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preface

These notes should cover the material in lecture at a minimum. Sometimes I may refer to the notes
rather than write out certain lengthy theorems or definitions, it would be good if you had a copy
of these notes for your convenience, I’ve seen students fit as many as 6 pages to a single side of
paper, if your eyesight is good it’s not much to carry. I do expect you come to class. Attending
class is a necessary, but not sufficient condition for success in this course. You will need to spend
time outside class pondering what was said. I would recommend you form a study group to work
on the homework and/or study together. If you're like me then you’ll want to try the homework
before joining the group. Also, there are easily 100 pages of solutions from the previous text we
used at LU by Insel, Spence and Freedberg. Those solutions provide you an additional bank of
examples beyond my notes and your text. Don’t forget they’re there.

Doing the homework is doing the course. I cannot overemphasize the importance of thinking
through the homework. I would be happy if you left this course with a working knowledge of:

v" how to solve a system of linear equations
Gaussian Elimination and how to interpret the rref(A)
concrete and abstract matrix calculations
determinants

real vector spaces both abstract and concrete
subspaces of vector space

how to test for linear independence

how to prove a set spans a space

coordinates and bases

column, row and null spaces for a matrix
basis of an abstract vector space

linear transformations

matrix of linear transformation

change of basis on vector space

Eigenvalues and Eigenvectors

Diagonalization
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geometry of Euclidean Space



v orthogonal bases and the Gram-Schmidt algorthim
v’ least squares fitting of experimental data
v’ best fit trigonmetric polynomials (Fourier Analysis)

v’ principle axis theorems for conic sections and quadric surfaces

I hope that I have struck a fair balance between pure theory and application. Generally speaking, 1
tried to spread out the applications so that if you hate the theoretical part then there is still some-
thing fun in every chapter. However, the focus of these notes (and this course) is mathematics.
It’s good if you enjoy applications, but how can you rightly apply what you do not know? Part of
the reason we chose the text by Lay is that it has a multitude of applications from economics to
computer graphics to biology to electrical engineering. I will not cover most of those applications in
lecture, nor will most appear on tests. However, you will have the option of reading those sections
and working out problems for bonus credit. In fact, there are about 50 bonus problems I have
selected from Lay. If you did all of them correctly then it could raise your score by about 1/2 a
letter grade. The bonus work will be due for the whole semester on the last day of classes. Given
that the required homework has 188 problems (each worth 1pt) you should deduce that not doing
the regular homework means you cannot make more than a B in the course. The homework is not
optional. Do not stay in this course unless you intend to do the majority of the homework. Thanks!

Before we begin, I should warn you that I assume quite a few things from the reader. These notes
are intended for someone who has already grappled with the problem of constructing proofs. 1
assume you know the difference between = and <. I assume the phrase "iff” is known to you.
I assume you are ready and willing to do a proof by induction, strong or weak. I assume you
know what R, C, Q, N and Z denote. I assume you know what a subset of a set is. I assume you
know how to prove two sets are equal. I assume you are familar with basic set operations such
as union and intersection (although we don’t use those much). More importantly, I assume you
have started to appreciate that mathematics is more than just calculations. Calculations without
context, without theory, are doomed to failure. At a minimum theory and proper mathematics

allows you to communicate analytical concepts to other like-educated individuals.

Some of the most seemingly basic objects in mathematics are insidiously complex. We’ve been
taught they’re simple since our childhood, but as adults, mathematical adults, we find the actual
definitions of such objects as R or C are rather involved. I will not attempt to provide foundational
arguments to build numbers from basic set theory. I believe it is possible, I think it’s well-thought-
out mathematics, but we take the existence of the real numbers as an axiom for these notes. We
assume that R exists and that the real numbers possess all their usual properties. In fact, I assume
R, C, Q, N and Z all exist complete with their standard properties. In short, I assume we have
numbers to work with. We leave the rigorization of numbers to a different course.

These notes are offered for the Fall 2010 semester at Liberty University. In large part they are
simply a copy of last years notes, however I have changed the order of the material significantly in



several places. In particular, I have woven the material on linear transformations throughout sev-
eral chapters and I have introduced the concept of linear independence and spanning earlier in the
course. Eigenvectors are also introduced before the chapter on Euclidean geometry. Finally, I have
relegated the material on systems of differential equations to a stand-alone chapter. I now cover
a good portion of that material in Math 334. I still believe that the problem of solving ffl—f = A%
via generalized eigenvectors and the matrix exponential is a beautiful piece of algebra and analysis,
but I wanted to free up time for covering factorization schemes this semester. New to these notes
is added discussion of the LU, and (possibly) the singular, QR and spectral decompositions.

I like the text by Lay, however I do think theoretically it must be missing some bits and pieces here
and there. I would ask you follow the logic in my notes primarily. In particular, I would like for you
to use my definitions on tests. In homework you may use either my notes or Lay, provided you do
not circumvent the purpose of the problem. For example: Problem: ”use theorem X in this section
to show sky is blue”, if your answer is ”you show in the notes that the sky is blue, so there.” then
I wouldn’t expect much credit. Also, definitions are important, if I ask for the definition I don’t
want an equivalent statement or how to calculate it, I want the definition. But, how will you know
what ”the” definition is? Simple, READ.
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Chapter 1

Gauss-Jordan elimination

Gauss-Jordan elimination is an optimal method for solving a system of linear equations. Logically
it may be equivalent to methods you are already familar with but the matrix notation is by far
the most efficient method. This is important since throughout this course we will be faced with
the problem of solving linear equations. Additionally, the Gauss-Jordan produces the reduced row
echelon form(rref) of the matrix. Given a particular matrix the rref is unique. This is of particular
use in theoretical applications.

1.1 systems of linear equations

Let me begin with a few examples before I state the general definition.

Example 1.1.1. Consider the following system of 2 equations and 2 unknowns,
r+y=2

z—y=20

Adding equations reveals 2z = 2 hence x = 1. Then substitute that into either equation to deduce
y = 1. Hence the solution (1,1) is unique

Example 1.1.2. Consider the following system of 2 equations and 2 unknowns,
T+y=2

3r+3y=26

We can multiply the second equation by 1/3 to see that it is equivalent to x +y = 2 thus our two
equations are in fact the same equation. There are infinitely many equations of the form (x,y)
where x +y = 2. In other words, the solutions are (x,2 — x) for all x € R.

Both of the examples thus far were consistent.

11



12 CHAPTER 1. GAUSS-JORDAN ELIMINATION

Example 1.1.3. Consider the following system of 2 equations and 2 unknowns,
T+y=2

z+y=3

These equations are inconsistent. Notice substracting the second equation yields that 0 = 1. This
system has no solutions, it is inconsistent

It is remarkable that these three simple examples reveal the general structure of solutions to linear
systems. Either we get a unique solution, infinitely many solutions or no solution at all. For our
examples above, these cases correspond to the possible graphs for a pair of lines in the plane. A
pair of lines may intersect at a point (unique solution), be the same line (infinitely many solutions)
or be paralell (inconsistent)El

[ -

| Frr | =T

Hisass e e
et L =TT Tt

/ | ., o
u, R
, e

Remark 1.1.4.

It is understood in this course that ¢, 7, k,l, m,n,p,q,r,s are in N. I will not belabor this
point. Please ask if in doubt.

Definition 1.1.5. system of m-linear equations in n-unknowns

Let x1,29,..., %, be m variables and suppose b;, A;; € R for 1 <7 <m and 1 < j < n then
Anzt + Az + -+ Ainzn = b1

Ag1x1 + Agexo + -+ - + Agpxy, = b

A1 + Amaza + - + A, = by,

is called a system of linear equations. If b; = 0 for 1 < ¢ < m then we say the system
is homogeneous. The solution set is the set of all (z1,z2,...,z,) € R™ which satisfy all
the equations in the system simultaneously.

T used the Graph program to generate these graphs. It makes nice pictures, these are ugly due to user error.
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Remark 1.1.6.

We use variables x1,xs,...,x, mainly for general theoretical statements. In particular
problems and especially for applications we tend to defer to the notation x,y, z etc...

Definition 1.1.7.

The augmented coefficient matrix is an array of numbers which provides an abbreviated notation
for a system of linear equations.

Anzey + Appxo+ -+ Aipzn = by A A - A | b
A1y + Agexe + -+ - + A2px, = bo ) Agy A - Agy | b
o ) _ . abbreviated by : . . . :

Amiz1 + Aoz + - + Apn®n, = by Ami Am2 -+ Amn | bm

The vertical bar is optional, I include it to draw attention to the distinction between the matrix of
coefficients A;; and the nonhomogeneous terms b;. Let’s revisit my three simple examples in this
new notation. I illustrate the Gauss-Jordan method for each.

Example 1.1.8. The system x +y =2 and x —y = 0 has augmented coefficient matriz:

1 12 N 1 1] 2
1 —1l0| 22T g 9| 9
JE 1 12 e 1 01
"2/ TETIR g | | T2 T g g

The last augmented matriz represents the equations x = 1 and y = 1. Rather than adding and
subtracting equations we added and subtracted rows in the matriz. Incidentally, the last step is
called the backward pass whereas the first couple steps are called the forward pass. Gauss is
credited with figuring out the forward pass then Jordan added the backward pass. Calculators can
accomplish these via the commands ref ( Gauss’ row echelon form ) and rref (Jordan’s reduced
row echelon form). In particular,

1

1 9 1 12 1 1|2 10
Tef[ll 0}:[011} 7”7"6‘70[110]:[01

]

Example 1.1.9. The system x +y = 2 and 3z + 3y = 6 has augmented coefficient matriz:

2 11

1 1
[336]%[00

0]

The nonzero row in the last augmented matriz represents the equation x +y = 2. In this case we
cannot make a backwards pass so the ref and rref are the same.
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Example 1.1.10. The system z+y =3 and x + y = 2 has augmented coefficient matriz:
kA N R !
112 22207 19 o)1

The last row indicates that 0x+0y = 1 which means that there is no solution since 0 # 1. Generally,

when the bottom row of the rref(A|b) is zeros with a 1 in the far right column then the system
Ax = b is inconsistent because there is no solution to the equation.

1.2 Gauss-Jordan algorithm

To begin we need to identify three basic operations we do when solving systems of equations. I’ll
define them for system of 3 equations and 3 unknowns, but it should be obvious this generalizes to m
equations and n unknowns without much thought. The following operations are called Elementary
Row Operations.

(1.) scaling row 1 by nonzero constant ¢

Al A Az | by cAi1 cAip cAiz | chy
Ag1 Ay Agz | by | crp — ry A1 Az Azz | b2
Az1 Az Assz | b3 Azr Azp  Asz | b3

(2.) replace row 1 with the sum of row 1 and row 2

A A Az | b A1+ Ao Ajg+ Agg Az + Azz | by + b
Agr Ay Agz | by | r1+12— ry Agi Ago A bo
Az1 A3y Aszz | b3 Az Asz2 Aszs b3

(3.) swap rows 1 and 2

Al A Az | by Agr Ay Agz | by
Agr Aoy Agz | by | 1T r2 A A Az | by
Az1 Az Ass | b3 A1 Aszy Az | b3

Each of the operations above corresponds to an allowed operation on a system of linear equations.
When we make these operations we will not change the solution set. Notice the notation tells us
what we did and also where it is going. I do expect you to use the same notation. I also expect
you can figure out what is meant by cro — ro or 11 — 3ro — 1. We are only allowed to make
a finite number of the operations (1.),(2.) and (3.). The Gauss-Jordan algorithm tells us which
order to make these operations in order to reduce the matrix to a particularly simple format called
the ”"reduced row echelon form” (I abbreviate this rref most places). The following definition is
borrowed from the text Elementary Linear Algebra: A Matrix Approach, 2nd ed. by Spence, Insel
and Friedberg, however you can probably find nearly the same algorithm in dozens of other texts.
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Definition 1.2.1. Gauss-Jordan Algorithm.

Given an m by n matrix A the following sequence of steps is called the Gauss-Jordan algo-
rithm or Gaussian elimination. I define terms such as pivot column and pivot position
as they arise in the algorithm below.

Step 1: Determine the leftmost nonzero column. This is a pivot column and the
topmost position in this column is a pivot position.

Step 2: Perform a row swap to bring a nonzero entry of the pivot column below the
pivot row to the top position in the pivot column ( in the first step there are no rows
above the pivot position, however in future iterations there may be rows above the
pivot position, see 4).

Step 3: Add multiples of the pivot row to create zeros below the pivot position. This is
called ”clearing out the entries below the pivot position”.

Step 4: If there is a nonzero row below the pivot row from (3.) then find the next pivot
postion by looking for the next nonzero column to the right of the previous pivot
column. Then perform steps 1-3 on the new pivot column. When no more nonzero
rows below the pivot row are found then go on to step 5.

Step 5: the leftmost entry in each nonzero row is called the leading entry. Scale the
bottommost nonzero row to make the leading entry 1 and use row additions to clear
out any remaining nonzero entries above the leading entries.

Step 6: If step 5 was performed on the top row then stop, otherwise apply Step 5 to the
next row up the matrix.

Steps (1.)-(4.) are called the forward pass. A matrix produced by a foward pass is called
the reduced echelon form of the matrix and it is denoted ref(A). Steps (5.) and (6.) are
called the backwards pass. The matrix produced by completing Steps (1.)-(6.) is called
the reduced row echelon form of A and it is denoted rref(A).

The ref(A) is not unique because there may be multiple choices for how Step 2 is executed. On the
other hand, it turns out that rref(A) is unique. The proof of uniqueness can be found in Appendix
E of your text. The backwards pass takes the ambiguity out of the algorithm. Notice the forward
pass goes down the matrix while the backwards pass goes up the matrix.
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Example 1.2.2. Given A = [ %1 g 2)3 (17)} calculate rref(A).
[ 1 2 -3]|1 1 2 =3]|1
A = 2 4 0|7 r2—2r1—>r§ 0O 0 6 |5 r1+r3—>r§
| -1 3 2|0 -1 3 210
[1 2 =31 1 2 3|1
0 0 6 |5 | r ©ry 0 5 =11 | = ref(4)
| 0 5 —1|1 0 0 6|5
that completes the forward pass. We begin the backwards pass,
[1 2 -3]|1 1 2 =3 1 ]
ref(A) = |0 5 —1|1 | r3«grs |0 5 —1] 1 rat+rs
10 0 6 |5 0 0 1]5/6 ]
1 2 -3] 1 1 2 0/|21/6
5 1L/6 | m+3rgry | 05 0/11/6 | 57347
| 00 1 |5/6 0 0 1| 5/6
1 2 0| 21/6 1 0 0/83/30
1 01]11/30 7"1—27”2(—7"3 1 0]11/30 | = rref(A)
| 0 0 1| 5/6 0 0 1| 5/6
1-1 1
Example 1.2.3. Given A = [g —3 03} calculate rref(A).
[1 -1 1 ] 1 -1 1
A = 3 -3 0 r9 — 3r;] — 7’3 0 0 -3 | r3—2r — r;
| 2 -2 -3 | 2 -2 -3
1 -1 1] g3, [1 -1 1 _
3 =T rs —1ro — 7“§
0 0 =3 5—7'?“3 0 0 -15 EST
000 5] 222 |0 0 -15 AL
[1 -1 1 [1 -1 0
0 0 1| r—ro— ry 0 0 1 |=rref(A)
L0 0 0 |0 0 0

Note it is customary to read multiple row operations from top to bottom if more than one is listed
between two of the matrices. The multiple arrow notation should be used with caution as it has great
potential to confuse. Also, you might notice that I did not strictly-speaking follow Gauss-Jordan in
the operations 3rs — r3 and 5ro — ro. It is sometimes convenient to modify the algorithm slightly
in order to avoid fractions.
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Example 1.2.4. easy examples are sometimes disquieting, let r € R,

v=1[2 —4 2r]

Example 1.2.5. here’s another next to

%T] — T

[1 -2 r]=

rref(v)

useless example,

0 r3—3r1—>r§ 0

o O =

O =~

111117 4
1—)1";
12 2r9 =1
00 43 4| 273
(4 4 0 1 07
02010 r1—2r2—>r3
| 0 0 4 3 4 |
100 0 O
01 0 1/2 0| = rref(A)
0 01 3/4 1

o ok I RIS
oo P
W o
NGNS

- O O
w = O
- O O

T3+ 2rg — r3

7"2—1"3—)72
Tl—’l“3—>’l”g

T1/4—>’I“1
%
7“2/2—)?”2
EEE—

7"3/4—)7“3
—_—
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Example 1.2.7.
(1.0 0[1 007 1,9 s
[A|l] = 22 0l01 0| —+—3
4 4 410 0 1 w
1 0 0o 1 0 LOO[1 0 07 rp/2m
0 2 0]— 0 'r3—27'2—>r§ 0 20/-2 1 0 m
|0 4 4] - 1 00 4[0 -2 1| 22778
10 0 0 0
01 0]—-1 1/2 0 = rref[A|I]
00 1 ~1/2 1/4
Example 1.2.8.
10 1 0 10 1 0
4_ |0200 PN 02 0 0f
T loo3 1|2l g g 1| M2
132 0 0 02 -3 0
10 1 0 1010
02 00 T4 +1T3 —T 0200 rg— T4 —T
00 3 1| 237 1903 1|2 47%
00 -3 0 000 1
020 0 — 0100
3— =
0030 ra/3 21y 00 10| =@
(0000 1] M=M= 1|00 0 1

Proposition 1.2.9.

If a particular column of a matrix is all zeros then it will be unchanged by the Gaussian
elimination. Additionally, if we know rref(A) = B then rref[A|0] = [B|0] where 0 denotes
one or more columns of zeros.

Proof: adding nonzero multiples of one row to another will result in adding zero to zero in the
column. Likewise, if we multiply a row by a nonzero scalar then the zero column is uneffected.
Finally, if we swap rows then this just interchanges two zeros. Gauss-Jordan elimination is just
a finite sequence of these three basic row operations thus the column of zeros will remain zero as

claimed. [
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Example 1.2.10. Use Ezample and Proposition to calculate,

1 01 00 10 0 0]0
rref 02000 {01000
003 1/0|] 00100
32 00]0 0 00 1|0
Similarly, use Example [I.2.5 and Proposition[1.2.9 to calculate:
1 000 1000
rref [ 00 0 0| =100 0 0
3000 0000

I hope these examples suffice. One last advice, you should think of the Gauss-Jordan algorithm
as a sort of road-map. It’s ok to take detours to avoid fractions and such but the end goal should
remain in sight. If you lose sight of that it’s easy to go in circles. Incidentally, I would strongly
recommend you find a way to check your calculations with technology. Mathematica will do any
matrix calculation we learn. TI-85 and higher will do much of what we do with a few exceptions
here and there. There are even websites which will do row operations, I provide a link on the
course website. All of this said, I would remind you that I expect you be able perform Gaussian
elimination correctly and quickly on the test and quizzes without the aid of a graphing calculator
for the remainder of the course. The arithmetic matters. Unless I state otherwise it is expected
you show the details of the Gauss-Jordan elimination in any system you solve in this course.

Theorem 1.2.11.

Let A € R™*"™ then if Ry and Ry are both Gauss-Jordan eliminations of A then Ry = Rs.
In other words, the reduced row echelon form of a matrix of real numbers is unique.

Proof: see Appendix E in your text for details. This proof is the heart of most calculations we
make in this course. [J

1.3 classification of solutions

Surprisingly Examples|1.1.8)1.1.9|and [1.1.10|illustrate all the possible types of solutions for a linear
system. In this section I interpret the calculations of the last section as they correspond to solving

systems of equations.
Example 1.3.1. Solve the following system of linear equations if possible,
r+2y—3z=1

20 +4y =7
—z+3y+2z=0
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We solve by doing Gaussian elimination on the augmented coefficient matriz (see Example
for details of the Gaussian elimination),

1 2 -3]1 1 0 0]83/30 x = 83/30
rref | 2 4 0 7| =|01 0[11/30 | = | y=11/30
-1 3 2|0 00 1| 5/6 2=5/6

(We used the results of Example[1.2.9).

Remark 1.3.2.

The geometric interpretation of the last example is interesting. The equation of a plane
with normal vector < a,b,c¢ > is ax + by + cz = d. Each of the equations in the system
of Example has a solution set which is in one-one correspondance with a particular
plane in R3. The intersection of those three planes is the single point (83/30,11/30,5/6).

Example 1.3.3. Solve the following system of linear equations if possible,

z—y=1
3x—3y =20
20 — 2y = -3

Gaussian elimination on the augmented coefficient matriz reveals (see Ea:amplefor details of
the Gaussian elimination)

1 =11 1 -1 0
rref | 3 =3 0 =10 0 1
2 —-2]-3 0 0 0

which shows the system has . The given equations are inconsistent.

Remark 1.3.4.

The geometric interpretation of the last example is also interesting. The equation of a line
in the zy-plane is is ax 4+ by = ¢, hence the solution set of a particular equation corresponds
to a line. To have a solution to all three equations at once that would mean that there is
an intersection point which lies on all three lines. In the preceding example there is no such
point.

Example 1.3.5. Solve the following system of linear equations if possible,

r—y+z=0
3x—3y=20
20 -2y —32=0
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Gaussian elimination on the augmented coefficient matriz reveals (see Example |1.2.10 for details
of the Gaussian elimination)

1 -1 110 1 -1 0]0 P—
rref| 3 -3 0l0l=]0 0 1]/0] = zﬂg
2 —2 —310 0 0 00 -

The row of zeros indicates that we will not find a unique solution. We have a choice to make, either
x or y can be stated as a function of the other. Typically in linear algebra we will solve for the
variables that correspond to the pivot columns in terms of the non-pivot column variables. In this
problem the pivot columns are the first column which corresponds to the variable x and the third
column which corresponds the variable z. The variables x, z are called basic variables while y is
called a free variable. The solution set is ’ {(y,y,0) | y € R}
z=0 for all y € R.

; in other words, * = y,y = y and

You might object to the last example. You might ask why is y the free variable and not x. This is
roughly equivalent to asking the question why is y the dependent variable and x the independent
variable in the usual calculus. However, the roles are reversed. In the preceding example the
variable x depends on y. Physically there may be a reason to distinguish the roles of one variable
over another. There may be a clear cause-effect relationship which the mathematics fails to capture.
For example, velocity of a ball in flight depends on time, but does time depend on the ball’s velocty
? I'm guessing no. So time would seem to play the role of independent variable. However, when
we write equations such as v = v, — gt we can just as well write ¢t = *=22; the algebra alone does
not reveal which variable should be taken as ”independent”. Hence, a choice must be made. In the
case of infinitely many solutions, we customarily choose the pivot variables as the ”dependent” or
"basic” variables and the non-pivot variables as the ”free” variables. Sometimes the word parameter
is used instead of variable, it is synonomous.

