 + bx^2 + ax + b \mid a, b \in \mathbb{C}\}$. Prove $W \leq \mathbb{C}[x]$.

Problem 5 (10pt) Let $T: V \to W$ be a linear transformation. Prove $Ker(T) \leq V$.

Problem 10 (5pt) A linear manifold has the same dimension as its directing space; $\mathcal{M} = p + \mathcal{S}$ then $\dim \mathcal{M} = \dim \mathcal{S}$. If $\mathcal{S} = \operatorname{span}\{v_1, v_2, v_3, v_4\}$ where $\mathcal{S} \leq V$ and $\dim(V) = 3$ then what are the possible dimensions of \mathcal{M} ?

Problem 11 (15pt) Let $T(f(x)) = \begin{bmatrix} f(0) & f'(0) \\ f'(0) & 0 \end{bmatrix}$ for each $f(x) \in P_2(\mathbb{R})$. Note $T : P_2(\mathbb{R}) \to \mathbb{R}^{2 \times 2}$. Let $P_2(\mathbb{R})$ have basis $\beta = \{1, x, x^2\}$ and $\mathbb{R}^{2 \times 2}$ have basis $\gamma = \{E_{11}, E_{12}, E_{21}, E_{22}\}$. Find $[T]_{\beta\gamma}$

