Please show your work and use words to explain your steps where appropriate.

Note: V and W are finite dimensional vector space over a field \mathbb{F} unless otherwise specified

Problem 1 (10pts) If $T: V \to V$ is a linear transformation and $x \neq 0$ has T(x) = 2x then show that $T^3: V \to V$ has x as an eigenvector with eigenvalue 8.

Problem 2 (10pts) Let $W = \text{span}\{(1,1,1),(0,1,0)\}$ find an orthonormal basis β for W.

Problem 3 (10pts) Let $S = \{(1,0,0,0), (2,1,-2,-3)\}$. Find a basis for S^{\perp} (w.r.t. dot-product on \mathbb{R}^4)

Problem 4 (10pts) Suppose $V = W_1 \oplus W_2 \oplus W_3$ where $\beta = \beta_1 \cup \beta_2 \cup \beta_3$ is a basis for V formed by concatenating bases $\beta_1, \beta_2, \beta_3$ for W_1, W_2, W_3 respective where $\dim(W_j) = d_j$ for j = 1, 2, 3. Suppose $[T]_{\beta,\beta} = \begin{bmatrix} A & 0 & M_1 \\ 0 & B & M_2 \\ 0 & 0 & C \end{bmatrix}$ where $A \in \mathbb{F}^{d_1 \times d_1}, B \in \mathbb{F}^{d_2 \times d_2}$ and $C \in \mathbb{F}^{d_3 \times d_3}$. Suppose the induced maps T_{V/W_3} and $T_{V/(W_1 \oplus W_2)}$ are invertible. Prove T is invertible.

Problem 5 (10pts) Let (V, g) be a real geometry and suppose $S, T \in L(V)$ are g-orthonormal. Prove $S \circ T$ is also g-orthonormal.

Problem 6 (10pts) Fix $x \in V$. Let $h: V^* \times V^* \to \mathbb{F}$ be defined by

$$h(\alpha, \beta) = \alpha(x)\beta(x)$$

for all $\alpha, \beta \in V^*$. Show h is a symmetric bilinear mapping.

Problem 7 (15pts) Let $\beta = \{v_1, \dots, v_n\}$ and $\beta^* = \{v^1, \dots, v^n\}$ form bases for V and V^* where $v^i: V \to \mathbb{F}$ is the linear transformation for which $v^i(v_j) = \delta_{ij}$ for all $1 \le i, j \le n = \dim(V)$. Prove:

- (a.) if $x = \sum_{i=1}^{n} x^{i} v_{i}$ then $x^{i} = v^{i}(x)$.
- **(b.)** if $\alpha = \sum_{i=1}^{n} \alpha_i v^i$ then $\alpha_i = \alpha(v_i)$

Problem 8 (10pts) If $W \leq V$ then what condition is needed in order that $x + W = y + W$?
--

Problem 9 (10pts) Let $T: V \to V$ be a linear transformation and $V = W_1 \oplus W_2$ where W_1, W_2 are T-invariant subspaces. Let us propose a definition for $S: V/W_1 \to V/(W_1 \cap W_2)$ by the rule $S(x + W_1) = T(x) + W_1 \cap W_2$. What condition (if any) is needed for T to be a well-defined linear transformation?

Problem 10 (10pts) Suppose $W \leq V$. Let $T: V \to V/W$ be defined by T(x) = x + W. Show how the first isomorphism theorem and the rank-nullity theorem for T can be used to prove $\dim(V/W) = \dim(V) - \dim(W)$.

Problem 11 (10pts) Apply the first isomorphism theorem to $T: M \times N \to M+N$ where T(x,y) = x+y for each $(x,y) \in M \times N$ (yes, T is clearly linear). Then, explain why the dimension formula $\dim(M+N) = \dim(M) + \dim(N) - \dim(M\cap N)$ naturally follows.

Problem 12 (20pts) Let $A_1 = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$, $A_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $A_3 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. Use inner product $\langle A, B \rangle = \operatorname{trace}(AB^T)$ to answer the following:

- (a.) Show $\{A_1, A_2, A_3\}$ is orthogonal
- (b.) Let $W = \text{span}\{A_1, A_2, A_3\}$ and find an orthonormal basis for W.
- (c.) Construct the formula for $\operatorname{Proj}_W \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$.
- (d.) Find a basis for ann(W).

Choose your own adventure: pick just one of these to work

- **Problem 13** (25pts) Prove that any real symmetric matrix A has a cube root. In other words, show there exists M for which $M^3 = A$.
- **Problem 14** (25pts) Let $g(a(x),b(x))=\int_0^1 a(x)b(x)\,dx$ define an inner product on $P_1(\mathbb{R})$. Also, define the dual vector $\alpha:P_1(\mathbb{R})\to\mathbb{R}$ by $\alpha(f(x))=\int_0^1 xf(x)\,dx$ for each $f(x)\in P_1(\mathbb{R})$. Let $\beta=\{v_1,v_2\}$ form a basis for $P_1(\mathbb{R})$ where $v_1=1,v_2=x$. Find:
 - (a.) g_{ij} , (b.) g^{ij} , (c.) $\sharp \alpha$ (d.) Riesz vector for α