Example 1.3.6. Solve the following (silly) system of linear equations if possible,
z=0
0z +0y+0z=0
3z =0

Gaussian elimination on the augmented coefficient matriz reveals (see Example |1.2.10 for details
of the Gaussian elimination)

1.0 0]0
=100 00
0 0 0]0

o O O

1 00
rref | 0 0 O
300

we find the solution set is ’ {(0,y,2) | y,z€ R} ‘ No restriction is placed the free variables y and
z.
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Example 1.3.7. Solve the following system of linear equations if possible,

1+ T2+ 23+ =1

1 —T2+x3=1

—r1+x3+ws=1
Gaussian elimination on the augmented coefficient matriz reveals (see Ea:amplefor details of
the Gaussian elimination)

1 1 1 1)1 100 0 (O
rref 1 -1 1 0(1 =010 1/2|0
-1 0 1 1|1 0 01 3/4|1

We find solutions of the form x1 = 0, xg = —x4/2, x3 = 1 — 3x4/4 where x4 € R is free. The
{(0,—2s,1 —3s,4s) | s € R}‘ ( I used s =4xy4 to get rid of

solution set is a subset of R*, namely

the annoying fractions).

Remark 1.3.8.

The geometric interpretation of the last example is difficult to visualize. Equations of the
form a1+ asxe+asxrs+aszs = b represent volumes in R%, they’re called hyperplanes. The
solution is parametrized by a single free variable, this means it is a line. We deduce that the
three hyperplanes corresponding to the given system intersect along a line. Geometrically
solving two equations and two unknowns isn’t too hard with some graph paper and a little
patience you can find the solution from the intersection of the two lines. When we have more
equations and unknowns the geometric solutions are harder to grasp. Analytic geometry
plays a secondary role in this course so if you have not had calculus III then don’t worry
too much. I should tell you what you need to know in these notes.

Example 1.3.9. Solve the following system of linear equations if possible,

1 +2x4=0
201 4+ 220+ 25 =0
dxy +4xo + 43 =1

Gaussian elimination on the augmented coefficient matriz reveals (see Examplefor details of
the Gaussian elimination)

1 00 100 100 1 0 0
rref{2 2 0 0 1|0(=]010 -1 1/2 | 0
44 40 0|1 001 0 —1/2/1/4
Consequently, x4, x5 are free and solutions are of the form

Tl — —X4
1

T9 = T4 — 5.%’5
1 1

xr3 = Z+ 5L5

for all x4, x5 € R.
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Example 1.3.10. Solve the following system of linear equations if possible,

1 +x3=0
Q.TQZO
3:U3:1
3r1+ 212 =0

Gaussian elimination on the augmented coefficient matriz reveals (see Example f07" details of
the Gaussian elimination)

1 0 1|0 1 0 0]0
rref 02 0{0p_|1010]0
0 0 3|1 0 0 1|0
3 2 010 0 0 01

Therefore,there are |no solutions|.

Example 1.3.11. Solve the following system of linear equations if possible,

r1+x3=0
2x9 =0
3r3+ x4 =0
3x1+ 220 =0

Gaussian elimination on the augmented coefficient matriz reveals (see Example|1.2.10 for details
of the Gaussian elimination)

101 00 100 00
rref 0200(0f_|01000
003 1|0 0 01 0|0
320 0]0 000 1|0

Therefore, the unique solution is ’xl =29 =1x3 =24 = 0| The solution set here is rather small,
it’s {(0,0,0,0)}.
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1.4 applications to curve fitting and circuits

We explore a few fun simple examples in this section. I don’t intend for you to master the outs
and in’s of circuit analysis, those examples are for site-seeing purposesﬂ

Example 1.4.1. Find a polynomial P(x) whose graph y = P(x) fits through the points (0,—2.7),
(2,—4.5) and (1,0.97). We expect a quadratic polynomial will do nicely here: let A, B,C be the
coefficients so P(x) = Ax? + Bx + C. Plug in the data,

P0) =C=—27 g‘ = = —
P(2) =4A+2B+C=-45 = i 9 1 '
P(l) =A+B+C=0097

1 1 1

I put in the A, B, C labels just to emphasize the form of the augmented matrixz. We can then perform
Gaussian elimination on the matriz ( I omit the details) to solve the system,

0 0 1|-27 1 0 0] —4.52 A= —-4.52
rref | 4 2 1| —-45 | =0 1 0| 814 = B =814
11 1097 0 0 1| =27 C=-27

The requested polynomial is | P(z) = —4.522% + 8.14x — 2.7 |.

Example 1.4.2. Find which cubic polynomial Q(x) have a graph y = Q(x) which fits through the
points (0, —2.7), (2,—4.5) and (1,0.97). Let A, B,C, D be the coefficients of Q(x) = Az® + Bx? +
Cx + D. Plug in the data,

Q(2) =8A+4B+2C+ D =-4.5 = 8 4 2 1 —4‘5

I put in the A, B,C, D labels just to emphasize the form of the augmented matriz. We can then
perform Gaussian elimination on the matriz (I omit the details) to solve the system,

A=-4.07+0.5C

000 1|-27 1 0 —05 0]—4.07
rref | 8 4 2 1|45 | =01 15 0] 7.69 - 5:269—1.50
1 11 1[097 00 0 1|-27 D o

It turns out there is a whole family of cubic polynomials which will do nicely. For each C' € R the
polynomial is | Qc(z) = (¢ — 4.07)2® 4 (7.69 — 1.5C)z% + Cx — 2.7| fits the given points. We asked
a question and found that it had infinitely many answers. Notice the choice C' = 4.07 gets us back
to the last example, in that case Qc(x) is not really a cubic polynomial.

2. .well, modulo that homework I asked you to do, but it’s not that hard, even a Sagittarian could do it.
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Example 1.4.3. Consider the following traffic-flow pattern. The diagram indicates the flow of cars
between the intersections A, B,C,D. Our goal is to analyze the flow and determine the missing
pieces of the puzzle, what are the flow-rates x1,xs, 3. We assume all the given numbers are cars
per hour, but we omit the units to reduce clutter in the equations.

TraFFie FLow psosT TuredsecTiorl ‘:'\TE;C’D

_"_t;:'n" o A Iu 3
oo s -

We model this by one simple principle: conservation of vehicles

A: x1—29—400=0

B: —x1+600—-100+2z3=0
C: —=300+100+ 100422 =0
D: —-100+100+4+23=0

This gives us the augmented-coefficient matriz and Gaussian elimination that follows ( we have to
rearrange the equations to put the constants on the right and the variables on the left before we
translate to matriz form)

1 -1 0| 400 1 0 01500
rref | 10 1)-500 1| _ |0 1 0100

0 1 0} 100 00 10

0 0 1 0 0 00| O

From this we conclude, s = 0,z5 = 100,21 = 500. By the way, this sort of system is called
overdetermined because we have more equations than unknowns. If such a system is consistent
they’re often easy to solve. In truth, the rref business is completely unecessary here. I'm just trying
to illustrate what can happen.

Example 1.4.4. (taken from Lay’s homework, §1.64#7) Alka Seltzer makes fizzy soothing bubbles
through a chemical reaction of the following type:

NaHCO3 + H3CgH507 — NasCsHs07 + HyO + COq
N — —_— —_— —_—

sodium bicarbonate citric acid sodium citrate water and carbon dioxide
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The reaction above is unbalanced because it lacks weights to describe the relative numbers of
the various molecules involved in a particular reaction. To balance the equation we seek integers
T1,T9, T3, T4, x5 such that the following reaction is balanced.

T (NCLHCOg) + $2(H306H507) — l‘g(N(1306H507) + 1‘4(H20) + 1‘5(002)

In a chemical reaction the atoms the enter the reaction must also leave the reaction. Atoms are
neither created nor destroyed in chemical reactionﬂ. It follows that the number of sodium(Na),
hydrogen(H), carbon(C) and oxygen(O) atoms must be conserved in the reaction. FEach element
can be represented by a component in a 4-dimensional vector; (Na, H,C,0O). Using this notation
the equation to balance the reaction is simply:

1 0 3 0 0
1 8 5 2 0
N + z2 61 = P3| ¢ + x4 0 + 5 1
3 7 7 1 2
In other words, solve
x1 = 3x3 10 -3 0 0 |0
x1 + 8x9 = bxs + 214 N 18 -5 =2 0 |0
r1 + 629 = 623 + X5 1 6 -6 0 —110
3z + Txe = 623 + 5 37 -6 0 —-1|0
After a few row operations we will deduce,
10 -3 0 0 |0 100 0 —1/0
rref 8 -5 -2 0 |[0| [0 100 F]o0
16 60 -1/0| (0010 3]0
3 7 -6 0 -1|0 0001 —-1]0

Therefore, x1 = 5,22 = x5/3,x3 = x5/3 and x4 = x5. Atoms are indivisible (in this context)
hence we need to choose x5 = 3k for k € N to assure integer solutions. The basic reaction follows
from x5 = 3,

’3NCLH003 + H3CsH507 — NasCsHs07 + 3H50 + 3C0Oq ‘

Finding integer solutions to chemical reactions is more easily solved by the method I used as an
undergraduate. You guess and check and adjust. Because the solutions are integers it’s not too hard
to work out. That said, if you don’t want to guess then we have a method via Gaussian elimination.
Chemists have more to worry about than just this algebra. If you study reactions carefully then there
are a host of other considerations involving energy transfer and ultimately quantum mechanics.

3chemistry is based on electronic interactions which do not possess the mechanisms needed for alchemy, transmu-
tation is in fact accomplished in nuclear physics. Ironically, alchemy, while known, is not economical
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Example 1.4.5. Let R = 1) and Vi = 8V. Determine the voltage V4 and currents Iy, Is, I3
flowing in the circuit as pictured below:

4R AV,
———!|—

R
1%,—“]\;——————-————-.

—W———t{——
YR v T

Conservation of charge implies the sum of currents into a node must equal the sum of the currents
flowing out of the node. We use Ohm’s Law V = IR to set-up the currents, here V should be the
voltage dropped across the resistor R.

L = 2‘/5%‘/“‘ Ohm’s Law
I, = V—é“ Ohm’s Law
I3 = Vl;RVA Ohm’s Law

Iy =11+ 13 Conservation of Charge at node A

Substitute the first three equations into the fourth to obtain

R 4

Vi _ 20 EVA n VlZRVA
Multiply by 4R and we find
QVpa =21 =V + V1 —Vy = 6V4 =3V = VA:V1/2=4V.

Substituting back into the Ohm’s Law equations we determine 17 = % =34, I, = % =4A

and I3 = 8‘/4_94‘/ = 1A. This obvious checks with Is = Iy + I3. In practice it’s not always best to
use the full-power of the rref.

Example 1.4.6. (optional material) The following is borrowed from my NCSU calculus II notes.
The mathematics to solve 2nd order ODEs is actually really simple, but I just quote it here to
tllustrate something known as the phasor method in electrical engineering.
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The basic idea is that a circuit with a sinusoidal source can be treated like a DC' circuit if we replace
the concept of resistance with the “impedance”. The basic formulas are

. 1
Zresistor =R Zinductor = JWL anpacitor = =
jwC
where j2 = —1 and the complez voltage dropped across Z from a sinuisoidal source V = Vyexp(jwt
J g J

follows a generalized Ohm’s Law of V = IZ. The picture circuit hasw =1 and R=5, L =1 and
C =1/6 (omitting units) thus the total impedence of the circuit is

1
Z=R+jwulL+——=5+j—6j=5—5j
JjwC

Then we can calculate I =V /Z,

fo Ut BESDeaplGl) _o4 4015 eap(it)

5-51 ()6 -J)

Now, this complex formalism actually simultaneously treats a sine and cosine source; V= exp(jt) =
cos(t) + jsin(t) the term we are interested in are the imaginary components: notice that

I=(0.140.15)e’" = (0.1 4 0.15)(cos(t) + jsin(t)) = 0.1[cos(t) — sin(t)] + 0.1j[cos(t) + sin(t)]
implies Im(ZI)) = 0.1[cos(t) + sin(t)]. We find the steady-state solution I,(t) = 0.1[cos(t) + sin(t)]
( this is the solution for large times, there are two other terms in the solution are called transient).
The phasor method has replaced differential equations argument with a bit of complex arithmetic.
If we had a circuit with several loops and various inductors, capacitors and resistors we could use
the compler Ohm’s Law and conservation of charge to solve the system in the same way we solved
the previous example. If you like this sort of thing you’re probably an ECE major.
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1.5 conclusions

We concluded the last section with a rather believable (but tedious to prove) Theorem. We do the
same here,

Theorem 1.5.1.

Given a system of m linear equations and n unknowns the solution set falls into one of the
following cases:

1. the solution set is empty.
2. the solution set has only one element.

3. the solution set is infinite.

Proof: Consider the augmented coefficient matrix [A[b] € R™*("+1) for the system (Theorem|1.2.11
assures us it exists and is unique). Calculate rref[A|b]. If rref[A|b] contains a row of zeros with a
1 in the last column then the system is inconsistent and we find no solutions thus the solution set
is empty.

Suppose rref[A]b] does not contain a row of zeros with a 1 in the far right position. Then there are
less than n + 1 pivot columns. Suppose there are n pivot columns, let ¢; for ¢ = 1,2,...m be the
entries in the rightmost column. We find x1 = ¢1,22 = co,...x, = ¢;,.Consequently the solution
set is {(c1,c2,...,cm)}-

If rre f[A|b] has k < n pivot columns then there are (n + 1 — k)-non-pivot positions. Since the last
column corresponds to b it follows there are (n — k) free variables. But, k < n implies 0 < n — k
hence there is at least one free variable. Therefore there are infinitely many solutions. [

Theorem 1.5.2.

Suppose that A € R "*™ and B € R "™*P then the first n columns of rref[A] and rref[A|B]
are identical.

Proof: The forward pass of the elimination proceeds from the leftmost-column to the rightmost-
column. The matrices A and [A|B] have the same n-leftmost columns thus the n-leftmost columns
are identical after the forward pass is complete. The backwards pass acts on column at a time just
clearing out above the pivots. Since the ref(A) and ref[A|B] have identical n-leftmost columns
the backwards pass modifies those columns in the same way. Thus the n-leftmost columns of A
and [A|B] will be identical. O

The proofs in the Appendix of the text may appeal to you more if you are pickier on these points.
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Theorem 1.5.3.

Given n-linear equations in n-unknowns Az = b, a unique solution x exists iff rref[A|b] =
[I|z]. Moreover, if rref[A] # I then there is no unique solution to the system of equations.

Proof: If a unique solution z; = ¢1,292 = co,...,x, = ¢, exists for a given system of equations
Ax = b then we know
Ailcl -+ AZQCQ + -+ Amcn = bi

for each ¢ = 1,2,...,n and this is the only ordered set of constants which provides such a solution.
Suppose that rref[A[b] # [I|c]. If rref[A|b] = [I|d] and d # ¢ then d is a new solution thus the
solution is not unique, this contradicts the given assumption. Consider, on the other hand, the case
rref[A[b] = [J|f] where J # I. If there is a row where f is nonzero and yet J is zero then the system
is inconsistent. Otherwise, there are infinitely many solutions since J has at least one non-pivot
column as J # I. Again, we find contradictions in every case except the claimed result. It follows
if x = ¢ is the unique solution then rref[A|b] = [I|c]. The converse follows essentially the same
argument, if rref[A|b] = [I|c] then clearly Az = b has solution x = ¢ and if that solution were not
unique then we be able to find a different rref for [A|b] but that contradicts the uniqueness of rref. [J

There is much more to say about the meaning of particular patterns in the reduced row echelon
form of the matrix. We will continue to mull over these matters in later portions of the course.
Theorem provides us the big picture. Again, I find it remarkable that two equations and two
unknowns already revealed these patterns.

Remark 1.5.4.

Incidentally, you might notice that the Gauss-Jordan algorithm did not assume all the
structure of the real numbers. For example, we never needed to use the ordering relations
< or >. All we needed was addition, subtraction and the ability to multiply by the inverse
of a nonzero number. Any field of numbers will likewise work. Theorems [1.5.1] and [T.2.11]
also hold for matrices of rational (Q) or complex (C) numbers. We will encounter problems
which require calculation in C. If you are interested in encryption then calculations over a
finite field Z, are necessary. In contrast, Gausssian elimination does not work for matrices
of integers since we do not have fractions to work with in that context. Some such questions
are dealt with in Abstract Algebra I and II.




Chapter 2

vectors

The first section in this chapter is intended to introduce the reader to the concept of geometric
vectors. I show that both vector addition and scalar multiplication naturally flow from intuitive
geometry. Then we abstract those concepts in the second section to give concrete definitions of
vector addition and scalar mulitplication in R™. Matrices are again introduced and further notation
is used to eulicidate calculations performed in the previous chapter. Finally linear transformations
on vectors are defined and used to illustrate a number of geometric concepts.

2.1 geometric preliminaries

The concept of a vector is almost implicit with the advent of Cartesian geometry. Rene Descartes’
great contribution was the realization that geometry had an algebraic description if we make an
identification of points in the plane with pairs of real numbers. This identification is so ubigitious
it is hard to imagine the plane without imagining pairs of numbers. Euclid had no idea of z or y
coordinates, instead just lines, circles and constructive axioms. Analytic geometry is the study of
geometry as formulated by Descartes. Because numbers are identified with points we are able to
state equations expressing relations between points. For example, if h, k, R € R then the set of all
points (z,y) € R? which satisfy

(x —h)*+ (y — k)* = R?

is a circle of radius R centered at (h, k). We can analyze the circle by studying the algebra of the
equation above. In calculus we even saw how implicit differentiation reveals the behaviour of the
tangent lines to the circle.

Very well, what about the points themselves 7 What relations if any do arbitrary points in the
plane admit? For one, you probably already know about how to get directed line segments from
points. A common notation in highschool geometryE] is that the line from point P = (Q1,Q2) to

la dying subject apparently

31
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another point Q = (Q1, Q2) is Pﬁ where we define:

PG=Q—-P=(Q—P,Qs—P).

A directed line-segment is also called a vectorf}

Q=(Q1.Q2)

P=(P.F)

Consider a second line segment going from @ to R = (Ry, R2) this gives us the directed line segment
of Cﬁ = R—Q = (R1—Q1,R2— Q2). What then about the directed line segment from the original
point P to the final point R? How is ]ﬁ =R— P = (R; — P, Ry — P,) related to ]@ and Cﬁ?
Suppose we define addition of points in the same way we defined the subtraction of points:

(V2. Vo) + (W, W) = (Vi + W1, Va + Wa). |

Will this definition be consistent with the geometrically suggested result 1@ + Cﬁ = ﬁ ? Con-
sider,

%Jr@:(Ql*Pl,Q2*P2)+(R1*Q1,szQ2)
Q1 —Pi+ R —Q1,Q2— P+ Ry — (Q2)
Ry — P,Ry — P»)

— PR.

=
=

We find the addition and subtraction of directed line segments is consistent with the usual tip-tail
addition of vectors in the plane.

2however, not every vector in this course is a directed line segment.
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R=(Ry. Ry)

(27: (Ry = Qi Ry — Q)

Ph=(f—Ple-1) /
Q=(Q1.Q)

PG=(Qi—P.Q:— )

P = (P, 1)
X

What else can we do ? It seems natural to assume that ]@ + ]@ = 21@ but what does

multiplication by a number mean for a vector? What definition should we propose? Note if
PG = (Q1 — P1,Qs — Py) then PO + PO = 2PQ implies 2(PQ) = (2(Q1 — P1),2(Q2 — Py)).
Therefore, we define for ¢ € R,

(1, Vh) = (cVi,cVh). |

This definition is naturally consistent with the definition we made for addition. We can understand
multiplication of a vector by a number as an operation which scales the vector. In other words,
multiplying a vector by a number will change the length of the vector. Multiplication of a vector
by a number is often called scalar multiplication. Scalars are numbers.

Scalar Multiplication by v
av /s
c >0 4

co <0

Vectors based at the origin are naturally identified with points: the directed line segment from
Q@ = (0,0) to P is naturally identified with the point P.

Cﬁ = (P1, P2) = (0,0) = (P, P»).

In other words we can identify the point P = (P;, P») with the directed line segment from the
origin P = (P, P,). Unless context suggests otherwise vectors in this course are assumed to be
based at the origin.
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2.2 n-dimensional space

Two dimensional space is R? = R x R. To obtain n-dimensional space we just take the Cartesian

product of n-copies of R.

Definition 2.2.1.

Notice, a consequence of the definition above and the construction of the Cartesian productﬂ is
that two vectors v and w are equal iff v; = w; for all j. Equality of two vectors is only true if all
components are found to match. Addition and scalar multiplication are naturally generalized from

the

Let n € N, we define R” = {(z1,22,...,25) | z; € R for j = 1,2,...,n}. If v € R?
then we say v is an n-vector. The numbers in the vector are called the components;
v = (v1,v2,...,v,) has j-th component v;.

n = 2 case.

Definition 2.2.2.

If you are a gifted at visualization then perhaps you can add three-dimensional vectors in your
mind. If you're mind is really unhinged maybe you can even add 4 or 5 dimensional vectors. The
beauty of the definition above is that we have no need of pictures. Instead, algebra will do just

Define functions + : R” x R” — R” and - : R x R — R" by the following rules: for each
v,w € R" and ¢ € R:

(1) (v+w)j =vj +w; (2.) (cv)j = cvj

for all j € {1,2,...,n}. The operation + is called vector addition and it takes two
vectors v, w € R™ and produces another vector v+w € R™. The operation - is called scalar
multiplication and it takes a number ¢ € R and a vector v € R™ and produces another
vector ¢ - v € R™. Often we simply denote ¢ - v by juxtaposition cv.

fine. That said, let’s draw a few pictures.

T =vie; + 1€y

V262

v1€1 Xi

3

see my Math 200 notes or ask me if interested, it’s not entirely trivial
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X3

¥ =wie; + vaea + vzes

vzes

X2

viey/

/ Vg€s
Xi
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Notice these pictures go to show how you can break-down vectors into component vectors which
point in the direction of the coordinate axis. Vectors of lengthﬁ one which point in the coordinate
directions make up what is called the standard basiﬂ It is convenient to define special notation

for the standard basis. First I define a useful shorthand,

Definition 2.2.3.

1 e
The symbol 6;; = {O Z ” 7 is called the Kronecker delta.
AN

For example, d90 = 1 while 12 = 0.

Definition 2.2.4.

Let e; € R™*! be defined by (€i); = di5. The size of the vector e; is determined by context.
We call e; the i-th standard basis vector.

Example 2.2.5. Let me expand on what I mean by ”context” in the definition above:

In R we have e; = (1) =1 (by convention we drop the brackets in this case)

In R? we have e; = (1,0) and e3 = (0, 1).

In R3 we have e; = (1,0,0) and e3 = (0,1,0) and e3 = (0,0,1).

In R* we have e; = (1,0,0,0) and ex = (0,1,0,0) and e3 = (0,0,1,0) and ey = (0,0,0,1).

Example 2.2.6. Any vector in R™ can be written as a sum of these basic vectors. For example,

v=(1,2,3) =(1,0,0) 4+ (0,2,0) + (0,0, 3)
=1(1,0,0) +2(0,1,0) + 3(0,0,1)
= ey + 2e9 + 3es.

We say that v is a linear combination of eq, es and e3.

4the length of vectors is an important concept which we mine in depth later in the course
Sfor now we use the term ”basis” without meaning, in Chapter 5 we make a great effort to refine the concept.
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The concept of a linear combination is very important.

Definition 2.2.7.

A linear combination of objects Ay, As, ..., Ax is a sum

k
11+ cAs+ -+ A = ZCiAi
=il

where ¢; € R for each i.

We will look at linear combinations of vectors, matrices and even functions in this course. If ¢; € C
then we call it a complex linear combination. The proposition below generalizes the calculation

from Example
Proposition 2.2.8.

Every vector in R™ is a linear combination of eq, es, ..., en,.

Proof: Let v = (v1,v,...,v,) € R™. By the definition of vector addition:

vo=(

(v1,0,...,0) + (0,v2,...,0p)

:(vl,O,...,O)+(0,v2,...,0)+---+(O,0,...,vn)
(v1,0-v1,...,0-v1)+ (0-va,v2,...,0-v2) + -+ (00,0 Vy,...,0p)

In the last step I rewrote each zero to emphasize that the each entry of the k-th summand has a
vy factor. Continue by applying the definition of scalar multiplication to each vector in the sum
above we find,
v =v1(1,0,...,0) +v2(0,1,...,0) + -+ v,(0,0,...,1)
=v1e1 + veeg + - - - + vpey.

Therefore, every vector in R” is a linear combination of ey, es, ..., e,. For each v € R"™ we have
_ n 0
v =2 i 1 Unen.
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Proposition 2.2.9. the vector properties of R™.

Suppose n € N. For all z,y,z € R" and a,b € R,
1. (Pl) z+y=y+x for all z,y € R",
2. P2) (z+y)+z=x+4 (y+2) for all z,y,z € R",
3. (P3) there exists 0 € R™ such that z + 0 = z for all z € R",
4. (P4) for each x € R™ there exists —zr € R™ such that = + (—z) = 0,
5. (P5) 1-2 =z for all x € R,
6. (P6) (ab)-z=a-(b-x) for all z € R™ and a,b € R,
7. PN a-(x+y)=a-z+a-yforall z,y € R” and a € R,
8. (P8) (a+b)-x=a-x+b-xforal x € R" and a,b € R,
9. (P9) If z,y € R™ then z+y is a single element in R", (we say R" is closed with respect
to addition)
10. (P10) If x € R™ and ¢ € R then c¢- z is a single element in R". (we say R" is closed
with respect to scalar multiplication)
We call 0 in P3 the zero vector and the vector —z is called the additive inverse of x. We
will usually omit the - and instead denote scalar multiplication by juxtaposition; a -z = ax.

Proof: all the properties follow immediately from the definitions of addition and scalar multipli-
cation in R" as well as properties of real numbers. Consider,

(@ +y)j=a;+y; =y + 2= (y+);
~

*

where x follows because real number addition commutes. Since the calculation above holds for each
j=1,2,...,nit follows that  +y = y + « for all 2,y € R™ hence P1 is true. Very similarly P2
follows from associativity of real number addition. To prove P3 simply define, as usual, 0; = 0;
The zero vector is the vector with all zero components. Note

(m—i—O)j:a:j—l—Oj:wj—i-O:xj

which holds for all 7 = 1,2,....,n hence x + 0 = x for all x € R™. I leave the remainder of the
properties for the reader. [

The preceding proposition will be mirrored in an abstract context later in the course. So, it is
important. On the other hand, we will prove it again in the next chapter in the context of a
subcase of the matrix algebra. I include it here to complete the logic of this chapter.
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2.2.1 concerning notation for vectors

Definition 2.2.10. points are viewed as column vectors in this course.

In principle one can use column vectors for everything or row vectors for everything. I
choose a subtle notation that allows us to use both. On the one hand it is nice to write
vectors as rows since the typesetting is easier. However, once you start talking about matrix
multiplication then it is natural to write the vector to the right of the matrix and we will
soon see that the vector should be written as a column vector for that to be reasonable.
Therefore, we adopt the following convention

U1
U2
(Ul,UQ, L 7/Un) -
Un
If T want to denote a real row vector then we will just write [v1,va,. .., vy].

The convention above is by no means universal. Various linear algebra books deal with this nota-
tional dilemma and number of different ways. In the first version of my linear algebra notes I used
R ™*! everywhere just to be relentlessly explicit that we were using column vectors for R™. The
set of all n x 1 matrices is the set of all column vectors which I denote by R "*! whereas the set of
all 1 x n matrices is the set of all row vectors which we denote by R 1. We discuss these matters
in general in next chapter. The following example is merely included to expand on the notation.

Example 2.2.11. Suppose x +y+2 =3, z+y =2 and v —y — z = —1. This system can be
written as a single vector equation by simply stacking these equations into a column vector:

rT+y+z 3
T4y = 2
rT—y—=z —1

Furthermore, we can break up the vector of variables into linear combination where the coefficients
in the sum are the variables x,y, z:

1 1 1 3
z| 1| +y 1 +z| O = 2
1 -1 -1 -1

Note that the solution to the system isx=1,y=1,z=1.
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2.3 linear combinations and spanning

We saw that linear combinations of the standard basis will generate any vector in R™ in the previous
section. We now set out to answer a set similar question:

PROBLEM: Given vectors wvi,vs,...,vr and a vector b do there exist constants
c1,Co,...,c such that civ; + covg + -+ + ¢, = b? If so, how should we determine them
in general?

We have all the tools we need to solve such problems. I'll show a few examples before I state the
general algorithm.

Example 2.3.1. Problem: given that v =(2,—1,3), w = (1,1,1) and b = (4,1,5) find values for
x,y such that xv + yw = b (if possible).

Solution: wusing our column notation we find xv + yw = b gives

2 1 4 2z 4y 4
x| -1 |+y|1]|=]1 = —z4y | =11
3 1 5 3z +y 5

We are faced with solving the system of equations 2x +y =4,—x+y =1 and 3x +y = 5. As we
discussed in depth last chapter we can efficiently solve this type of problem in general by Gaussian
elimination on the corresponding augmented coefficient matrix. In this problem, you can calculate

that
2

114 1 01

rref | =1 1|1 | =0 1|2
3 1|5 0 0|0

hence x =1 and y = 2. Indeed, it is easy to check that v+ 2w = b.

The geometric question which is equivalent to the previous question is as follows: ”is the vector
b found in the plane which contains v and w”? Here’s a picture of the calculation we just performed:

'V_ (5] (01010)

(4,1,5)
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The set of all linear combinations of several vectors in R" is called the span of those vectors. To
be precise

Definition 2.3.2.

Let S = {v1,va,...,vx} C R™ be a finite set of n-vectors then span(S) is defined to be the
set of all linear combinations formed from vectors in 5"

k
span{vi,ve,..., vk} = {ZCL’U@' |cieRfori=1,2,...,k}
i=1

If W = span(S) then we say that S is a generating set for W.

If we have one vector then it has a span which could be a line. With two vectors we might generate
a plane. With three vectors we might generate a volume. With four vectors we might generate a
hypervolume or 4-volume. We’ll return to these geometric musings in § and explain why I have
used the word "might” rather than an affirmative ”will” in these claims. For now, we return to the
question of how to decide if a given vector is in the span of another set of vectors.

Example 2.3.3. Problem: Let by = (1,1,0),b2 = (0,1,1) and bs = (0,1, —1).
L‘ﬂ es € span{by, by, b3} ?

Solution: Find the explicit linear combination of bi,bo,bs that produces e3. We seek to find
x,y, 2 € R such that xb; + yby + zbs = es,

1 0 0 0 x 0
z| 1 |+yl|1]|+=2 1 =10 = z+y+z | =10
0 1 -1 1 Y—z 1

Following essentially the same arguments as the last example we find this question of solving the
system formed by gluing the given vectors into a matriz and doing row reduction. In particular, we
can solve the vector equation above by solving the corresponding system below:

0 0 0
1

7“3—7“2—>7“§

1 0 0
1 1 0
0 1 1
0' —7“3/2—)’/“3
0
1

0

0 7"2—7"1—>'r§
-111
0

100
T2 = T3 Ty 01 0| 1/2
0 0 1|-1/2

O = O ==

L | 7“1—7"3—>T‘3

Therefore, t = 0,y = % and z = —%. We find that | e3 = %bl + %bg — %bg thus es € span{by,ba,bs}.

Schallenge: once you understand this example for es try answering it for other vectors or for an arbitrary vector
v = (v1, v2,v3). How would you calculate z,y, z € R such that v = zb1 + yba + 2b3?
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The power of the matrix technique shines bright in the next example. Sure you could guess the last
two, but as things get messy we’ll want a refined efficient algorithm to dispatch spanning questions
with ease.

Example 2.3.4. Problem: Let by = (1,2,3,4), b = (0,1,0,1) and b3 = (0,0,1,1).
Isw=(1,1,4,4) € span{by, b, b3}?

Solution: Following the same method as the last example we seek to find x1,xo and x3 such that
T1b1 + xobg 4+ x3b3 = w by solving the aug. coeff. matriz as is our custom:

21 011 01 0]-1
= r3 — 3r —>7"§ — !

[bl‘bg‘b3|w} 30 14 3 1 00 1 1 T4 r9 — T

401 14 TN g1 1] 0

1 0 0 1 1 0 0] 1

0 1 04—l Ty —1T3 =T 0 1 0)-1 = rref[by|ba|bs|w]

00 1|1 | 2=3"4 100 1|1

|0 0 1] 1 0 00O

We find x1 = 1,20 = —1,23 = 1 thus ’w =b; — by + b3 ‘ Therefore, w € span{by, ba, bs}.

Pragmatically, if the question is sufficiently simple you may not need to use the augmented coeffi-
cient matrix to solve the question. I use them here to illustrate the method.

Example 2.3.5. Problem: Let by = (1,1,0) and by = (0,1,1).
Is eg € span{by,ba}?

Solution: Attempt to find the explicit linear combination of by,by that produces es. We seek to
find x,y € R such that xby + yby = e3,

1 0 0 x 0
z| 1 ({+y| 1 |=1|1 = r+y | =11
0 1 0 Y 0

We don’t really need to consult the augmented matrixz to solve this problem. Clearly x = 0 and
y = 0 is found from the first and third components of the vector equation above. But, the second
component yields x +y = 1 thus 0+ 0 = 1. It follows that this system is inconsistent and we may
conclude that w ¢ span{bi,bs}. For the sake of curiousity let’s see how the augmented solution
matriz looks in this case: omitting details of the row reduction,

1 010 1 010
rref |1 1|1 =10 1|0
0 11]0 0 01

note the last row again confirms that this is an inconsistent system.
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Proposition 2.3.6.

Given vectors vy, v, ...,v; € R™ and another vector b € R™ we can solve the vector equa-
tion x1v1 4+ xovy + -+ + 2V = b by Gaussian elimination of the corresponding matrix
problem [v|va]---|vg|b]. Moreover, b € span{vi,va, ..., v} iff [vi|ve|---|vk|b] represents
the augmented matrix of a consistent system of equations.

Proof: note that solving the single vector equation xqvy + xove + - -+ + zpvE = b for x1,x0, ..., Tk
is equivalent to solving n-scalar equations

x1(v1)1 + x2(v2)1 + -+ - + zx(vg)1 = by
x1(v1)2 + x2(v2)2 + -+ + 2k (VK )2 = o

xl(vl)n + xg(vz)n + -+ xk(vk)n =b,.

But, this can be solved by performing Gaussian elimination on the matrix

(vi)1 (v2)1 -+ (w1 | ba
(v1)2 (v2)2 -+ (vg)2 | be

Therefore, b € span{vy,va,...,v;} iff the system above reduces to a consistent system. [J
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2.4 multiplication of matrix by a vector

Definition 2.4.1.

Let A = [A1]|Az---|Ag] be a matrix with n-rows and k-columns which is formed by con-
catenating k column vectors A1, A, ... A, € R™. Also, let = (z1,x,...,7;) € RF. The
product of A and x is denoted Ax and is defined by the weighted vector sum of the columns
A; of the matrix A by the components xj of x. In particular,

Ax = JilAl + JIQAQ P s J?kAk

Example 2.4.2. Let A = [ ?1) i ] andv = [ g } then we may calculate the product Av as follows:

|12 T | 1 2 | z+2
Sl EY | R B R R e
Notice that the product of an n x k matrix with a k x 1 vector yields another vector of size k x 1.
In the example above we observed the pattern (2 x 2)(2 x 1) —»— (2 x 1).

x
Example 2.4.3. Let A = [clz 2 1] and v = | y | then we may calculate the product Av as
z
follows:
11177 1 1 1 T+y+z
Av_[a b c} ‘Z _x[a]+y[b]+z[c]_[ax—i—by—i—cz]'

Proposition 2.4.4.

If A= [A1]|As|---|Az] € R™* and b € R™ then the matrix equation Az = b has the same
solution set x = (x1, z2,...,x)) as the vector equation

21A1 +x9A0 + -+ xp A = b

and the matrix system
[A1|Ag| - - - [Ag[0].

The proof of this Proposition hinges on the definition of matrix multiplication as given in Definition
and Proposition I leave the details to the reader. It is convenient at this point to
introduce further notation to describe a matrix since we may not always wish to think of the
matrix in terms of its columns.
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Definition 2.4.5.

Let x1,2,..., 7} be k variables and suppose b;, A;; € Rfor 1 <i <k and 1 < j <n. The
system of linear equations

Anzxr + Apxa + -+ + Ay, = by

Aoy + Apxo + -+ + Agpxy, = bo

Apiz1 + Apao + - - + Az = by,

has coefficient matrix A, the inhomogeneous term b and augmented coefficient
matrix [A|b] defined below:

Ay A oo Awp by An A - A | b
e A.Ql A'22 A.2k b b.z A = A.Zl A.22 A.Zk b.2
Apr Ape -0 Apg s Apr Ape -0 Apk | by
A vector € R¥ for which Az = b is called a vector solution to the matrix form of the
system.
Naturally, solutions x1,x2,...,x; to the original system are in 1-1 correspondance with the vec-

tor solutions of the corresponding matrix form of the equation. Moreover, we know Gaussian
elimination on the augmented coefficient matrix is a reliable algorthim to solve any such system.

Definition 2.4.6.

Let Az = b be a system of n equations and k-unknowns then z is in the solution set of the
system. In particular, we denote the solution set by Sol| 4, where

SOZ[AV,] = {SU S RF ‘ Ax = b}

We learned in the last chapter that the solution set either contained a single point, an infinite
number of points or no points at all. Sorry if this all seems a little redundant. We will think in
terms of matrix notation for the remainder of the course. I sometimes forget to distinguish between
the system of equations and their matrix form. The difference at first seems to just be notation,
but you’ll see the notation seems to have a life of its own. We now revisit two examples from the
previous chapter to write the results in matrix notation.

Example 2.4.7. We found that the system in Example[1.5.]],

r+2y—3z=1
20 +4y =7
—z+3y+2z=0
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has the unique solution x = 83/30,y = 11/30 and z = 5/6. This means the matriz equation Av =b
where

1 2 =3 1 1 83/30
Av=1] 2 4 0 2 | =17 has vector solution |v = | 11/30
-1 3 2 x3 0 5/6
A v b

Example 2.4.8. We can rewrite the following system of linear equations

x1+x4=0
201 4+ 220+ 25 =0
4x1 +4xo +4x3 =1

in matriz form this system of equations is Av = b where

T
1 0 010 T 0
Av=12 2 0 0 1 z3 | =10
4 4400 T4 1

Ts5
A b

Gaussian elimination on the augmented coefficient matriz reveals (see Examplefor details of
the Gaussian elimination)

100 10]0 100 1 o0 |o
rref |2 2 00 1/0|=]010 -1 1/2| 0
4 4 40 01 001 0 —-1/2|1/4

Consequently, x4, x5 are free and solutions are of the form

Tl = —X4
1

T9 = T4 — 51’5
1 1

T3 = Z‘i‘ §$5

for all x4, x5 € R. The vector form of the solution is as follows:

—I4 -1 0 0

Ty — %335 1 —% 0

_ 1 1 _ 1 1
v = it3%s =24 0 + x5 3 + | 7
T4 1 0 0

xT5 0 1 0




46 CHAPTER 2. VECTORS

Remark 2.4.9.

You might ask the question: what is the geometry of the solution set above 7 Let S =
Soljap C R®, we see S is formed by tracing out all possible linear combinations of the
vectors v; = (—1,1,0,1,0) and ve = (0, —%, %,0, 1) based from the point p, = (0,0, %,0,0).
In other words, this is a two-dimensional plane containing the vectors vy, v2 and the point
po. This plane is placed in a 5-dimensional space, this means that at any point on the plane

you could go in three different directions away from the plane.

The definition we gave for matrix multiplication is not how I usually multiply. Instead I think in
terms of what are called dot-products. The dot-product of two n-vectors is easy to compute:

’ (al,ag, .. ../an) . (bl,bg, - ,bn) = a1by + asby + - - - + a,by,.

Proposition 2.4.10.

Suppose A = [4;;] € R¥*™ and v = [v;] € R™. Let R; denote the j-th row of A converted
to a column vector; R; = (Aj1,A4j2,...,Aj,) for j =1,2,... k. The product of Av can be
calculated by computing k& dot-products as follows:

Ry -v
RQ-U
Av = .

Rk-v

Proof: we begin with the definition of matrix multiplication, consider the j-th component of the
vector equation Av = vicoli(A) + vacola(A) + - - - + vycol, (A),

(Av)j; = vi(coli(A)); + va(cola(A))j + - - - + vp(coln(A)),;

But, observe that ((col1(A))j, (cola(A))j, -+, (coln(A));) = (Aj1, Aj2, -+, Ajn) = R; hence the j-
th component of Av is precisely v - R; as claimed. [

The following corollary follows easily from the proof above.

Corollary 2.4.11.

If A=[A;] € R*" and v = [v;] € R" then (Av); = > j=14ijv; for each i =1,2,.... k.

Example 2.4.12. Consider the following generic system of two equations and three unknowns,

ar+by+cz=d
ex+ fy+gz=nh
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in matriz form this system of equations is Av = b where

Av—[a b c} . _[(a,b,c)-(x,y,z)}_[ax—i—by—i—cz}_[d]
e fgll? (e.f:9)- (wy.2) |~ Lewt fy+gz ]~ | h

A ~—— b

v

I find it easier to think in dot-products.

1 2 3 1
Example 2.4.13. Let A= | 4 5 6 | andv=| 0 calculate Av
7 8 9 -3
123 1 (1,2,3) - (1,0, -3) —2
Av=1|4 5 6 0 | =| (4,56) (1,0,-3) | = | —14
78 9] -3 (7,8,9) - (1,0, —3) ~920

Proposition 2.4.14.

Let A€e R™™ and z,y € R"™ and ¢ € R
1. A(lz+y) = Az + Ay
2. A(ex) = cAx

Proof: I'll use Corollary [2.4.11| to frame the proof. Let A = [4;;] € R™"™, 2 = [z;] € R™ and
y = [y;] € R™. Observe that

m m m m

(A +9))i =Y Aijz+y); =Y Aijlzj +y;) = Y Aywj + Y Aijy; = (Az)i + (Ay)s
=1 j=1

j=1 j=1

def. vector add. prop. of finite sums

holds for all ¢ = 1,2,...,n. Therefore, A(x 4+ y) = Az + Ay. Likewise observe that,

m m

(A(Cl’))l = ZAZ-]-(C:U)]- = ZAijcacj = C<- Aijxj> = C(AJJ)Z = (CAI‘)l

j=1 j=1

using def. of scalar mult. and then finite sums

holds for all ¢ = 1,2, ...,n. Therefore, A(cz) = cAz. O

It’s doubtful anyone ever showed you how to prove properties of finite sums. I include a brief
appendix to explain if you are curious. In a nutshell, finite sums are defined inductively so you
have to use proof by mathematical induction to rigorously establish their various properties.
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Let’s pause to think about what we’ve learned about spans in this section. First of all the very
definition of matrix multiplication defined Av to be a linear combination of the columns of A so
clearly Av = b has a solution iff b is a linear combination of the columns in A.

We have seen for a particular matrix A and a given vector b it may or may not be the case that
Av = b has a solution. It turns out that certain special matrices will have a solution for each choice
of b. The theorem below is taken from Lay’s text on page 43. The abbreviation TFAE means
”The Following Are Equivalent”.

Theorem 2.4.15.

Suppose A = [4;;] € R¥*™ then TFAE,
1. Av = b has a solution for each b € RF
2. each b € R¥ is a linear combination of the columns of A
3. columns of A span R*

4. A has a pivot position in each row.

Proof: the equivalence of (1.) and (2.) is immediate from the definition of matrix multiplication
of a matrix and a vector. Item (3.) says that the set of all linear combinations of the columns of
A'is equal to R”, thus (2.) < (3.). Finally, item (4.) is not just notation.

Suppose (4.) is true. Recall that rref[A] and rref[A|b] have matching columns up to the rightmost
column of rref[A|b] by the Theorem It follows that rref[A]b] is a consistent system since
we cannot have a row where the first nonzero entry occurs in the last column. But, this result is
independent of b hence we have a solution of Av = b for each possible b € R¥. Hence (4.) = (.1).

Conversely suppose (1.) is true; suppose Av = b has a solution for each b € R*. If rref[A] has a
row of zeros then we could choose b # 0 with a nonzero component in that row and the equation
Av = b would be inconsistent. But that contradicts (1.) hence it must be the case that rref[A] has
no row of zeros hence every row must be a pivot row. We have (1.) = (4.).

In conclusion, (1.) < (2.) < (3.) and (1.) < (4.) hence (4.) & (1.) & (2.) < (3.) 0.
In truth this theorem really only scratches the surface. We can say more if the matrix A is square.
But, I leave the fun for a later chapter. This much fun for now should suffice.
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2.5 linear independence

In the previous sections we have only considered questions based on a fixed spanning set. We asked
if b € span{vy,va,...,v,} and we even asked if it was possible for all b. What we haven’t thought
about yet is the following:

PROBLEM: Given vectors v1, vg, ..., v, and a vector b = ¢1v1 + covg + - - - + ¢ vg for some
constants c; is it possible that b can be written as a linear combination of some subset of
{v1,v2,...,ut}? If so, how should we determine which vectors can be taken away from the
spanning set? How should we decide which vectors to keep and which are redundant?

The concept of linear independence is central to answering these questions. We will examine the
basics of linear independence in this section. However, I should mention that this is a story which
cannot told in it’s entirety until we develop a few more tool&ﬂ

Definition 2.5.1.

If a vector v can be written as a linear combination of vectors {vi,ve,...,vx_1} then we
say that the vectors {vi,va,...,vk_1,v;} are linearly dependent.

If the vectors {vy, ve, ..., vk_1, v} are not linear dependent then they are said to be linearly
independent.

Example 2.5.2. Let v = [1 2 3|7 and w = [2 4 6]T. Clearly v,w are linearly dependent since
w = 2v.

I often quote the following proposition as the defintion of linear independence, it is an equivalent
statement and as such can be used as the definition(but not by us, I already made the definition
above). If this was our definition then our definition would become a proposition. Math always
has a certain amount of this sort of ambiguity.

Proposition 2.5.3.

Let v1,vo,...,v; € R™. The set of vectors {vy,va,...,vx} is linearly independent iff

civ1+covg+ -+ =0 = cp=co=---=¢ =0.

Proof: (=) Suppose {v1,va,...,v;} is linearly independent. Assume that there exist constants
c1,Ca,...,cL such that
c1v1 + cvg + - - + v = 0

and at least one constant, say c;, is nonzero. Then we can divide by ¢; to obtain

e c2 S Chgyy =
1Tzt Ui+ Jrcjvk—()

"we must wait for the CCP; but, we are the ones we’ve been waiting for so it will not be too long a wait.Only
Jorge will understand this.
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solve for v;, (we mean for v; to denote the deletion of v; from the list)

_ ~ c
Uj__%Ul_%jUQ_“'_U‘]_“'_?];vk
but this means that v; linearly depends on the other vectors hence {vq,vs,...,v;} is linearly de-
pendent. This is a contradiction, therefore ¢; = 0. Note j was arbitrary so we may conclude ¢; = 0
for all j. Therefore, cyvy + cova+ -+ v =0 = 1 =co=---=¢p =0.
Proof: (<) Assume that
civr+covg 4+ =0 = cp=c=---=c,=0.

vaj = blvl—i—bgvg—l—-.-—ﬁ—@—l—.--—l—bkvk then b11)1—l—bzvg—i-‘-'—l-ijj-i-"'-i-bkvk = 0 where
b; = —1, this is a contradiction. Therefore, for each j, v; is not a linear combination of the other
vectors. Consequently, {vy,ve,...,vx} is linearly independent.

Proposition 2.5.4.

‘If S is a finite set of vectors which contains the zero vector then S is linearly dependent.

Proof: Let {0,vs,...v,} = S and observe that
16+0U2—|—"'+01)k20

Thus 016 + covg + -+ - 4 ¢ = 0 does not imply ¢; = 0 hence the set of vectors is not linearly
independent. Thus S is linearly dependent. [J

Proposition 2.5.5.

Let v and w be nonzero vectors.

v, w are linearly dependent < dk # 0 € R such that v = kw.

Proof: Suppose v,w are linearly dependent then there exist constants ¢y, ca, not all zero, such
that civ + cow = 0. Suppose that ¢4 = 0 then cow = 0 henceﬂ co = 0 or w = 0. But, this is a
contradiction since v, w are nonzero and at least one of ¢1, co must be nonzero. Therefore, ¢; # 0.
Likewise, if co = 0 we find a similar contradiction. Hence ¢q, ¢y are both nonzero and we calculate
v = (—cg/c1)w, identify that k = —ca/c;. O

8if the product of a scalar and a vector in R” is zero then you can prove that one or both is zero by examining
the components of the vector equation
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Remark 2.5.6.

For two vectors the term ”linearly dependent” can be taken quite literally: two vectors are
linearly dependent if they point along the same line. For three vectors they are linearly
dependent if they point along the same line or possibly lay in the same plane. When we get
to four vectors we can say they are linearly dependent if they reside in the same volume,
plane or line. I don’t find the geometric method terribly successful for dimensions higher
than two. However, it is neat to think about the geometric meaning of certain calculations
in dimensions higher than 3. We can’t even draw it but we can eulicidate all sorts of
information with the mathematics of linear algebra.

Example 2.5.7. Let v = [1 2 3] and w = [1 0 0]7. Let’s prove these are linearly independent.
Assume that c1v + cow = 0, this yields

1 1 0
c1| 2| 4+ec|0]=1]0
3 0 0

thus c1 +co =0 and 2¢cy =0 and 3c1 = 0. We find ¢y = co = 0 thus v, w are linearly independent.
Alternatively, you could explain why there does not exist any k € R such that v = kw

Think about this, if the set of vectors {vy,va, ..., v} C R™ is linearly independent then the equation
c1v1 + covg + -+ + v = 0 has the unique solution ¢; = 0,c0 = 0,...,¢; = 0. Notice we can
reformulate the problem as a matrix equation:

civ1 +covg + -+ =0 & [vl\vgl---\vk][cl co - Ck]TZO

The matrix [vy|vg|---|vg] is an n x k. This is great. We can use the matrix techniques we already
developed to probe for linear independence of a set of vectors.

Proposition 2.5.8.

Let {v1,v2,...,v;} be a set of vectors in R™.
1. If rreflvi|ve|---|vg] has less than k pivot columns then the set of vectors
{v1,v9,..., vt} is linearly dependent.
2. If rreflvy|ve|- - - |vg] has k pivot columns then the set of vectors {vi,va,..., v} is
linearly independent.

Proof: Denote V = [v1|vg] -+ - |vg] and ¢ = [e1, ¢2, ..., c;]T. If V contains a linearly independent set
of vectors then we must find that V¢ = 0 implies ¢ = 0. Consider V¢ = 0, this is equivalent to using
Gaussian elimination on the augmented coefficent matrix [V'|0]. We know this system is consistent
since ¢ = 0 is a solution. Thus Theorem tells us that there is either a unique solution or
infinitely many solutions.
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Clearly if the solution is unique then ¢ = 0 is the only solution and hence the implication Av = 0

implies ¢ = 0 holds true and we find the vectors are linearly independent. In this case we would

find

1 0 .- 0]
0 1 0

rrefloilva] - - |ug] =

(e
(e}
—
Il
| —— |
=
| I |

00 - 0|
where there are n-rows in the matrix above. If n = k£ then there would be no zeros below the k-th
TOW.

If there are infinitely many solutions then there will be free variables in the solution of Ve = 0. If
we set the free variables to 1 we then find that V¢ = 0 does not imply ¢ = 0 since at least the free
variables are nonzero. Thus the vectors are linearly dependent in this case, proving (2.). Rather
than attempting to sketch a general rref[V]0] I will illustrate with several examples to follow. [J

Before I get to the examples let me glean one more fairly obvious statement from the proof above:

Corollary 2.5.9.

‘ If {v1,va, ..., v} is a set of vectors in R™ and k > n then the vectors are linearly dependent.

Proof: Proposition tells us that the set is linearly independent if there are k pivot columns
in [v1]---|vg]. However, that is impossible since k& > n this means that there will be at least one
column of zeros in rref[vy|---|vg]. Therefore the vectors are linearly dependent. [J

This Proposition is obvious but useful. We may have at most 2 linearly independent vectors in R?,
3in R3, 4 in R*, and so forth...

Example 2.5.10. Determine if vy, vo,vs (given below) are linearly independent or dependent. If
the vectors are linearly dependent show how they depend on each other.

1 2 3
vy = | 1 vo = | 1 v3= | 2
1 0 1

We seek to use the Proposition[2.5.8 Consider then,

1 2 3 1 2 3 1 0 1

7"2—7“1%72 r1+27“2—>7“§
[vi|vglvg] = | 1 1 2 0 -1 -1 0 -1 -1
1 01

7“3—7“1—>7“§ 0 -2 9 r3—2r2—>r§ 00 0
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Thus we find that,

1 01
rreflvi|valus] =10 1 1
0 00
hence the variable c3 is free in the solution of Ve = 0. We find solutions of the form ¢1 = —c3 and

co = —c3. This means that
—c3v] — c3vg + c3vz =0

for any value of c3. I suggest c3 =1 is easy to plug in,
—v1 —vo +wv3 =0 or we could write vy = vy + vg
We see clearly that vs is a linear combination of vy, ve.

Example 2.5.11. Determine if vi,ve,v3,v4 (given below) are linearly independent or dependent.

1 1 1 1

0 1 1 1

0o 2700 BT U

0 0 0 1

We seek to use the Proposition[2.5.8 Omitting details we find,

1111 1 0 00

0111 0100

rreflvi|va|vs|vg) =rref | 0 0 1 1 | =[]0 0 1 O

0 0 01 0 0 01

0 00O 0 00O

In this case no variables are free, the only solution is c1 = 0,co = 0,c3 = 0,cq4 = 0 hence the set of
vectors {v1,va,v3,v4} is linearly independent.

Example 2.5.12. Determine if vy, vo,vs (given below) are linearly independent or dependent. If
the vectors are linearly dependent show how they depend on each other.

1 3 2

10 |1 o 1

v = 0 V2 = 9 V3 = 9

3 0 -3

We seek to use the Proposition[2.5.8 Consider [v1|va|vg] =
13 2 13 2] n3norn [10 -
01 1 0 1 1 01 1
r4—3rL — 7T r3—2rg — 71 =
0 9 9o | MIZSmTTe b, 5 | AT rref[V].

3 0 -3 0 —9 —9 | TtIr=re 1o o g



54 CHAPTER 2. VECTORS

Hence the variable cg is free in the solution of Ve = 0. We find solutions of the form c¢1 = c3 and
co = —c3. This means that
c3v1 — c3V + cgvg =0

for any value of c3. I suggest c3 =1 is easy to plug in,
vy — vy +v3 =0 or we could write vy = vy — V1
We see clearly that vs is a linear combination of vy, vs.

Example 2.5.13. Determine if vi,va, v3,v4 (given below) are linearly independent or dependent.
If the vectors are linearly dependent show how they depend on each other.

0 0 0 0
10 1 1 |1
vi= |y 2= v3= | ] =,
0 0 0 0
We seek to use the Proposition|[2.5.8 Consider [vi|va|vs|va] =
00 0O 1 120 1 01 -1
01 1 1 T 01 1 1 SN Olll_f[|‘|]
1120 =3 loooo| 227" 1qgqgoo o | "e/lvivausivs
0 00O 0 00O 0 00 O

Hence the variables cs and c4 are free in the solution of Ve = 0. We find solutions of the form
c1 = —c3+cq4 and cog = —cg — c4. This means that

(ca —c3)vr — (c3 + ca)va + c3v3 +cqvg =0
for any value of c3 or cy. I suggest cs = 1,c4 =0 is easy to plug in,
—v1 — vy +v3 =0 or we could write v3 = vy + v
Likewise select cs3 = 0,c4 =1 to find
v1 — vy +v4 =0 or we could write vqg = vy — V1

We find that vs and vg are linear combinations of v1 and ve.
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2.6 introduction to linear transformations and mapping

Let me briefly review what you should already know from Math 200/250 about functions in the
abstract: Recall that a function f : A — B is an single-valued assignment of elements in A to
elements in B. We say that dom(f) = A and codomain(f) = B. Furthermore, recall that the
range of the function is the set of all outputs: range(f) = f(A). If f(A) = B then we say that f
is a surjection or equivalently f is onto. If f(z) = f(y) implies x = y for all z,y € A then we
say that f is injective or equivalently f is 1-1. In this section we will have occasion to use these
terms as they apply to functions from R” to R™.

A function from U C R™ to V C R* is called a mapping. You should have studied mappings in
calculus II whether you realized it or not. Coordinate transformations of the plane are mappings
from R? — R2.

Example 2.6.1. Let F(r,0) = (rcos(0),rsin(f)) for (r,0) € [0,00) x [0,27]. This mapping takes
lines in the polar plane and maps them to either circles or rays in the Cartesian plane. This is an
interesting mapping, but our focus is on transformations which take lines in the domain and map
them to lines in the range.

In fact, mappings are much more general than linear transformations (we study mappings in ad-
vanced calculus). We may also say that a linear transformation is a linear mapping.

Definition 2.6.2.

Let V =R" W = R*. If a mapping L : V — W satisfies
1. L(z +vy) = L(x) + L(y) for all z,y € V; this is called additivity.
2. L(cx) = cL(x) for all z € V and ¢ € R; this is called homogeneity.

then we say L is a linear transformation. If n = m then we may say that L is a linear
transformation on R".

Example 2.6.3. Let L(x,y) = (z,2y). This is a mapping from R? to R2. Notice
L((z,y) + (z,w)) = Lz + 2,y + w) = (v + 2,2(y + w)) = (2,2y) + (2,2w) = L(z,y) + L(z,w)

and
L(c(z,y)) = Llcz, cy) = (cx,2(cy)) = c(z, 2y) = cL(z,y)

for all (z,y), (z,w) € R? and ¢ € R. Therefore, L is a linear transformation on R2. Let’s evamine
how this function maps the unit square in the domain: suppose (z,y) € [0,1] x [0,1]. This means
0 <z <1and0 <y < 1. Label the Cartesian coordinates of the range by u,v so L(x,y) =
(7,2y) = (u,v). We have v = u thus 0 <u < 1. Also, v =2y hence y = § hence 0 <y < 1 implies

0<5<lor0<v<2,
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To summarize: L([0,1] x [0,1]) = [0,1] x [0,2]. This mapping has stretched out the horizontal
direction.

(0.2 (12

Y,

0.0) 1,0

(0.0 (1.0

The method of analysis we used in the preceding example was a little clumsy, but for general map-
pings that is more or less the method of attack. You pick some shapes or curves in the domain
and see what happens under the mapping. For linear mappings there is an easier way. It turns
out that if we map some shape with straight sides then the image will likewise be a shape with
flat sides ( or faces in higher dimensions). Therefore, to find the image we need only map the
corners of the shape then connect the dots. However, I should qualify that it may not be the case
the type of shape is preserved. We could have a rectangle in the domain get squished into a line
or point in the domain. We would like to understand when such squishing will happen and also
when a given mapping will actually cover the whole codomain. For linear mappings there are very
satisfying answers to these questions in terms of the theory we have already discussed in this chapter.

Proposition 2.6.4.

If Aec R™*™ and L : R™ — R™ is defined by L(z) = Az for each x € R™ then L is a linear
transformation.

Proof: Let A € R """ and define L : R" — R™ by L(z) = Ax for each z € R". Let z,y € R™ and
c € R,

Lz +y)=Ax+y) = Az + Ay = L(z) + L(y)

and
L(cx) = A(cx) = cAx = cL(x)

thus L is a linear transformation. [

Obviously this gives us a nice way to construct examples. The following proposition is really at the
heart of all the geometry in this section.
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Proposition 2.6.5.

Let L={p+tv|te]|0,1],p,v € R" with v # 0} define a line segment from p to p + v in
R™ If T : R™ — R™ is a linear transformation then 7'(£) is a either a line-segment from
T(p) to T(p+ v) or a point.

Proof: suppose T and L are as in the proposition. Let y € T'(L£) then by definition there exists
x € L such that T'(z) = y. But this implies there exists ¢ € [0,1] such that x = p + tv so
T(p+ tv) = y. Notice that

y=T(p+tv)=T(p)+T(tv) =T (p) + tT(v).

which implies y € {T'(p) + sT(v) | s € [0,1]} = La. Therefore, T(L) C L. Conversely, suppose
z € Lo then z = T'(p) + sT (v) for some s € [0, 1] but this yields by linearity of 7" that z = T'(p + sv)
hence z € T'(L). Since we have that T (L) C L and Lo C T'(L) it follows that T(L£) = L. Note
that Lo is a line-segment provided that T'(v) # 0, however if T'(v) = 0 then L9 = {T'(p)} and the
proposition follows. [

My choice of mapping the unit square has no particular signficance in the examples below. 1
merely wanted to keep it simple and draw your eye to the distinction between the examples.
In each example we’ll map the four corners of the square to see where the transformation takes
the unit-square. Those corners are simply (0,0),(1,0),(1,1),(0,1) as we traverse the square in a
counter-clockwise direction.

Example 2.6.6. Let A = [ k0 } for some k > 0. Define L(v) = Av for allv € R2. In particular

0 k

L(w,y)—A(%y)—[g 2] [;]_[Zﬂ

We find L(0,0) = (0,0), L(1,0) = (k,0), L(1,1) = (k,k), L(0,1) = (0,k). This mapping is called
a dilation.

this means,

(0.1) (1.1) L

(0,0 1,0 X ©0 ®0) 3

-1 0
0 -1

L(x,y)=A<x»y>=[_(1) —H [ﬂ:[:z]

Example 2.6.7. Let A = [ ] . Define L(v) = Av for allv € R%. In particular this means,
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We find L(0,0) = (0,0), L(1,0) = (-1,0), L(1,1) = (—1,—1), L(0,1) = (0, —1). This mapping is

called an inversion.

L

(0.1) (1,1
(-1,0) (0,0)

(0,0) (1,0) X (-1-1) (0,-1)

1 2

Example 2.6.8. Let A = [ 3 4

] . Define L(v) = Av for all v € R%. In particular this means,

em-nen=[3 2][1]- 3720

We find L(0,0) = (0,0), L(1,0) = (1,3), L(1,1) = (3,7), L(0,1) = (2,4). This mapping shall
remain nameless, it is doubtless a combination of the other named mappings.

(0,1) (1.1) L (13

/_\ (2.4)

(0,0 (1,0 X 0,0) u

Example 2.6.9. Let A = % [ i _1 ] Define L(v) = Av for all v € R2. In particular this
means,
1 1 -1 T 1 | xz—y
L(x,y) = A(z,y) = — = — .
wo=aw=70 )y ]= sl 0]
We find L(0,0) = (0,0), L(1,0) = %(1, 1), L(1,1) = 55(0,2), L(0,1) = —=(=1,1). This mapping

is a rotation by 7/4 radians.
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. L 0.v2)

©.1) (1.1 /\

1 -1
1 1

sw=sen= [} 4] [5]-[133)

We find L(0,0) = (0,0), L(1,0) =
rotation followed by a dilation by k

Example 2.6.10. Let A = [ ] . Define L(v) = Av for allv € R%. In particular this means,

(1,1), L(1,1) = (0,2), L(0,1) = (—1,1). This mapping is a
)

(0,1) (1,1) /\

(-1,1) (1,1)

(0,0) (1,0 X

We will come back to discuss rotations a few more times this semester, you’ll see they give us
interesting and difficult questions later this semester. Also, if you so choose there are a few bonus
applied problems on computer graphics which are built from an understanding of the mathematics
in the next example.

cos(f) —sin(6)

Example 2.6.11. Let A = [ sin(0) cos(6)

} . Define L(v) = Av for all v € R%. In particular

this means,

ZEURREES o vt | W B B
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We find L(0,0) = (0,0), L(1,0) = (cos(f),sin(f)), L(1,1) = (cos(#)—sin(f), cos(#)+sin(#)) L(0,1) =
(sin(@),cos(@)). This mapping is a rotation by O in the counter-clockwise direction. Of course you
could have derived the matriz A from the picture below.

(cost —sin b, cos  + sin)

,1) (1.1) L (—sin 0, cos 6)

(cos@,sin0)

(0.0) 1.0) X (0,0) u

Example 2.6.12. Let A = [ (1) (1) ] . Define L(v) = Av for all v € R?. In particular this means,

s == 0] [2]=]2]

We find L(0,0) = (0,0), L(1,0) = (1,0), L(1,1) = (1,1), L(0,1) = (0,1). This mapping is a
rotation by zero radians, or you could say it is a dilation by a factor of 1, ... usually we call this
the identity mapping because the image is identical to the preimage.

0.1 (1.1 (0,1) (1,1)

0,0) (1.0 X (0,0 (1,0) X
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10
0 0

nen-aeo=[3 ][]

We find P1(0,0) = (0,0), P1(1,0) = (1,0), P (1,1) = (1,0), P1(0,1) = (0,0). This mapping is a
projection onto the first coordinate.

Let Ay = [ 8 (1) ] . Define L(v) = Agv for all v € R2. In particular this means,

nen=sinn=[3 4] [51- (2]

We find P»(0,0) = (0,0), P(1,0) = (0,0), P(1,1) = (0,1), P»(0,1) = (0,1). This mapping is
projection onto the second coordinate.
We can picture both of these mappings at once:

Example 2.6.13. Let A} = [

means,

]. Define Pi(v) = Ay for all v € R%  In particular this

y \"

(0,1) (1,1) (0,1)

(0,0)

(0,0) (1,0 X

(0,0) 01 v

Example 2.6.14. Let A = [ 1 1 ] Define L(v) = Av for all v € R?. In particular this means,

sen=se=[ 1 1][5]-[122)

We find L(0,0) = (0,0), L(1,0) = (1,1), L(1,1) = (2,2), L(0,1) = (1,1). This mapping is not a
projection, but it does collapse the square to a line-segment.
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(0,1) (1,1)

(1,1)

0,0 (1,0 X

(0.0)

A projection has to have the property that if it is applied twice then you obtain the same image
as if you applied it only once. If you apply the transformation to the image then you’ll obtain a
line-segment from (0,0) to (4,4). While it is true the transformation ”projects” the plane to a line
it is not technically a ”projection”.

Remark 2.6.15.

The examples here have focused on linear transformations from R? to R2. It turns out that
higher dimensional mappings can largely be understood in terms of the geometric operations
we’ve seen in this section.

0
Example 2.6.16. Let A= | 1 . Define L(v) = Av for all v € R?. In particular this means,
0

= o O

00 0
L(z,y) = Alz,y)=| 1 0 [ ' ] =| =
0o 1]LtY y
We find L(0,0) = (0,0,0), L(1,0) = (0,1,0), L(1,1) = (0,1,1), L(0,1) = (0,0,1). This mapping
moves the xy-plane to the yz-plane. In particular, the horizontal unit square gets mapped to vertical
unit square; L([0,1] x [0,1]) = {0} x [0,1] x [0,1]. This mapping certainly is not surjective because
no point with x # 0 is covered in the range.

©0,1) (1,1) (0,0,1) (0,1,1)

(0,0,0) (0, 1,0)
(0.0) (1.0 X y
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1 10

Example 2.6.17. Let A = [1 11

means,

]. Define L(v) = Av for all v € R3. In particular this

1 10 v T4y
O N | A e
z

Let’s study how L maps the unit cube. We have 23 = 8 corners on the unit cube,
L(0,0,0) = (0,0), L(1,0,0) =(1,1), L(1,1,0) = (2,2), L(0,1,0) = (1,1)

L(0,0,1) =(0,1), L(1,0,1)=(1,2), L(1,1,1) =(2,3), L(0,1,1) = (1,2).

This mapping squished the unit cube to a shape in the plane which contains the points (0,0), (0, 1),
(1,1), (1,2), (2,2), (2,3). Face by face analysis of the mapping reveals the image is a parallelogram.
This mapping is certainly not injective since two different points get mapped to the same point. In
particular, I have color-coded the mapping of top and base faces as they map to line segments. The
vertical faces map to one of the two parallelograms that comprise the image.

z (2,3)

(0,0,1) (0,1,1) 1,2)

2.2)

(0,1)
(1,1)

/(0,1,0) (0,0) u

(1,1,0)

I have used terms like ”vertical” or ”horizontal” in the standard manner we associate such terms
with three dimensional geometry. Visualization and terminology for higher-dimensional examples is
not as obvious. However, with a little imagination we can still draw pictures to capture important
aspects of mappings.

Example 2.6.18. Let A = [ 100 0

means,

1000 ] Define L(v) = Av for all v € R*. In particular this

— =
o O
o O
o O

L(z,y,z,t) = A(z,y, z,t) = [

Let’s study how L maps the unit hypercube [0,1]* C R*. We have 2* = 16 corners on the unit
b

hypercube, note L(1,a,b,c) = (1,1) whereas L(0,a,b,c) = (0,0) for all a,b,c € [0,1]. Therefore,
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the unit hypercube is squished to a line-segment from (0,0) to (1,1). This mapping is neither
surjective nor injective. In the picture below the vertical axis represents the y, z, t-directions.

Viize b

(0,0,0,0) x (0,0) (0,1) L

Example 2.6.19. Suppose f(t,s) = (V/t,s* +t) note that f(1, 1) (1,2) and f(4,4) = (2,20).
Note that (4,4) = 4(1,1) thus we should see f(4,4) = f(4(1,1)) = 4f(1,1) but that fails to be true
so f is not a linear transformation.

Example 2.6.20. Let L : R — R™ be defined by L(x) = 0 for all x € V. This is a linear
transformation known as the trivial transformation

Lx+y)=0=0+0=L(z)+ L(y) and L(cx) =0 = c0 = cL(x)
for all c € R and x,y € R™.

Example 2.6.21. The identity function on a R™ is also a linear transformation. Let Id : R™ — R"
satisfy L(x) = x for each x € R™. Observe that

Id(z +cy) =+ cy =x + c(y) = Id(x) + cld(y)
for allr,y € R™ and c € R.

Example 2.6.22. Let L(x,y) = 2 + y? define a mapping from R? to R. This is not a linear
transformation since

L(c(z,y)) = Lcx, cy) = (cx)? + (ey)? = *(a? + y*) = Lz, y).
We say L is a nonlinear transformation.

Obviously we have not even begun to appreciate the wealth of possibilities that exist for linear
mappings. Clearly different types of matrices will decribe different types of geometric transforma-
tions from R™ to R™. On the other hand, square matrices describe mappings from R™ to R™ and
these can be thought of as coordinate transformations. A square matrix may give us a way to
define new coordinates on R™. We will return to the concept of linear transformations a number of
times in this course. Hopefully you already appreciate that linear algebra is not just about solving
equations. It always comes back to that, but there is more here to ponder.
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2.7 properties linear transformations

If you are pondering what I am pondering then you probably would like to know if all linear
mappings from R™ to R™ can be reduced to matrix multiplication? We saw that if a map is defined
as a matrix multiplication then it will be linear. A natural question to ask: is the converse true?
Given a linear transformation from R" to R™ can we write the transformation as multiplication by
a matrix 7

Theorem 2.7.1. fundamental theorem of linear algebra.

L : R™ — R™ is a linear transformation if and only if there exists A € R ™*™ such that
L(z) = Az for all x € R™.

Proof: (<) Assume there exists A € R ™*" such that L(z) = Az for all z € R". As we argued
before,

L(z + cy) = A(z + cy) = Az + cAy = L(z) + cL(y)

for all z,y € R” and ¢ € R hence L is a linear transformation.

(=) Assume L : R” — R™ is a linear transformation. Let e; denote the standard basis in R"
and let f; denote the standard basis in R™. If x € R" then there exist constants x; such that
T = zie1 +T2e2 + - + Tpe, and

L(z) = L(zie; + xoea + -+ + aney)
= le(el) + {L’QL(GQ) +---+ {L’nL(en)

where we made use of Proposition Notice L(e;) € R™ thus there exist constants, say A;;,
such that
L(e;) = Avifi + Asifo+ -+ Amifim

for each 1 = 1,2,...,n. Let’s put it all together,
n
L(z) =) xiL(e;)
i=1
n m
S o
i=1  j=1
n m
=D Ajwifs

i=1 j=1

= Azx.

Notice that Aj; = L(e;); for 1 <i<mnand 1 <j <m hence A € R ™*" by its construction. [J

The fundamental theorem of algebra allows us to make the following definition.
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Definition 2.7.2.

Let L : R™ — R™ be a linear transformation, the matrix A € R ™*™ such that L(z) = Az
for all z € R™ is called the standard matrix of L. We denote this by [L] = A or more
compactly, [La] = A, we say that Ly is the linear transformation induced by A. Moreover,
the components of the matrix A are found from Aj; = (L(e;)));.

Example 2.7.3. Given that L([z,y,2]7) = [z +2y, 3y +4z,52+62]T for [z,y, 2]T € R? find the the
standard matriz of L. We wish to find a 3x 3 matriz such that L(v) = Av for allv = [z, y, 2]T € R3.
Write L(v) then collect terms with each coordinate in the domain,

x T+ 2y 1 2 0
L Y =|3y+4z | =2 | 0 |+y| 3 |+=z] 4
z ox + 62 ) 0 6
It’s not hard to see that,
T 1 20 T 1 2 0
L Yy =10 3 4 Yy = A=J[L]=]|0 3 4
z 5 0 6 z 5 0 6

Notice that the columns in A are just as you'd expect from the proof of theorem R.7.1 [L] =
[L(e1)|L(e2)|L(es)]. In future examples I will exploit this observation to save writing.

Example 2.7.4. Suppose that L((t,z,y,2)) = (t+x+y+ 2,z —x,0,3t — z), find [L].

(
L(e1) = L((1,0,0,0)) = (1,0,0,3) 1 1 1 1
L(es) = L((0,1,0,0)) = (1,-1,0,0) |0 1o 1
L(es) = L((0,0,1,0)) = (1,0,0,0) E=10 0 0 o
L(es) = L((0,0,0,1)) = (1,1,0,—1) 3.0 0 —1

I invite the reader to check my answer here and see that L(v) = [L]v for all v € R* as claimed.

Proposition 2.7.5.

Let L : R™ — R™ be a linear transformation,
1. L(0)=0

2. L(civr+cova+- - cpvn) = c1L(v1) +caL(v2) +- - -+ ¢, L(vy,) for all v; € R™ and ¢; € R.

Proof: to prove of (1.) let € R" and notice that x — x = 0 thus
L(0)=L(z —x) = L(z) + L(—12z) = L(z) — L(z) = 0.

To prove (2.) we use induction on n. Notice the proposition is true for n=1,2 by definition of linear
transformation. Assume inductively L(civ1 4 cova+- -+ cpvn) = 1 L(vi)+coL(vy)+- - -+ ¢, L(vy,) for
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allv; € R" and ¢; € R where i =1,2,...,n. Let v1,v2,...,0y,0n+1 € R" and ¢y, co,...cp,cpp1 €R
and consider, L(civy + cava + ++ CpUp + Cpp1Unt1) =

= L(c1v1 + cova + -+ - cpvp) + cpr1L(vp41) by linearity of L
=c1L(v1) + coL(v2) + -+ - + cn L(vy) + ¢nt1L(vny1) by the induction hypothesis.

Hence the proposition is true for n + 1 and we conclude by the principle of mathematical induction
that (2.) is true for all n € N. [

Example 2.7.6. Suppose L : R — R is defined by L(x) = max + b for some constants m,b € R. Is
this a linear transformation on R? Observe:

L(0) =m(0) +b=b

thus L is not a linear transformation if b = 0. On the other hand, if b = 0 then L is a linear
transformation.

Remark 2.7.7.

A mapping on R"™ which has the form T'(z) = x + b is called a translation. If we have a
mapping of the form F(x) = Az + b for some A € R"™ " and b € R then we say F' is an
affine tranformation on R™. Technically, in general, the line y = ma + b is the graph of
an affine function on R. I invite the reader to prove that affine transformations also map
line-segments to line-segments (or points).

Very well, let’s return to the concepts of injective and surjectivity of linear mappings. How do
our theorems of LI and spanning inform us about the behaviour of linear transformations? The
following pair of theorems summarize the situtation nicely. (these are Theorems 11 and 12 from
page 88-89 of Lay’s text)

Theorem 2.7.8. linear map is injective iff only zero maps to zero.

L : R" — R™ is an injective linear transformation iff the only solution to the equation
L(z)=0isz=0.

Proof: this is a biconditional statement. I'll prove the converse direction to begin.

( <) Suppose L(z) = 0 iff z = 0 to begin. Let a,b € R™ and suppose L(a) = L(b). By linearity we
have L(a — b) = L(a) — L(b) = 0 hence a — b = 0 therefore a = b and we find L is injective.

(=) Suppose L is injective. Suppose L(z) = 0. Note L(0) = 0 by linearity of L but then by 1-1
property we have L(z) = L(0) implies = 0 hence the unique solution of L(z) = 0 is the zero
solution. [J

The theorem above is very important to abstract algebra. It turns out this is also a useful criteria
to determine if a homomorphism is a 1-1 mapping. Linear algebra is a prerequisite of abstract
because linear algebra provides a robust example of what is abstracted in abstract algebra. The
following theorem is special to our context this semester.
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Theorem 2.7.9. linear map is injective iff only zero maps to zero.

L:R™ — R™ is a linear transformation with standard matrix [L] then
1. L is 1-1 iff the columns of [L] are linearly independent,

2. L is onto R™ iff the columns of [L] span R™.

Proof: To prove (1.) use Theorem [2.7.8}
Lisl-1 & {L(x):O & sz} & {[L]sz & sz.}

and the last equation simply states that if a linear combination of columns of L is zero then the
coefficients of that linear equation are zero so (1.) follows.

To prove (2.) recall that Theorem [2.4.15|stated that if A € R ™", v € R" then Av = b is consistent
for all b € R™ iff the columns of A span R". To say L is onto R means that for each b € R™
there exists v € R™ such that L(v) = b. But, this is equivalent to saying that [L]v = b is consistent
for each b € R™ so (2.) follows. O

Example 2.7.10. 1. You can verify that the linear mappings in Examples[2.6.6, [2.6.7, [2.6.3,
[2.6.9, 12.6.10, |2.6.11) and |2.6.19 wer both 1-1 and onto. You can see the columns of the
tranformation matrices were both LI and spanned R? in each of these examples.

2. In constrast, Examples|2.6.15 and |2.6.14] were neither 1-1 nor onto. Moreover, the columns
of transformation’s matrix were linearly dependent in each of these cases and they did not
span R?. Instead the span of the columns covered only a particular line in the range.

3. In FExample the mapping is injective and the columns of A were indeed linearly in-
dpendent. However, the columns do not span R? and as expected the mapping is not onto
R3.

4. In Example the mapping is not 1-1 and the columns are obviously linearly dependent.
On the other hand, the columns of A do span R? and the mapping is onto.

5. In Example the mapping is neither 1-1 nor onto and the columns of the matriz are
neither linearly independent nor do they span R?.
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2.8 applications

Geometry is conveniently described by parametrizations. The number of parameters needed to map
out some object is the dimension of the object. For example, the rule ¢ — 7(t) describes a curve in
R™. Of course we have the most experience in the cases 7" =< z,y > or ¥ =< z,¥, z >, these give
so-called planar curves or space curves respectively. Generally, a mapping from v : R — S where
S is some spacqﬂ is called a path. The point set v(S) can be identified as a sort of copy of R which
resides in S.

Next, we can consider mappings from R? to some space S. In the case S = R3 we use
X(u,v) =< x(u,v),y(u,v), z(u,v) > to parametrize a surface. For example,

X (¢,0) =< cos(0) sin(¢), sin(f) sin(¢p), cos(p) >

parametrizes a sphere if we insist that the angles 0 < 6§ < 27 and 0 < ¢ < 7. We call ¢ and 0
coordinates on the sphere, however, these are not coordinates in the technical sense later defined
in this course. These are so-called curvelinear coordinates. Generally a surface in some space is
sort-of a copy of R? ( well, to be more precise it resembles some subset of R?).

d_uuiE
"ru.‘.gm’r:'u‘i‘:.m o
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gn,l,f'Fl.l'.-Ei oure
- Curugd

Past the case of a surface we can talk about volumes which are parametrized by three parameters.
A volume would have to be embedded into some space which had at least 3 dimensions. For the
same reason we can only place a surface in a space with at least 2 dimensions. Perhaps you’d be
interested to learn that in relativity theory one considers the world-volume that a particle traces out
through spacetime, this is a hyper-volume, it’s a 4-dimensional subset of 4-dimensional spacetime.

Let me be a little more technical, if the space we consider is to be a k-dimensional parametric
subspace of S then that means there exists an invertible mapping X : U C R¥ — § C R™. It
turns out that for S = R™ where n > k the condition that X be invertible means that the derivative
DypX : TyU — Tx(p)S must be an invertible linear mapping at each point p in the parameter space
U. This in turn means that the tangent-vectors to the coordinate curves must come together to
form a linearly independent set. Linear independence is key.

%here S could be a set of matrices or functions or an abstract manifold... the concept of a path is very general
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Curvy surfaces and volumes and parametrizations that describe them analytically involve a fair
amount of theory which I have only begun to sketch here. However, if we limit our discussion to
affine subspaces of R" we can be explicit. Let me go ahead and write the general form for a line,
surface, volume etc... in terms of linearly indpendent vectors ff, B , c Yoo

X(u,v) =7, +uA +vB
X (u,v,w) =7, +ud +vB + wC

I hope you you get the idea.

b ?nru.-.x-_-ﬂ'rr. el

1—_1; lipe .
——y
Y
/ =1+ iV
= e V :J.:ufini-im
D;:En: e chor

o - y ]
Pluy) =0+ LA+V
et

- ?mrg.rr-{-‘“;w
/ ubset of

olang

b - =i —
Plevw = LrupsvBewd

Para.fﬁ:“li“i"fJ volume
In each case the parameters give an invertible map only if the vectors are linearly independent. If
there was some linear dependence then the dimension of the subspace would collapse. For example,
X(u,v)=<1,1,1>4u<1,0,1>4v<2,0,2 >
appears to give a plane, but upon further inspection you’ll notice
X(u,v)=<1l4u+2v,1,14+u+2v>=<1,1,1>+(u+2v) <1,0,1 >

which reveals this is just a line with direction-vector < 1,0,1 > and parameter u + 2v.
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2.9 appendix on finite sums

In this appendix we prove a number of seemingly obvious propositions about finite sums of arbitrary
size. Most of these statements are ”for all n € N” thus proof by mathematical induction is the
appropriate proof tool. That said, I will abstain from offering a proof for every claim. I offer a few
sample arguments and leave the rest to the reader. Let’s begin with defining the finite sum:

Definition 2.9.1.

A finite sum of n summands Aq, As,..., A, is A1 + As + --- + A,. We use "summation
notation” or “sigma” notation to write this succinctly:

A+ Aot A=) A
i=1

The index 7 is the "dummy index of summation”. Technically, we define the sum above

recursively. In particular,
n+1 n

ZAi = Any1 +2Ai
= =1

for each n > 1 and 23:1 A; = A; begins the recursion.

Proposition 2.9.2.

Let A;, B; € R for each ¢ € N and suppose ¢ € R then for each n € N,

n

(1) Y (Ai+B) = iAi + iBz’

=1

(2.) Zn:cAi = CZH:AZ-.
1 i=1

1=

Proof: Let’s begin with (1.). Notice the claim is trivially true for n = 1. Moreover, n = 2 follows
from the calculation below:

2 2 2
Z(Ai + B;) = (A1 + B1) + (A2 + Bg) = (A1 + A2) + (B1 + Ba) = ZAi + ZBi-

i=1 =1 =1

Inductively assume that (1.) is true for n € N. Consider, the following calculations are justified
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either from the recursive definition of the finite sum or the induction hypothesis:

n+1 n
Z(Ai + Bj) = Z(Az + B;) + Apy1 + Brya
i=1 i=1
= (Z A + Z Bi) +Ap+1+ Bra
i=1 i=1
= <Z Ai> + Ay + (Z Bi> + Bt
n—:1:1 n+1 =

=1 =1

Thus (1.) is true for n 4+ 1 and hence by PMI we find (1.) is true for all n € N. The proof of (2.)
is similar. [J

Proposition 2.9.3.

Let A;, B;; € R for 4,j € N and suppose ¢ € R then for each n € N,

(1.) Zn: c=cn

i=1
(2.) ZZBM = ZZBU"

i=1 j=1 j=1i=1

i=1 j=1 =1 j=1
(4.) (Z Ai>c => (Aio).

i=1 i=1

Proof: Let’s begin with (1.). Notice the claim is trivially true for n = 1. Assume that (1.) is true
for a fixed, but arbitrary, n € N and consider that

n+1 n
Zc:c+Zc:c+nc:(n+1)c
1=1 i=1

by the recursive definition of the finite sum and the induction hypothesis. We find that (1.) is true
for n 4+ 1 hence by PMI (1.) is true for all n € N.
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The proof of (2.) proceeds by induction on n. If n = 1 then there is only one possible term, namely
B and the sums trivially agree. Consider the n = 2 case as we prepare for the induction step,

2 2 2
> ) Bij = [Bii+ Bis] = [Bi1 + Bia] + [Ba1 + Ba
i=1 j=1 i=1

On the other hand,

2 2

Z ZBij = » [Bij + Byj] = [B11 + Bai1] + [Bi1 + Bail.

j=1i=1 7j=1

The sums in opposite order produce the same terms overall, however the ordering of the terms may
diffeﬂ Fortunately, real number-addition commutes. Assume inductively that (2.) is true for
n € N. Using the definition of sum and the induction hypothesis in the 4-th line:

n+1n+1 n+1

ZZBW Z|: Zn+1+ZBZj:|

=1 j=1 . .
= Bny1nt1 + Z Bpy1;+ Z |:Bi,n+1 + Z Bij:|
= Bntint+1 + Z Bpy1,j + Z Bini1 + Z Z Bij

=1 j=1
- Bn+l n+1 + Z BnJrl,j + Z Bz n+1 + Z Z Bz]
1i=1
n+1 n+1 n e
- Z Bn+1,j + Z Z BZ]
Jj=111=1
n+1
= Z|: n+1,7 +ZBU:|
n+1n+1
=22 B
7j=11i=1

Thus n implies n + 1 for (2.) therefore by PMI we find (2.) is true for all n € N. The proofs of (3.)
and (4.) involve similar induction arguments. [J

Yreordering terms in the infinite series case can get you into trouble if you don’t have absolute convergence.
Riemann showed a conditionally convergent series can be reordered to force it to converge to any value you might
choose.
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Remark 2.9.4.

I included this appendix to collect a few common tricks we need to use for proofs involving
arbitrary sums. In particular proofs for parts of Theorem 2.3.13 require identities from this

appendix. You are free to use the facts in this appendix by refering to them as ”a property
of finite sums”.




Chapter 3

matrix arithmetic

In the preceding chapter I have used some matrix terminolgy in passing as if you already knew the
meaning of such terms as "row”, ”column” and ”matrix”. I do hope you have had some previous
exposure to basic matrix math, but this chapter should be self-contained. I'll start at the beginning
and define all the terms.

3.1 basic terminology and notation

Definition 3.1.1.

An m X n matrix is an array of numbers with m rows and n columns. The elements in
the array are called entries or components. If A is an m x n matrix then A;; denotes the
number in the i-th row and the j-th column. The label ¢ is a row index and the index j
is a column index in the preceding sentence. We usually denote A = [A;;]. The set m x n
of matrices with real number entries is denoted R ™*™. The set of m x n matrices with
complex entries is C ™*™. If a matrix has the same number of rows and columns then it is

called a square matrix.

Matrices can be constructed from set-theoretic arguments in much the same way as Cartesian
Products. I will not pursue those matters in these notes. We will assume that everyone understands
how to construct an array of numbers.

Example 3.1.2. Suppose A = [[23]. We see that A has 2 rows and 3 columns thus A € R**3,
Moreover, Aj1 =1, A1o =2, A13 =3, As1 =4, Axg =5, and Az = 6. It’s not usually possible to
find a formula for a generic element in the matriz, but this matriz satisfies A;j = 3(i — 1) + j for
all i,7.

In the statement ”for all 7, ;” it is to be understood that those indices range over their allowed
values. In the preceding example 1 <¢<2and 1 <5 < 3.

75
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Definition 3.1.3.

Two matrices A and B are equal if and only if they have the same size and A;; = B;; for
all 7, 5.

If you studied vectors before you should identify this is precisely the same rule we used in calculus
III. Two vectors were equal iff all the components matched. Vectors are just specific cases of
matrices so the similarity is not surprising.

Definition 3.1.4.

Let A € R ™*" then a submatrix of A is a matrix which is made of some rectangle of elements in
A. Rows and columns are submatrices. In particular,

1. An m x 1 submatrix of A is called a column vector of A. The j-th column vector is denoted
col;(A) and (colj(A)); = Ajj for 1 <i < m. In other words,

A Ayin A - A,
coly(A)=| | = a=| " T | = [coli (A)|cola(A)] - - - |coln(A)]
Amk Aml ATTL2 T Amn

2. An 1 xn submatrix of A is called a row vector of A. The i-th row vector is denoted row;(A)
and (row;(A)); = A;j for 1 < j < n. In other words,

A A - Ay row (A)

Aoy Ay - Agy 7“Ow2(A)
rowg(A) = [ Apr Ape -+ Agn | = A= : : : = |7

Aml Am2 o Amn rowm (A)

Suppose A € R ™*" note for 1 < j < n we have col;(A) € R™*1 whereas for 1 < i < m we find
row;(A) € R1™, In other words, an m X n matrix has n columns of length m and n rows of length
m.

Example 3.1.5. Suppose A =[123]. The columns of A are,

coly(A) = [ i] . cola(A) = [ g} , coly(A) = [ 2 ]

The rows of A are
rowi(A)=[1 2 3], rowy(d)=[4 5 6]
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Definition 3.1.6.

Let A € R ™ ™ then AT € R "™ is called the transpose of A and is defined by (AT);; =
Ajjforalll <i<mand1l<j<n.

Example 3.1.7. Suppose A = [} 23] then AT = [% %}. Notice that

rowi(A) = coli (A1), rows(A) = coly(AT)

and
coly(A) = rowi (A1), coly(A) = rows(AT), cols(A) = rows(AT)

Notice (AT)ij =A;; =3(j— 1)+ for alli,j; at the level of index calculations we just switch the
indices to create the transpose.

The preceding example shows us that we can quickly create the transpose of a given matrix by
switching rows to columns. The transpose of a row vector is a column vector and vice-versa.

3.2 addition and multiplication by scalars

Definition 3.2.1.

Let A,B € R ™*" then A+ B € R ™*" is defined by (A+B);; = A;j+ Bj; forall1 <i <m,
1 <7 <n. If two matrices A, B are not of the same size then there sum is not defined.

Example 3.2.2. Let A=[13] and B =[3§]. We calculate
1 2 5 6 6 8
A+B_[3 4]+[7 8]_[10 12]‘

Definition 3.2.3.

Let A,B € R™*" ¢ € R then cA € R"™*" is defined by (cA);j = cA;j for all 1 < i < m,
1 < j < n. We call the process of multiplying A by a number ¢ multiplication by a scalar.
We define A—B € R "™*" by A—B = A+(—1)B which is equivalent to (A—B);; = A;; —Bjj
for all 7, j.

8]. We calculate

RN

1 2 5 10
5A_5[3 4]_[15 20]
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Example 3.2.5. Let A, B € R ™*" be defined by A;j = 3i+5j and B;; = i? for alli,j. Then we
can calculate (A + B);j = 3i + 55 +i? for all i, j.

Definition 3.2.6.

The zero matrix in R "*" is denoted 0 and defined by 0;; = 0 for all 7,j. The additive
inverse of A € R ™*" is the matrix —A such that A+ (—A) = 0. The components of the
additive inverse matrix are given by (—A);; = —A;; for all ¢, j.

The zero matrix joins a long list of other objects which are all denoted by 0. Usually the meaning
of 0 is clear from the context, the size of the zero matrix is chosen as to be consistent with the
equation in which it is found.

Example 3.2.7. Solve the following matriz equation,
Ty -1 -2 00| |2—-1 y—2
O_[z w}—k[—?) —4] = [0 0| | 2—-3 w—4
The definition of matrix equality means this single matriz equation reduces to 4 scalar equations:
0=z2z—-1,0=y—2,0=2—-3,0=w —4. The solutionisx =1,y =2,z =3, w = 4.
Theorem 3.2.8.
If Ae R ™*" then

1. 0- A =0, (where 0 on the L.H.S. is the number zero)
2. 0A=0,
3. A+0=0+A=A.

Proof: I'll prove (2.). Let A € R "™*™ and consider

(0A4);; = ZoikAkj = Z 0Ay; = Z 0=0
k=1 k=1

k=1

for all 4, j. Thus 0A = 0. I leave the other parts to the reader, the proofs are similar. [
We can add, subtract and scalar multiply linear transformations. Let me define these:

Definition 3.2.9.

Suppose T : R" — R™ and S : R® — R™ are linear transformations then we define
T+ S5,T— S and ¢TI for any ¢ € R by the rules

(T+S)(z)=T(z)+ S(x). (T—-S)(z)=T(z)—S(z), (cT)(x)=cT(x)

for all x € R™.

The following does say something new. Notice I'm talking about adding the transformations them-
selves not the points in the domain or range.
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Proposition 3.2.10.

The sum, difference or scalar multiple of a linear transformations from R"™ to R™ are once
more a linear transformation from R™ to R™.

Proof: I'll be greedy and prove all three at once:

(T +cS)(z+by) =T (x + by) + (¢S)(x + by) defn. of sum of transformations
=T(x + by) + cS(x + by) defn. of scalar mult. of transformations
=T (z)+ T (y) + c[S(z) + bS(y)] linearity of S and T
=T(z) 4+ cS(z) + b[T(y) + cS(y)] vector algebra props.

= (T +cS)(x) +b(T + cS)(y) again, defn. of sum and scal. mult. of trans.

Let c=1and b =1 toseeT + S is additive. Let ¢ =1 and x = 0 to see T'+ S is homogeneous.
Let c=—1and b=1tosee T — S is additive. Let ¢ = —1 and = = 0 to see T'— S is homogeneous.
Finally, let 7' = 0 to see ¢S is additive (b = 1) and homogeneous (z = 0). O

Proposition 3.2.11.

Suppose T : R — R™ and S : R® — R" are linear transformations then
(L) [T+ S]=[T+1S], (2)[T-8=[T]-[S], (3.)[cT]=[T].

In words, the standard matrix of the sum, difference or scalar multiple of linear transfor-
mations is the sum, difference or scalar multiple of the standard matrices of the respsective
linear transformations.

Proof: Note (T'+ ¢S)(e;) = T'(e;) + ¢S(e;) hence (T + ¢S)(e;))i = (T'(ej))i + c(S(ej)); for all 4, j
hence [T'+ ¢S] = [T] + ¢[S]. O

Example 3.2.12. Suppose T'(x,y) = (x +y,z —y) and S(x,y) = (2z,3y). It’s easy to see that

w3 ) weis[32] = wesmmes-[2)

131 r | | 3rx+y
Therefore, (T + S)(z,y) = 1 o Y } = [ 42
same formula that we would obtain through direct addition of the formulas of T and S.

} = 3z + y,x + 2y). Naturally this is the
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3.3 matrix multiplication

The definition of matrix multiplication is natural for a variety of reasons. Let’s think about com-
posing two linear transformations. This will lead us to a natural definition.

Proposition 3.3.1.

Ly : R™ — R™ and Ly : R® — RP are linear transformations then LooL; : R™ — RP is a
linear transformation with matrix [Lg e L;] such that

n

(L2 Lalij = ) _[Lal[Lnlks

k=1
foralli=1,2,...pand j=1,2...,m
Proof: Let z,y € V] and ¢ € R,
(LaeLh)(z+cy) = La(L1(z + cy)) defn. of composite
= Lo(L1(z) + cL1(y)) L is linear trans.

= Lo(L1(z)) + cLa(L1(y)) Ly is linear trans.
= (LooLy)(z) + ¢(La°L1)(y) defn. of composite

thus Lo L1 is a linear transformation. To find the matrix of the composite we need only calculate
its action on the standard basis: by definition, [Lg L1];; = ((L2° L1)(ej))i, observe

(L2°L1)(ej) = La(La(ej))
= Lo([L1]e )

= Lo()_[L1]xsex)

= Z[Lkl]kjh(ek)

= zk:[Ll]kj [Loler

= Z (L1 Z [Loixe
= zka [Lalix[L1lrjei
= Z {Z [Lo)ir|L1] kj}ez

Therefore, [Lyo L1];j = >4 [Loljk[L1]ri and Item (2.) follows. [J

I have made extensive use of the properties of finite summations in the proof above. Consult the
Appendix if you would like to see further details on how to prove claims about finite sums. In
short, there are several induction arguments implicit in the calculations above.
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Definition 3.3.2.

Let A€ R™*™ and B € R ™*P then the product of A and B is denoted by juxtaposition
AB and AB € R ™*? is defined by:

(AB)ij = > AuBy;
k=1

foreach 1 <7 <mand 1 < j <p. In the case m = p = 1 the indices i, j are omitted in the
equation since the matrix product is simply a number which needs no index.

This definition is very nice for general proofs, but pragmatically I usually think of matrix multipli-
cation in terms of dot-products. Recall v - w = viwy + vows + - - - + vyw, = Zzzl VW

Proposition 3.3.3.

Let v,w € R” then v - w = vTw.

Proof: Since vT

indicates vT'w should be a 1 x 1 matrix which is a number. Note in this case the outside indices 7]
are absent in the boxed equation so the equation reduces to

is an 1 X n matrix and w is an n x 1 matrix the definition of matrix multiplication

T T T T
viw =v w0 qwa + -+ 07wy, = V1w + Vw2 + - - F vwy, = v - w.

Proposition 3.3.4.

The formula given below is equivalent to the Definition Let Aec R ™" and B € R "*P

then
rowi(A) - coly(B) rowi(A)-cola(B) -+ rowi(A) - coly(B)
B — rows(A) - coli(B)  rows(A)-cola(B) -+ rows(A) - coly(B)
rowm(A).- coly(B) rowm(A).- colo(B) --- Towm(A).- col,(B)

Proof: The formula above claims (AB);; = row;(A) - col;(B) for all i, j. Recall that (row;(A)); =
A, and (col;(B))y, = By; thus

n

(AB)ij = Y AyBr; = > _(row;(A))x(col;(B))x

k=1 k=1

Hence, using definition of the dot-product, (AB);; = row;(A) - colj(B). This argument holds for
all 7, j therefore the Proposition is true. [J
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Example 3.3.5.

S O =
S = O

Example 3.3.6.

Example 3.3.7.

CHAPTER 3. MATRIX ARITHMETIC

The product of a 3 x 2 and 2 x 3 is a 3 X 3

[1,0][4, 715 [1,0][5,8]" [1,0][6

R O
0,0][4, 7% [0,0][5,8]" [0,0][6,9]"

1 4.1 5-1 6-1 4 5 6
2 ([45 6]=[4-2526-2|=|8 10 12
3 4.3 5-3 6-3 12 15 18

Let A=1[13%] and B =[38]. We calculate

1 2][5 6

AB =1 3 4] [7 8]
| mas " w268’
3,45, 7" [3,4][6,8]"

[ 5+14 6+16
| 15428 18+ 32

_[19 22
[ 43 50

Notice the product of square matrices is square. For numbers a,b € R it we know the product of a
and b is commutative (ab = ba). Let’s calculate the product of A and B in the opposite order,

(5 6

BA =| 7 g

I

1 2
3 4

[ 5+18 10+24
T 7T+24 14432

_[23 34
~ 31 46

Clearly AB # BA thus matriz multiplication is noncommutative or nonabelian.

Let’s see once more how this definition ties in with the composition of linear mappings:
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Example 3.3.8. Let T : R 2X1 — R 2X1 be defined by
Tz, y)") = [z +y,20 —y)"
for all [z,y]T € R 2XL. Also let S : R 2> — R 3*! be defined by
S([z,y)") = [z, 2,3z + 4y]"
for all [z,y]T € R 2X'. We calculate the composite as follows:

oT(|lz,y =S(T(|x,y

(SeT)([z,y]") = S(T([z,y]"))
= S([x+y, 2z —y)")
= [z +y,x+y,3(x +y) +4(2c —y)]"
=[r+yz+y 1z —yT

Notice we can write the formula above as a matriz multiplication,

1 1 . 1 1
(SeT)([z,y))=| 1 1 { } = [SeT]=|1 1
111 | LY 11 -1
Notice that the standard matrices of S and T are:
1 0
Si= |10 m=15 4]
ER
It’s easy to see that [S°T] = [S][T] (as we should expect since these are linear operators)

Notice that T'> S is not even defined since the dimensions of the codomain of S do not match
the domain of 7. Likewise, the matrix product [T][S] is not defined since there is a dimension
mismatch; (2 x 2)(3 x 2) is not a well-defined product of matrices.

When we say that matrix multiplication is noncommuative that indicates that the product of two
matrices does not generally commute. However, there are special matrices which commute with
other matrices.

Example 3.3.9. Let I =[}9] and A= [2}]. We calculate

1 0 a b ] a b ]
1A= Ljle d| |c d]
Likewise calculate,
fa b|[1 0] [a b
Al = c d||[0 1] |cd

Since the matriz A was arbitrary we conclude that IA = AI for all A € R?*2,
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Definition 3.3.10.

The identity matrix in R "*" is the n x n square matrix I which has components I;; = d;;.
The notation [, is sometimes used if the size of the identity matrix needs emphasis, otherwise
the size of the matrix I is to be understood from the context.

100 0
10 0

10 0100

12_[0 1} Is = 8(1)(1) =19 01 0

000 1

Example 3.3.11. The product of a2 x2 and 2 x1is a2 x 1. Let A=[}3] and let v = 3],

o= ] F)- (B - 5]

Likewise, define w = [$] and calculate

1 27[6 [1,2][6,8]" 22
A — — ] ) —
v [3 4| [8] [[3,4][6,8]T 50
Something interesting to observe here, recall that in Example we calculated

1 2[5 6 19 22 | :
AB = [ 3 4 ] [ 73 ] = [ 43 50 |- But these are the same numbers we just found from the

two matriz-vector products calculated above. We identify that B is just the concatenation of the

516
718 } Observe that:

vectors v and w; B = [v|w] = [

AB = Alv|w] = [Av|Aw].

The term concatenate is sometimes replaced with the word adjoin. I think of the process as
gluing matrices together. This is an important operation since it allows us to lump together many
solutions into a single matrix of solutions. (I will elaborate on that in detail in a future section)

Proposition 3.3.12.

Let A€ R ™" and B € R "*P then we can understand the matrix multiplication of A and
B as the concatenation of several matrix-vector products,

AB = Alcoli(B)|cola(B)| - - - |col,(B)] = [Acoly (B)|Acolz(B)| - - - |Acoly,(B)]

Proof: see the Problem Set. You should be able to follow the same general strategy as the Proof
of Proposition Show that the 7, j-th entry of the L.H.S. is equal to the matching entry on
the R.H.S. Good hunting. [J
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There are actually many many different ways to perform the calculation of matrix multiplication.
Proposition essentially parses the problem into a bunch of (matrix)(column vector) calcula-
tions. You could go the other direction and view AB as a bunch of (row vector)(matrix) products
glued together. In particular,

Proposition 3.3.13.

Let A€ R ™" and B € R "*P then we can understand the matrix multiplication of A and
B as the concatenation of several matrix-vector products,

row (A) row, (A)B

rowsy(A) rows(A)B
AB=| . B=|.

Towm (A) rown,(A)B

Proof: left to reader, but if you ask I'll show you. [

There are stranger ways to calculate the product. You can also assemble the product by adding
together a bunch of outer-products of the rows of A with the columns of B. The dot-product of
two vectors is an example of an inner product and we saw v - w = vTw. The outer-product of two
vectors goes the other direction: given v € R” and w € R™ we find vw’ € R »*™,

Proposition 3.3.14. matriz multiplication as sum of outer products.

Let A € R ™™ and B € R "*P then

AB = coly(A)rowi(B) + cola(A)rows(B) + - - - + coly, (A)row,(B).

Proof: consider the 7, j-th component of AB, by definition we have

n

(AB)ij = AiByj = AiBij + AigBaj + -+ + AinBy;
k=1

but note that (coly(A)rowy(B))i; = coly(A)rowy(B); = AiypBy; for each k = 1,2,...,n and the

proposition follows. [

In the section on block multiplication we will find many other ways to parse a matrix multiplication.
My point? These patterns are worth knowing about for future problems. In practice I almost always
just calculate by the dot-product method detailed in Proposition

Example 3.3.15. Consider A,v,w from Ezample|[3.3.11]

oo [2] 18] 2]
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Using the above we calculate,
12 11| (11430 | |41
A(“+w)_[3 4“15]_[33%0]_[93]‘
In constrast, we can add Av and Aw,

19 22 41
Av+Aw—[43]+[50}—[93].

Behold, A(v+ w) = Av + Aw for this example. It turns out this is true in general.

I collect all my favorite properties for matrix multiplication in the theorem below. To summarize,
matrix math works as you would expect with the exception that matrix multiplication is not
commutative. We must be careful about the order of letters in matrix expressions.

Theorem 3.3.16.

IftABCER™" X,Y €cR™P ZcRPand c;,c; €R then

1. (A+B)+C=A+(B+0O),
2. (AX)Z = A(X2),
3. A+ B=B+ A,
4. ¢1(A+ B) = c1A+ 2B,
5. (c1 +2)A =c1A+ A,
6. (c1c2)A = c1(c24),
7. (aA)X =c1(AX) = A(aX) = (AX)cq,
8. 1A=A,
9. I,A=A=Al,

10. A(X+Y)=AX + AY,

11. A(e1 X 4+ 2Y) = 1 AX + 2 AY,

12. (A+ B)X = AX + BX,

Proof: I will prove a couple of these and relegate most of the rest to the Problem Set. They
actually make pretty fair proof-type test questions. Nearly all of these properties are proved by
breaking the statement down to components then appealing to a property of real numbers. Just
a reminder, we assume that it is known that R is an ordered field. Multiplication of real numbers
is commutative, associative and distributes across addition of real numbers. Likewise, addition of
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real numbers is commutative, associative and obeys familar distributive laws when combined with
addition.

Proof of (1.): assume A, B, C are given as in the statement of the Theorem. Observe that

((A + B) + C),Lj = (A + B)U + Cij defn. of matrix add.
= (Ajj + Bij) + Cy;;  defn. of matrix add.
= Aj; + (Bij + Cyj) assoc. of real numbers
=A;; +(B+C);;  defn. of matrix add.
=(A+(B+C));;  defn. of matrix add.

for all 4, j. Therefore (A+B)+C=A+(B+C). O
Proof of (6.): assume ¢, c2, A are given as in the statement of the Theorem. Observe that

((c1e2)A)ij = (c1c2)Aij defn. scalar multiplication.
= c1(c24;j) assoc. of real numbers
= (c1(c2A))i; defn. scalar multiplication.

for all 7, j. Therefore (cic2)A = ¢1(c2A). O
Proof of (10.): assume A, X,Y are given as in the statement of the Theorem. Observe that

(AX4+Y))ij =2 Ai(X +Y), defn. matrix multiplication,
= > 1 Ai(Xpj + Yij) defn. matrix addition,
= > (A X + AikYs;j) dist. of real numbers,
=> 1 AiXpj + > AirYrj) prop. of finite sum,
= (AX)i; + (AY);5 defn. matrix multiplication(x 2),
= (AX + AY);; defn. matrix addition,

for all 4, 7. Therefore A(X +Y)=AX + AY. O

The proofs of the other items are similar, we consider the 7, j-th component of the identity and then
apply the definition of the appropriate matrix operation’s definition. This reduces the problem to
a statement about real numbers so we can use the properties of real numbers at the level of
components. Then we reverse the steps. Since the calculation works for arbitrary 4, j it follows
the the matrix equation holds true. This Theorem provides a foundation for later work where we
may find it convenient to prove a statement without resorting to a proof by components. Which
method of proof is best depends on the question. However, I can’t see another way of proving most

of B.3.16l
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3.4 elementary matrices

Gauss Jordan elimination consists of three elementary row operations:
(1.) m +arj — 4, (2.) bri — 74, (3.) 5 &1

Left multiplication by elementary matrices will accomplish the same operation on a matrix.

Definition 3.4.1.

Let [A: r; + ar; — r;] denote the matrix produced by replacing row i of matrix A with
row;(A) + arow;(A). Also define [A : ¢r; — 7] and [A : r; <> 7;] in the same way. Let
a,b € R and b # 0. The following matrices are called elementary matrices:

Erier»jﬁTi = [I DTy targ — T‘Z'}
Eb"“i‘"’i = [I 2 by — TZ‘}
Erior; =1 1 1]
Example 3.4.2. Let A= [‘11 127 5]
u m e
(1. 0 07 [a b c] [ b c
Erigror A 31 1 2 3|=1|3a+1 3b+2 3¢c+3
| O Il [u m e | | m e
(1.0 07 [a b c] [0 b ¢
Erryr, A 070 1 2 =7 14 21
L0 0 1] |[u m i v m e
1 0 TlTa b c¢] [0 b ¢
Ery A 0 1 1 2 =l u m e
L0 1 0 [u m e | |1 2 3

Proposition 3.4.3.

E1Es - EiA.

Let A € R ™*" then there exist elementary matrices F, s, .

.., Ex such that rref(A) =

Proof: Gauss Jordan elimination consists of a sequence of k elementary row operations. Each row
operation can be implemented by multiply the corresponding elementary matrix on the left. The
Theorem follows. [J
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Example 3.4.4. Just for fun let’s see what happens if we multiply the elementary matrices on the
right instead.

b ¢ 1 00 [ a+3b b ¢
AE, 43m—r, = | 1 2 1 0| = 1+6 2 3
v m e | |0 0 1] | u+3m m e
i b ¢ ] [1 0 0] [ a 70 ¢
AE7, 5, =11 07 =1 14
lu m e | [0 O 1| | u Tm e
[ a b ¢l [1 0 0] [a ¢ b
AE,, s, =1 2 3 00 1(=113 2
lu m e | [0 1 0| lu e m

Curious, they generate column operations, we might call these elementary column operations. In
our notation the row operations are more important.

3.5 invertible matrices

Definition 3.5.1.

Let A € R ™*™ 1If there exists B € R "*" such that AB = I and BA = [ then we say that
A is invertible and A~! = B. Invertible matrices are also called nonsingular. If a matrix
has no inverse then it is called a noninvertible or singular matrix.

Proposition 3.5.2.

Elementary matrices are invertible.

Proof: I list the inverse matrix for each below:
(ET'ﬁ‘”“jﬂ?‘i)_l =[I: r— ar; — 73]
(EbT’i—M‘i)_l - [I . %T’i — 'ri]
(ET‘»L‘(—)T]')_I - [I rj < Ti]

I leave it to the reader to convince themselves that these are indeed inverse matrices. [

Example 3.5.3. Let me illustrate the mechanics of the proof above, Ey y3r,—sr, = [

1-30 .
ET173T24)T’1 = |:8 6 (1):| Satzsfy,

[elel g
oW
—oo

} and

[=lely
oW
OO

|

w
—=OoO O
| I
L—
oo
oo

oo
(=]}
[

Er1+3r2—>7“1E7’1—37"2—>r1 = |:

O



90 CHAPTER 3. MATRIX ARITHMETIC

Likewise,
1-307T7130 100
E, _ E :[010}[010}:[010]
r1—3ro—r1&r1+3ro—r; 001 001 001
-1 .
Thus, (Er,+3ry—r,) "+ = Erj—3ry—r, just as we expected.

Theorem 3.5.4.

Let A € R "*". The solution of Az = 0 is unique iff A~! exists.

Proof:( =) Suppose Az = 0 has a unique solution. Observe A0 = 0 thus the only solution is the
zero solution. Consequently, rref[A|0] = [I|0]. Moreover, by Proposition there exist elemen-
tary matrices Ey, Eo, - -+ , Ej such that rref[A|0] = E1Esy - - - E[A|0] = [1]0]. Applying the concate-
nation Proposition we find that [E4Ey - - EyA|E1Es - - - ER0] = [I|0] thus E1Ey - -- EyA = 1.

It remains to show that AE | Es --- Ej, = I. Multiply E1Es - -- E, A = I on the left by E; ! followed
by E>~! and so forth to obtain

Ek;_l . E2_1E1_1E1E2 . EkA _ Ek;_l e Ez—lEl—II

this simplifies to
A= Ek_l ce E2_1E1_1.

Observe that
AFE\Ey- Ep=Ey ' - By 'Ey 'EVEy - Ep = 1.

We identify that A=! = E1Ey--- E), thus A" exists.

(<) The converse proof is much easier. Suppose A~! exists. If Az = 0 then multiply by A~! on
the left, A='Ax = A=10 = Iz =0thus z =0. O

Proposition 3.5.5.

Let A€ R ™™,
1. If BA=1 then AB = 1.
2. If AB =1 then BA=1.

Proof of (1.): Suppose BA = I. If Az = 0 then BAz = B0 hence Iz = 0. We have shown that
Az = 0 only has the trivial solution. Therefore, Theorem shows us that A~! exists. Multiply
BA = I on the left by A~! to find BAA™! = TA™! hence B = A~! and by definition it follows
AB =1.

Proof of (2.): Suppose AB = I. If Bx = 0 then ABx = A0 hence Iz = 0. We have shown that
Bx = 0 only has the trivial solution. Therefore, Theorem shows us that B~! exists. Multiply
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AB = I on the right by B~! to find ABB~! = IB~! hence A = B~! and by definition it follows
BA=1.0

Proposition [3.5.5 shows that we don’t need to check both conditions AB = I and BA = I. If either
holds the other condition automatically follows.

Proposition 3.5.6.

’If A € R ™" ig invertible then its inverse matrix is unique.

Proof: Suppose B, are inverse matrices of A. It follows that AB=BA=1and AC=CA=1
thus AB = AC. Multiply B on the left of AB = AC to obtain BAB = BAC hence IB = IC =
B=C.0O

Example 3.5.7. In the case of a 2 X 2 matriz a nice formula to find the inverse is known:

a b0 1 d —b
c d Cad—be| —¢ a
It’s mot hard to show this formula works,
1 a b d —-b| 4 ad —bc —ab+ ab
ad=bc | ¢ —c a | wd-bc| ed—de —bc+da
1 ad — be 0 110
~ ad—be 0 ad—bc | |0 1

How did we know this formula? Can you derive it? To find the formula from first principles you
could suppose there exists a matrix B = [% Y] such that AB = I. The resulting algebra would lead
you to conclude x = d/t,y = —b/t,z = —c/t,w = a/t where t = ad — be. I leave this as an exercise
for the reader.

There is a giant assumption made throughout the last example. What is it?

Example 3.5.8. Recall that a counterclockwise rotation by angle 0 in the plane can be represented

by a matriz R(0) = [_C(:r(jg) Z)I;((Z))

} . The inverse matrix corresponds to a rotation by angle —6

cos(d) —sin(0)| _
sin(f)  cos(6) ] = R(O)™".
10

Notice that R(0) = [ } thus R(O)R(—0) = R(0) = I. Rotations are very special invertible

and (using the even/odd properties for cosine and sine) R(—0) = [

0 1
matrices, we shall see them again.
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Theorem 3.5.9.

If A, B € R ™™ are invertible, X, Y € R ™*" Z W € R ™™ and nonzero ¢ € R then
1. (AB)"'=B71A"1
—1 _ 14-1
2. (CA) = EA s

3. XA=YAimplies X =Y,
4. AZ = AW implies Z = W,

Proof: To prove (1.) simply notice that
(ABYB'A™' = ABB YA ' = ANA ' =AA =T
The proof of (2.) follows from the calculation below,
(2A NeA=1cATTA=ATTA=1

To prove (3.) assume that XA = Y A and multiply both sides by A~! on the right to obtain
XAA™! = YAA™! which reveals XI = YT or simply X =Y. To prove (4.) multiply by A~! on
the left. [J

Remark 3.5.10.

The proofs just given were all matrix arguments. These contrast the component level proofs
needed for We could give component level proofs for the Theorem above but that
is not necessary and those arguments would only obscure the point. I hope you gain your
own sense of which type of argument is most appropriate as the course progresses.

We have a simple formula to calculate the inverse of a 2 x 2 matrix, but sadly no such simple
formula exists for bigger matrices. There is a nice method to calculate A~! (if it exists), but we do
not have all the theory in place to discuss it at this juncture.

Proposition 3.5.11.

If Ay, Ay, ..., Ap € R ™™ are invertible then

(A1Asg -+ Ap) P = AT AY - AGTATT

Proof: Provided by you in the Problem Set. Your argument will involve induction on the index k.
Notice you already have the cases k = 1,2 from the arguments in this section. In particular, k =1
is trivial and k& = 2 is given by Theorem [3.5.11] [J



3.6. HOW TO CALCULATE THE INVERSE OF A MATRIX 93

3.6 how to calculate the inverse of a matrix

We have not needed to solve more than one problem at a time before, however the problem of cal-
culating an inverse amounts to precisely the problem of simultaneously solving several systems of
equations at once. We thus begin with a bit of theory before attacking the inverse problem head-on.

3.6.1 concatenation for solving many systems at once

If we wish to solve Az = by and Az = by we use a concatenation trick to do both at once. In
fact, we can do it for k& € N problems which share the same coefficient matrix but possibly differing
inhomogeneous terms.

Proposition 3.6.1.

Let A € R ™%, Vectors vi,vs,...,v; are solutions of Av = b; for i = 1,2,... kif V =
[vi|va| - - - |vg] solves AV = B where B = [b1|ba| - - - |bk].

Proof: Let A € R ™*™ and suppose Av; = b; for i =1,2,... k. Let V = [v1|va] - - |vg] and use the
concatenation Proposition |3.3.12

AV = Alvy|ve| - - |ug] = [Avy|Avg] - - - |Avg| = [b1]be| - - - |bk] = B.

Conversely, suppose AV = B where V' = [v1|vg] - - |vg] and B = [by|ba] - - - |bg] then by Proposition
3.3.12) AV = B implies Av; = b; for each i = 1,2,... k. [

Example 3.6.2. Solve the systems given below,

r+y+z=1 r+y+z=1
z—y+2=0 and r—y+z=1
—zr+z=1 —r+z=1

The systems above share the same coefficient matriz, however by = [1,0,1]7 whereas by = [1,1,1]7.
We can solve both at once by making an extended augmented coefficient matriz [A|b|ba]

1 1 1(1]1 1 0 0/-1/41(0
[A’bﬂbg] == 1 -1 1]/0]|1 T"r‘ef[A|b1|b2] == 010 1/2 0
-1 0 1|11 0 0 1] 3/4 |1
We use Proposition to conclude that
r+y+z=1
rT—y+z=0 has solution x = —1/4,y =1/2,z = 3/4
—r+z=1
z+y+z=1
r—y+z=1 has solution x =0,y =0,z = 1.

—zx+z=1
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3.6.2 the inverse-finding algorithm

PROBLEM: how should we calculate A~ for a 3 x 3 matrix ?

Consider that the Proposition [3.6.1] gives us another way to look at the problem,
AA =] & A[U1|Ug‘1}3] =13 = [61|62‘63]

Where v; = col;(A™!) and e; = [0 0 0]7,ea = [0 1 0]7,e3 = [0 0 1]7. We observe that the problem
of finding A~! for a 3 x 3 matrix amounts to solving three separate systems:

AU1 = €1, AUQ = €9, A’Ug — €3

when we find the solutions then we can construct A~! = [v1|va|vs]. Think about this, if A~! exists
then it is unique thus the solutions vy, v9, vs are likewise unique. Consequently, by Theorem [1.5.3

rref[Ale1] = [I|v1], rref[Ales] = [I|va], rref[Ales] = [I|vs].

Each of the systems above required the same sequence of elementary row operations to cause A +— 1.
We can just as well do them at the same time in one big matrix calculation:

rreflAlei|ez|es] = [I|v1|va|vs]

While this discuss was done for n = 3 we can just as well do the same for n > 3. This provides
the proof for the first sentence of the theorem below. Theorem together with the discussion
above proves the second sentence.

Theorem 3.6.3.

If A € R™" is invertible then rref[A|I] = [I|A™!]. Otherwise, A~! not invertible iff
rref(A) # I iff rref[A|I] # [I|B].

This is perhaps the most pragmatic theorem so far stated in these notes. This theorem tells us how
and when we can find an inverse for a square matrix.

Example 3.6.4. Recall that in Example [1.2.7 we worked out the details of

100|100 1001 0 0
rref | 2 2 0|0 1 0|=]010|-1 1/2 0
4 4 410 0 1 00 1|0 —1/2 1/4
Thus,
10o071" 1 0 0
2 2 0 =] -1 1/2 o0
44 4 0 -1/2 1/4
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Example 3.6.5. I omit the details of the Gaussian elimination,

1 -1 0100 100]-2 -3 -1
rref{1 0 —-1|]0 1 0|=]0120]-3 -3 -1
6 2 3]0 0 1 00 1]-2 —4 -1
Thus,
1 -1 0 1! 2 -3 -1
1 0 -1 —| -3 -3 -1
6 2 3 2 —4 —1
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3.7 all your base are belong to us (e¢; and E;; that is)

Recall that we defined e; € R™ by (e;) j = 0i5. We call e; the i-th standard basis vector. We proved

in Proposition that every vector in R" is a linear combination of e, eo, . ..

a standard basis for matrices of arbitrary size in much the same manner.

Definition 3.7.1.

,en. We can define

words, we define (Ejj)k = 0;xdji.

The ij-th standard basis matrix for R ™*" is denoted E;; for 1 <i<mand 1< j <n.
The matrix E;; is zero in all entries except for the (7, j)-th slot where it has a 1. In other

Proposition 3.7.2.

Every matrix in R ™*" is a linear combination of the E;; where 1 <i <m and 1 < j <n.

Proof: Let A € R ™*"™ then

A A - A
A1 Ay oo Aoy
A = . . .
Aml AmQ o Amn
1 0 0 0 1 0 0
0 0 0 0 0 0 0
— All . + A12 + -+ Amn .
: 0 Do 0 :
0 0 0 0 0 0 0

=AnFEn+ApEis+ -+ ApnEnn.

o O
o O O

The calculation above follows from repeated mmn-applications of the definition of matrix addition
and another mn-applications of the definition of scalar multiplication of a matrix. We can restate
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the final result in a more precise langauge,

m n

A=>""A;E;.

=1 j=1

As we claimed, any matrix can be written as a linear combination of the F;;. [J

The term ”basis” has a technical meaning which we will discuss at length in due time. For now,
just think of it as part of the names of e; and F;;. These are the basic building blocks for matrix
theory.

Example 3.7.3. Suppose A € R ™" and e; € R" is a standard basis vector,

(Aei)j = ZAjk(ei)k = ZA]kézk = Ajz’
k=1 k=1

Thus, | [Ae;] = col;(A) ‘ We find that multiplication of a matriz A by the standard basis e; yields
the i — th column of A.

Example 3.7.4. Suppose A € R ™" and e; € R™*! is a standard basis vector,

n

(ei"A); =D (e)kArj = D dinAr; = Aij
k=1 k=1

Thus, | [e;T A] = row;(A)|. We find multiplication of a matriz A by the transpose of standard basis
e; yields the i —th row of A.

Example 3.7.5. Again, suppose e;,e; € R" are standard basis vectors. The product eiTej of the
1 xn andn x 1 matrices is just a 1 X 1 matriz which is just a number. In particular consider,

eilej = Z(eiT)k(ej)k = Z Oik0jk = Oij
k=1 k=1

The product is zero unless the vectors are identical.

Example 3.7.6. Suppose e; € R™*! and ej € R". The product of the m x 1 matriz e; and the
1 X n matriz ejT s an m X n matriz. In particular,

(eie; ) = (e )i(ej)e = Sindin = (Eij)

Thus we can construct the standard basis matrices by multiplying the standard basis vectors; F;; =
T
eiej .



3.7. ALL YOUR BASE ARE BELONG TO US (E; AND E;; THAT IS) 97

Example 3.7.7. What about the matriz E;; ? What can we say about multiplication by E;; on the
right of an arbitrary matriz? Let A € R ™" and consider,

(AEij)w = ZAkp ii)pl = ZAkp i1 = Aridji

Notice the matriz above has zero entries unless j = | which means that the matriz is mostly zero
except for the j-th column. We can select the j-th column by multiplying the above by e;, using

Examples[3.7.5 and [3.7.3,
(AEijej)p = (Aeie;" ej) = (Aeidj;)i = (Aei)p = (coli(A))g

This means,

column j
00 Ay - 0
AE;; = 00 --- Ay e 0
(00 --- A e 0]

Right multiplication of matriz A by E;; moves the i-th column of A to the j-th column of AE;; and
all other entries are zero. It turns out that left multiplication by E;; moves the j-th row of A to the
i-th row and sets all other entries to zero.

Example 3.7.8. Let A = [} 2] consider multiplication by Ei,

4= [ 22 ][0 1) [0 < o e

Which agrees with our general abstract calculation in the previous example. Next consider,

101 1 2 [3 4] [ row(A)
E”A_[o 0H3 4}_{0 0}_{ 0 '
Example 3.7.9. Calculate the product of E;j and Ej.

(EijEkl)mn = Z(Eij)mp(Ekl)pn = Z 5im5jp5kp6ln = 5im5jk51n
p p

For example,
(E12E34)mn = 01m62364n = 0.

In order for the product to be nontrivial we must have j =k,

(E12E24)mn = 61m02204n = 61m04n = (E14)mn
We can make the same identification in the general calculation,

(Eij Ex)mn = 0ji(Eil)mn
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Since the above holds for all m,n,

EijEw = djuEil

this is at times a very nice formula to know about.

Remark 3.7.10.

You may find the general examples in this portion of the notes a bit too much to follow. If
that is the case then don’t despair. Focus on mastering the numerical examples to begin
with then come back to this section later. These examples are actually not that hard, you
just have to get used to index calculations. The proofs in these examples are much longer
if written without the benefit of index notation. I was disappointed your text fails to use
the index notation in it’s full power. The text deliberately uses + - - - rather than ). I will
use both langauges.

Example 3.7.11. Let A € R ™" and suppose e; € R™1 and e; € R". Consider,

(e)" Aej = Z((ei)T)k(Aej)k = Z(Sik(Aej)k = (Aej)i = Ayj
=1 =1

This is a useful observation. If we wish to select the (i,7)-entry of the matrix A then we can use
the following simple formula,

Aij = (e;)" Ae;

This is analogus to the idea of using dot-products to select particular components of vectors in
analytic geometry; (reverting to calculus III notation for a moment) recall that to find vy of ¥ we
learned that the dot product by : =< 1,0, 0 > selects the first components v, = ¥-i. The following
theorem is simply a summary of our results for this section.

Theorem 3.7.12.

Assume A € R ™" and v € R™ and define (Ej;)r = ;105 and (e;); = d;; as we previously

discussed,
n m n
(U= Zvnen A= Z Z Al]EZ_]
i=1

i=1 j=1

[e;T A] = row;(A) [Ae;] = col;(A) Aij = (e;)T Ae;j

T T
EijEr = 0k Ey Ei; = eie; ;" ej = 0;;
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3.8 block matrices

If you look at most undergraduate linear algbera texts they will not bother to even attempt much
of a proof that block-multiplication holds in general. I will foolishly attempt it here. However,
I'm going to cheat a little and employ uber-sneaky physics notation. The Einstein summation
convention states that if an index is repeated then it is assumed to be summed over it’s values.
This means that the letters used for particular indices are reserved. If 7,7,k are used to denote
components of a spatial vector then you cannot use them for a spacetime vector at the same time.
A typical notation in physics would be that v/ is a vector in xyz-space whereas v* is a vector in
txyz-spacetime. A spacetime vector could be written as a sum of space components and a time
component; v = vte, = Weg+vle; +v2es +v3e3 = v0% —I—Ujej. This is not the sort of langauge we
use in mathematics. For us notation is usually not reserved. Anyway, cultural commentary aside, if
we were to use Einstein-type notation in linear algebra then we would likely omit sums as follows:

v = E vi€; — UV = 0€;

K3
A= Z AijEij — A= AijEij
j
We wish to partition a matrices A and B into 4 parts, use indices M, N which split into subindices
m, i and n, v respectively. In this notation there are 4 different types of pairs possible:

Amn AmV:| an Bn"/:|

A=[Ayn] = [
A,u,n A;w Bﬂj BN’Y

B =[Bnj] = [

Then the sum over M, N breaks into 2 cases,
AMNBNg = Ay By + AvivBug
But, then there are 4 different types of M, J pairs,
[AB]m] = AmNBNj = Amanj + AmVBVj
[AB]m’y = AmNBN'y = Aman'y + AmVBl/'y
[AB|j = AunBNj = AynBnj + A B
[AB]/W = AunBny = AynBry + A Buy

Let me summarize,

|:AmnAm1/:| |:anan:|
Alm ‘ AW Buj ‘ BM

_ [ [Amn] [an] + [AmV] [BVJ'] ‘ [Amn] [Bm] + [Aml/] [BV’Y]
[Aun][Bug] + [Aw][Bug] | [Aun][Bns] + [Aw][Bur]

Let me again summarize, but this time I’ll drop the annoying indices:
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Theorem 3.8.1. block multiplication.

Suppose A € R ™*™ and B € R ™*P such that both A and B are partitioned as follows:

A11 A12 :| |: Bll BlQ :|
[ Aoy | Ao o Bay | Bao

where A1y is an my X ny block, Ao is an my X ny block, As; is an mo X ny block and
Ago is an mo x ng block. Likewise, By, p, is an nj x py block for k = 1,2. We insist that
m1 + mg = m and n; + ng = n. If the partitions are compatible as decribed above then
we may multiply A and B by multiplying the blocks as if they were scalars and we were
computing the product of 2 x 2 matrices:

[ Ap | Ap } [ Bi1 | B } _ [ A11Bi1 + A12Ba1 | A11Biz + A12Bas
Ay | Axp By | By A1 Bi1 + Az By | A21Bis + Az By

To give a careful proof we’d just need to write out many sums and define the partition with care
from the outset of the proof. In any event, notice that once you have this partition you can apply
it twice to build block-multiplication rules for matrices with more blocks. The basic idea remains
the same: you can parse two matrices into matching partitions then the matrix multiplication
follows a pattern which is as if the blocks were scalars. However, the blocks are not scalars so the
multiplication of the blocks is nonabelian. For example,

A1 | A By, | By A11B11 + A12Bg1 | A11B12 + A12B2
AB = | A | A2 [ Boy | Boy } = | A21B11 + A2 B2t | A21B12 + A2 B2
Az | Az A3z1B11 + A2 B2y | A31B12 + A32B99

where if the partitions of A and B are compatible it follows that the block-multiplications on the
RHS are all well-defined.

cos(f)  sin(6) | cosh(y) sinh(y)
—sin(0) cos(0) ] and B(7) = [ sinh(y) cosh(v)

construct 4 X 4 matrices A1 and Ao as follows:

Example 3.8.2. Let R(0) = ] . Furthermore

0 | R(6) 0 [R(62)
Multiply Ay and As via block multiplication:
AlA?:_ ] 26 e
[ B(m)B(y2) + O 0 —I— 0
1 0+0 \0+R(91)R(92)
_ [ B(yi+7) | 0
i 0 ‘ R(61+62) |-
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The last calculation is actually a few lines in detail, if you know the adding angles formulas for
cosine, sine, cosh and sinh it’s easy. If 0 =0 and v # 0 then A would represent a velocity boost
on spacetime. Since it mixzes time and the first coordinate the velocity is along the x-coordinate. On
the other hand, if 8 # 0 and v = 0 then A gives a rotation in the yz spatial coordinates in space
time. If both parameters are nonzero then we can say that A is a Lorentz transformation on
spacetime. Of course there is more to say here, perhaps we could offer a course in special relativity
if enough students were interested in concert.

Example 3.8.3. Problem: Suppose M is a square matriz with submatrices A, B,C,0. What
A| B
conditions should we insist on for M = [T‘T] to be invertible.

D|E
Solution: I propose we partition the potential inverse matriz M1 = [7‘?] We seek to find

conditions on A, B,C such that there exist D, E,F,G and MM~ = I. Each block of the equation
MM~" =1 gives us a separate submatriz equation:

AB][DE]

[ AD+BF | AE+ BG
0|C||F|G

_[OD+CF [ 0E+CG }:{01]

MM~ = [

We must solve simultaneously the following:
(1.) AD+ BF =1, (2.) AE+ BG =0, (3.) CF =0, 4)CG=1

If C~1 exists then G = C~ from (4.). Moreover, (3.) then yields F = C~10 = 0. Our problem
thus reduces to (1.) and (2.) which after substituting F =0 and G = C~! yield

(1.) AD =1, (2.) AE+ BC™ ! =0.
Equation (1.) says D = A™'. Finally, let’s solve (2.) for E,
E=-A"'BC

Let’s summarize the calculation we just worked through. IF A,C are invertible then the matrix

Al B | . . . .
M = [T‘T} 1s invertible with inverse

- A1 —A'BO!
1 _
M ‘[ 0 ! }

Consider the case that M is a 2 x 2 matriz and A, B,C € R. Then the condition of invertibility
reduces to the simple conditions A,C # 0 and —A~'BC~' = Z£ we find the formula:

AC
o [AlZB]_ 1 [c|-B
0] & AC |0 A |

This is of course the formula for the 2 X 2 matriz in this special case where Moy = 0.
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Of course the real utility of formulas like those in the last example is that they work for partitions of
arbitrary size. If we can find a block of zeros somewhere in the matrix then we may reduce the size
of the problem. The time for a computer calculation is largely based on some power of the size of
the matrix. For example, if the calculation in question takes n? steps then parsing the matrix into
3 nonzero blocks which are n/2 x n/2 would result in something like [n/2]? 4 [n/2]? 4 [n/2]? = 2n?
steps. If the calculation took on order n® computer operations (flops) then my toy example of 3
blocks would reduce to something like [n/2]* + [n/2]% + [n/2]* = 2n? flops. A savings of more than
60% of computer time. If the calculation was typically order n? for an n x n matrix then the saving
is even more dramatic. If the calculation is a determinant then the cofactor formula depends on
the factorial of the size of the matrix. Try to compare 10!4-10! verses say 20!. Hope your calculator
has a big display:

10! = 3628800 = 10!+ 10! = 7257600 or 20! = 2432902008176640000.

Perhaps you can start to appreciate why numerical linear algebra software packages often use al-
gorithms which make use of block matrices to streamline large matrix calculations. If you are very
interested in this sort of topic you might strike up a conversation with Dr. Van Voorhis. I suspect
he knows useful things about this type of mathematical inquiry.

Finally, I would comment that breaking a matrix into blocks is basically the bread and butter of
quantum mechanics. One attempts to find a basis of state vectors which makes the Hamiltonian
into a block-diagonal matrix. Each block corresponds to a certain set of statevectors sharing a
common energy. The goal of representation theory in physics is basically to break down matrices
into blocks with nice physical meanings. On the other hand, abstract algebraists also use blocks
to rip apart a matrix into it’s most basic form. For linear algebraistﬂ the so-called Jordan form
is full of blocks. Wherever reduction of a linear system into smaller subsystems is of interest there
will be blocks.

3.9 matrices with notable properties
In this section we learn about a few special types of matrices.

3.9.1 symmetric and antisymmetric matrices

Definition 3.9.1.

Let A € R™" We say A is symmetric iff AT = A. We say A is antisymmetric iff
AT = —A.

At the level of components, AT = A gives Aj; = Aj; for all 4, j. Whereas, AT = — A gives Ay = —Aj;
for all 4,5. I should mention skew-symmetric is another word for antisymmetric. In physics,
second rank (anti)symmetric tensors correspond to (anti)symmetric matrices. In electromagnetism,

mostly dead by now sad to say.
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the electromagnetic field tensor has components which can be written as an antisymmetric 4 x 4
matrix. In classical mechanics, a solid propensity to spin in various directions is described by the
intertia tensor which is symmetric. The energy-momentum tensor from electrodynamics is also
symmetric. Matrices are everywhere if look for them.

Example 3.9.2. Some matrices are symmetric:
1 2
‘[7 07 EZZ? |: 2 0 }
0 2
o[ 4]

Only 0 is both symmetric and antisymmetric (can you prove it?). Many other matrices are neither
symmetric nor antisymmetric:

Some matrices are antisymmetric:

1 2
€, Eiit1, [3 4}

I assumed n > 1 so that e; is a column vector which is not square.

Proposition 3.9.3.

Let A, B € R ™™ and ¢ € R then
1. (ATYT =4

2. (AB)T = BT AT socks-shoes property for transpose of product

e

(
(cA)T = cAT
(
(

Proof: To prove (1.) simply note that ((AT)T);; = (AT);; = A;j for all 4, j. Proof of (2.) is left to
the reader. Proof of (3.) and (4.) is simple enough,

(A+eB)")ij = (A+eB)ji = Aji + cBji = (AT)y; + ((eB)")y

for all 4, j. Proof of (5.) is again left to the readeif] O

2T wouldn’t be surprised if T was asked to prove (2.) or (5.) on a quiz or test.
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Proposition 3.9.4.

All square matrices are formed by the sum of a symmetric and antisymmetric matrix.

Proof: Let A € R "*", Utilizing Proposition we find
(La4+ A7) = LAT +(AT)T) = (AT + 4) = L4+ A7)
thus 3(A + A7) is a symmetric matrix. Likewise,

T

(3(4-AT)" = (AT — (AT)T) = §(AT - 4) =

=3 (A—AT)

1 _1
2 2

thus %(A — A7) is an antisymmetric matrix. Finally, note the identity below:

A=A+ 4T)+3(A- AT
The theorem follows. [

The proof that any function on R is the sum of an even and odd function uses the same trick.

Example 3.9.5. The proof of the Proposition above shows us how to break up the matriz into its
symmetric and antisymmetric pieces:

BRI EEEER)

- 1 5/2 " 0 -1/2

“|5/2 4 /2 0 |
Example 3.9.6. What are the symmetric and antisymmetric parts of the standard basis E;; in
R "*"? Here the answer depends on the choice of i,j. Note that (E;;)T = Ej; for alli,3j.

Suppose © = j then E;; = Ey; is clearly symmetric, thus there is no antisymmetric part.
If i # j we use the standard trick,

Eij = 3(Eij + Eji) + 3(Ei; — Ejq)

where %(EZ] + Ej;) is the symmetric part of E;j and %(E” — Ej;) is the antisymmetric part of Ejj.

Proposition 3.9.7.

Let A € R ™*" then AT A is symmetric.

Proof: Proposition yields (AT A)T = AT(AT)T = AT A. Thus AT A is symmetric. [
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3.9.2 exponent laws for matrices

The power of a matrix is defined in the natural way. Notice we need for A to be square in order
for the product AA to be defined.

Definition 3.9.8.

Let A € R™". We define A° = I, A' = A and A™ = AA™ ! for all m > 1. If A is
invertible then A=P = (A~1)P.

As you would expect, A3 = AA% = AAA.

Proposition 3.9.9.
Let A,B € R ™™ and p,q € NU {0}

1. (AP)? = AP4.
2. APAT = APta,
3. If A is invertible, (A~1)~! = A.

Proof: left to reader. [J

You should notice that (AB)P # APBP for matrices. Instead,
(AB)> = ABAB,  (AB)®> = ABABAB:etc...
This means the binomial theorem will not hold for matrices. For example,
(A+B)?=(A+B)(A+B)=A(A+B)+B(A+B) = AA+ AB+ BA+ BB

hence (A+ B)? # A%2+2AB+ B? as the matrix product is not generally commutative. If we have A
and B commute then AB = BA and we can prove that (AB)P = APBP and the binomial theorem
holds true.

Proposition 3.9.10.

If A is symmetric then A* is symmetric for all k € N.

Proof: Suppose AT = A. Proceed inductively. Clearly k& = 1 holds true since A! = A. Assume
inductively that A* is symmetric.

(AMDT = (AAMT  defn. of matrix exponents,
= (AMT AT socks-shoes prop. of transpose,
= AFA using inducition hypothesis.
= Ak+1 defn. of matrix exponents,

thus by proof by mathematical induction A* is symmetric for all k € N. O
There are many other fun identities about symmetric and invertible matrices. I'll probably put a
few in the Problem Set since they make nice easy proof problems.
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3.9.3 diagonal and triangular matrices

Definition 3.9.11.

Let A e R ™" If A;; = 0 for all 4, j such that ¢ # j then A is called a diagonal matrix.
If A has components A;; = 0 for all 4, j such that ¢ < j then we call A a upper triangular
matrix. If A has components A;; = 0 for all 4, j such that ¢ > j then we call A a lower

triangular matrix.

Example 3.9.12. Let me illustrate a generic example of each case for 3 X 3 matrices:

A 0 0 A A Asg A 0 0
0 A O 0 A A A1 Az O
0 0 Ass 0 0 Ass Az1 Aszz Ass

As you can see the diagonal matrixz only has nontrivial entries on the diagonal, and the names
lower triangular and upper triangular are likewise natural.

If an upper triangular matrix has zeros on the diagonal then it is said to be strictly upper
triangular. Likewise, if a lower triangular matrix has zeros on the diagonal then it is said to be
strictly lower triangular. Obviously and matrix can be written as a sum of a diagonal and
strictly upper and strictly lower matrix,

A=Y AyE;
1,

i

1<j 1>7

There is an algorithm called LU-factorization which for many matrices A finds a lower triangular
matrix L and an upper triangular matrix U such that A = LU. It is one of several factorization
schemes which is calculationally advantageous for large systems. There are many many ways to
solve a system, but some are faster methods. Algorithmics is the study of which method is optimal.

Proposition 3.9.13.

Let A, B € R "*".
1. If A, B are upper diagonal then AB is diagonal.
2. If A, B are upper triangular then AB is upper triangular.

3. If A, B are lower triangular then AB is lower triangular.
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Proof of (1.): Suppose A and B are diagonal. It follows there exist a;, b; such that A =", a;Ey
and B =}, b;Ej;. Calculate,

AB = Z CLlE“ Z bjEjj
i J
= Z Z aibjEiiEjj
g
= Z Z aibjéijEij
i
= aibiEy;

thus the product matrix AB is also diagonal and we find that the diagonal of the product AB is
just the product of the corresponding diagonals of A and B.

Proof of (2.): Suppose A and B are upper diagonal. It follows there exist A;;, B;; such that
A= Eigj Az’jEz’j and B = Zkgl By Ey,;. Calculate,

AB = Z Aij By Z B Ex

i<j k<l
=> ) AyBuE;Ey
=> > Ai;Bud;rEu
i<j k<l
=22 AyBEi
i<y j<I

Notice that every term in the sum above has i < j and 7 <[ hence 7 < [. It follows the product is
upper triangular since it is a sum of upper triangular matrices. The proof of (3.) is similar. .
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3.10 LU factorization

In this section we will use elementary matrices which correspond to the forward pass of the Gaussian
elimination to factor matrices into a pair of simpler matrices; our goal is to factor a matrix A into
a lower triangular matrix L and a upper triangular matrix U; we hope to find A = LU. In the
abstract the idea for the factorization simply comes from thinking about how we calculate ref(A).
To obtain ref(A) one begins with A and then performs row operations until we have reduced
the matrix to the form ref(A). Each row operation can be implemented by a corresponding left
multiplication by an elementary matrix so symbollically we can summarize the forward pass by the
following equation:

’EkEk—l - EsEyE1A=ref(A) ‘

The matrix ref(A) has pivot positions with a nonzero number x in each such entry. Moreover,
by construction there are no nonzero entries below the pivot positions hence ref(A) is an upper
triangular matrix. Generically the pattern is something like

*x ok Xk X
ref(A)=10 0 x =
0000

where again x # 0 but *’s can be anything. Solve the boxed equation for A,

A=E'E;'E;Y - B L E  ref(A)

maybe L 7 U

The inverse of elementary matrices are easily obtained and the product of those matrices is easily
assembled if we just keep track of the row reduction to produce ref(A). Let’s see how this works
out for a few examples.
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Example 3.10.1. Let me modify the row reduction we studied in Example

-1 1 ro —3r] — 7T 1 -1 1 r3—2ry —r
A= 13 -3 0 A N O R O (AL
2 2 -3 (this is E1) 9 _9 _3 (this is E3)
T I S R
00 3| —322"% 10 0 -3|=U
i 0 0 -5 | (th/I,S 18 Eg) 0 0 0

Recall that elementary matrices are obtained by performing the corresponding operations on the
identity matriz. We have U = EsEsE1 A, in particular Ey = {I : ro — 3r1 — ro}. Observe that
A= E1_1E2_1E3_1U and calculate the product EflEz_lEgl as follows:

1 00 r3—|—§7"2—>r3 1 00
I = 010 ﬁ 01 0 rs+2ry —r
this is E5 5
(00 1) (this is E5 ") 031 :
(1 0 0] 1 0 0
01 0 T2+37’1*>7"§ 31 0|=L
2 2 1] 2 51

At the end of this section I’ll return to this example once more and streamline the calculation. I'm
trying to explain why the later algorithm works in detail to begin. The reason we are doing this and
not just the algorithm at the end of the section is that you still need to think more about elementary
matrices and this is a pretty good mathematical laboratory to test things out. We find A is factored
into a lower and upper triangular matriz:

1 00 1 -1 1
A=13 1 0 0o 0 -3
5
2 31 0 0 O
L U
Example 3.10.2. Find an LU-decomposition of A given below (if possible).
1 1 1 1] 1 1 11
A = 2 3 4 5 7“2—27"1—>72 01 2 3 r3—2r1—>r§
| 2 2 2 2 | 2 2 2 2
1 1 1 1]
1 2 3| =U
1 0 0 0 0]

3note the E3_1 goes first since El_lE'2_1E3_1 = El_lEz_lEgll, we have to multiply I on left to interpret elementary
matrices as row operations, if I was to multiply on the right then it does column operations instead... anyway, this
is how to quickly calculate the product of elementary matrices. If for some reason this is confusing then perhaps you
might try writing down the 3 x 3 matrices for each elementary matrix El_l, E'Q_l, E3_1 then explicitly multiply these
out. I prefer to do a few row operations on the identity matrix instead
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In this example, we have U = FoE1A hence A = EflEglU and we can calculate the product
E1_1EQ_1 as follows:

1 00 1 00 1 00
I = 010 r3+27‘1—>7‘§ 010 r2+2r1—>r§ 2 1 0| =L
0 01 2 01 2 01
We find A factors as follows:
1 0 0 1 1 11
A=12 10 01 2 3
2 01 00 00
L U

Notice that in both of the last examples the L was really obtained by taking the identity matrix
and inserting a couple numbers below the diagonal. In both cases those numbers were linked to
the row operations performed in the forward pass. Keep this in mind for the end of the section.

If we can reduce A to an upper triangular matrix U using only row additions as in the last two
examples then it seems entirely plausible that we will be able to find an LU-decomposition for A.
However, in the next example we’ll see that row-interchanges spoils the simplicity of the method.
Let’s see how:

Example 3.10.3. In Example we needed to use row interchanges to reduce the matriz. For
that reason I chose to study it again here.

1 2 -3 1 1 2 -3 1

A = _ _21 ;l g g T2—27”1 —>’I”§ _01 g g 8 w
[1 2 -3 1 1 2 -3 1
os D a0 e8]

We have U = E3FE9FE1 A hence A = EflEglEglU and we can calculate the product EflEglEgl
as follows:

1 0 0 1 00
I = 01 0 r2<—>r§ 0 0 1 1"3—7“1—>7°§
0 0 1 010

=PL

[N
_ o O
o = O

1 00
0 0 1 7"2—1—27’1—)72
10
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I have inserted a "P” in front of the L since the matriz above is not lower triangular. However, if
we go one step further and let ro <> r3 then we will obtain a lower triangular matriz:

1 00 1 00
PL = 2 0 1 T‘Q(-)Tg -1 1 0| =L
-1 1 0 2 01

Therefore, we find that EflEQ_IEgl = PL where L is as above and P = Ey.,3. This means that A
has a modified LU -decomposition. Some mathemticians call it a PLU -decomposition,

1 00 1 00 1 2 -3 1 1 00 1 2 -3 1
A=10 0 1 -1 1 0 05 -1 1/|= 2 01 0 5 -1 1
010 2 01 00 6 5 -1 10 00 6 5

P L U PL U

Since permutation matrices all satisfy the condition P2 = I the existence of a PLU-decomposition
for A naturally suggests that PA = LU. Therefore, even when a LU decomposition is not available
we can just flip a few rows to find a LU-decomposable matrix. This is a useful observation because
it means that the slick algorithms developed for LU-decompositions apply to all matrices with just
a little extra fine print. We’ll examine how the LU-decomposition allows efficient solution of the
problem Ax = b at the conclusion of this section.

As I have hinted at several times, if you examine the calculation of the LU-decomposition carefully
you’ll see certain patterns. If no permutations are needed then whenever we make the row operation
rj+ Arp — rj it inevitably places a —\ in the jk-position of L. Basically we just need to keep track
of the A-multipliers from each row operation. Let me do our first example in a slick notation that
avoids explicit stand-alone computation of L

Example 3.10.4.

1 -1 1 1 -1 1
A = 3 -3 0 rg —3r1 —= 71 3) 0 =3 | r3—2r1—>r
2 -2 -3 AR
1 -1 1 1 -1 1
3 0 —3| m—32—>r |3 0 -3|=U
| (2) 0 -5 2 (3 0

The parenthetical entries are deleted to obtain U and they are inserted into the identity matriz to

obtain the product E’S_IEQ_IEf1 as follows:
1 00 1 -1 1
L={3 10 and U=]10 0 =3
2 51 0 0 0

Which is precisely what we found before.



112 CHAPTER 3. MATRIX ARITHMETIC

Example 3.10.5. Returning to our example for which A = PLU let’s try the slick notation and
see if it still works.

1 2 -3 1 1 2 -3 1

A = -_2131 g g 7“2—27"1—>7"§ (_2{5: 623 (5) T3+r1—>r§
[ 1 2 -3 1 1 2 =31
R R R P

We find if we remove the parenthetical entries from U and ajoing them to I then it gives back the
matriz L we found previously:

1 2 -3 1 1 0 0
U=|05 -1 1 L=|-1120
00 6 5 2 01

The matrices above give us the LU-decomposition of PA where P is precisely the permutation we
encountered in the calculation of U.

Remark 3.10.6.

I hope these examples are sufficient to exhibit the method. If we insist that L has units on
the diagonal then I believe the factorization we have calculated is unique provided the matrix
A is invertible. Uniqueness aside the application of the factorization to ladder networks is
fascinating. Lay explains how the U-factor corresponds to a series circuit whereas a L-factor
corresponds to a shunt circuit. The problem of finding an LU-decomposition for a given
transfer matrix amounts to finding the necessary shunt and series circuits which in tandem
will produce the desired transfer characteristic. We study the mathematical application of
LU-decompositions in this course.
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3.10.1 application of LU factorization to equation solving

Suppose we wish to solve Az = b and we are given an LU-decomposition of A. This means that we
wish to solve LUz = b. Define y = Uz and note that we then have two separate problems to solve:

1.)y=Ux
Ax=b, A=LU & (
(2) Ly =0
It’s easy to solve (2.) and then (1.).
Example 3.10.7. Solve Az = b given that
1 -1 1 1 00 1 -1 1 3
A=13 -3 0 [=]31 0 0 =3 and b= 1
5 200
2 -2 -3 2 31 0 0 0 =
L U
Solve Ly = b by forward substitution
100 Y1 3 y1 =3,
310 v | =11 = 9t+yp=1= y=-8,
2 51 Y3 0 — P+ =2 = =0

Then solve Uz = y by back substitution

L -1 1 1 3 —3x3 =8, = z3=28/3,
00 =3 r2 | = | -8 r1+x2+8/3=3 = 11=-1/3—=z
0 0 0 3 0 L - L= 2

We find that Ax = b has solutions of the form (f% —t,t, %) fort eR.

Note all the possibilities we encountered in previous work are still possible here. A different choice
of b could make Az = b inconsistent. On the other hand, no choice of b will force a unique solution
for the A considered here. In any event, it should be clear enough that forward/back substitution
will provide a speedy solution to the problem Axz = b.
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3.11 applications

Definition 3.11.1.

Let P € R ™™ with P;; > 0 for all ¢, j. If the sum of the entries in any column of P is one
then we say P is a stochastic matrix.

Example 3.11.2. Stochastic Matrix: A medical researcheﬁ 1s studying the spread of a virus in
1000 lab. mice. During any given week it’s estimated that there is an 80% probability that a mouse
will overcome the virus, and during the same week there is an 10% likelyhood a healthy mouse will
become infected. Suppose 100 mice are infected to start, (a.) how many sick next week? (b.) how
many sick in 2 weeks ? (c.) after many many weeks what is the steady state solution?

I}, = infected mice at beginning of week k p_ 0.2 0.1
Ny = noninfected mice at beginning of week k 1 0.8 0.9

We can study the evolution of the system through successive weeks by multiply the state-vector
Xy = [Ix, Ng] by the probability transition matriz P given above. Notice we are given that X1 =

[100,900]7. Calculate then,
x, _ [ 02 01 100 ] [ 110
27108 09|90 | |89

After one week there are 110 infected mice Continuing to the next week,
X — 0.2 0.1 110 | | 111
7108 09890 | | 889
After two weeks we have 111 mice infected. What happens as k — 0o0? Generally we have Xj =
PXj_1. Note that as k gets large there is little difference between k and k — 1, in the limit they
both tend to infinity. We define the steady-state solution to be X* = limy_ oo Xi. Taking the limit

of X = PXi_1 as k — oo we obtain the requirement X* = PX*. In other words, the steady state
solution is found from solving (P — I)X™* = 0. For the ezample considered here we find,

eonx =[0G ][]0 ees x=[a]

However, by conservation of mice, u + v = 1000 hence 9u = 1000 and u = 111.11 thus the steady
state can be shown to be X* = [111.11, 888.88]

Example 3.11.3. Diagonal matrices are nice: Suppose that demand for doorknobs halves every
week while the demand for yo-yos it cut to 1/3 of the previous week’s demand every week due to

4this example and most of the other applied examples in these notes are borrowed from my undergraduate linear
algebra course taught from Larson’s text by Dr. Terry Anderson of Appalachian State University
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an amazingly bad advertising campaigrﬂ. At the beginning there is demand for 2 doorknobs and 5
YO-1YO0S.

Dy, = demand for doorknobs at beginning of week k p_ 1/2 0

Y = demand for yo-yos at beginning of week k N 0 1/3

We can study the evolution of the system through successive weeks by multiply the state-vector
Xy = [Dy,Yx] by the transition matriz P given above. Notice we are given that X; = [2,5]T.

Calculate then,
(12 0 2] [ 1
=9 0|5 = L]

Notice that we can actually calculate the k-th state vector as follows:

k k
kv [ 1/2 0 2] [27% 0 2] [ 27kt
X=X = { 0 1/3 51| o 3°* 517 | 537%)
Therefore, assuming this silly model holds for 100 weeks, we can calculate the 100-the step in the
process easily,

9101
X190 = P'X, = [ ]

5(37100)

Notice that for this example the analogue of X* is the zero vector since as k — oo we find X has
components which both go to zero.

Example 3.11.4. Naive encryption: in Ezample[3.6.5 we found observed that the matriz A has
inverse matriz A~! where:

1 -1 0 -2 -3 -1
A=|1 0 -1 A= -3 -3 -1
6 2 3 -2 —4 -1
We use the alphabet code
A=1,B=2 C=3,...,Y =25 Z=26

and a space is encoded by 0. The words are parsed into row vectors of length 3 then we multiply

them by A on the right; [decoded]A = [coded]. Suppose we are given the string, already encoded by
A
9, -1,-9],[38, ~19, —19], [28, —9, —19], [80, 25, 41], 64, 21, 31], [~ 7, 4, 7].

Find the hidden message by undoing the multiplication by A. Simply multiply by A~" on the right,

[9,—1,—-9]A71, [38,—19,—19]4~ L, [28,—9, —19]A 1,

Sinsert your own more interesting set of quantities that doubles/halves or triples during some regular interval of
time
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[—80,25,41]A Y, [—64,21,31]A7 L, [=7,4,7]A71

This yields,
[19,19,0],[9,19,0], 3,1, 14],[3, 5, 12], [12, 5, 4]

which reads CLASS IS CANCELLED [

If you enjoy this feel free to peruse my Math 121 notes, I have additional examples of this naive
encryption. I say it’s naive since real encryption has much greater sophistication by this time.

Remark 3.11.5.

Matrix multiplication and the composition of linear operators is the heart of the chain rule
in multivariate calculus. The derivative of a function f : R™ — R™ at a point p € R™ gives
the best linear approximation to f in the sense that

Li(p+h)=f(p)+ Dpf(h) = f(p+h)

if h € R" is close to the zero vector; the graph of L; gives the tangent line or plane or
hypersurface depending on the values of m,n. The so-called Frechet derivative is D, f,
it is a linear transformation from R™ to R". The simplest case is f : R — R where
D, f(h) = f'(p)h and you should recognize L¢(p+h) = f(p)+ f'(p)h as the function whose
graph is the tangent line, perhaps L¢(z) = f(p) + f'(p)(z — p) is easier to see but it’s the
same just set p + h = x. Given two functions, say f : R® — R and ¢g : R” — RP then
it can be shown that D(ge f) = Dge Df. In turn, the matrix of D(ge f) is simply obtain
by multiplying the matrices of Dg and D f. The matrix of the Frechet derivative is called
the Jacobian matrix. The determinant of the Jacobian matrix plays an important role in
changing variables for multiple integrals. It is likely we would cover this discussion in some
depth in the Advanced Calculus course, while linear algebra is not a pre-req, it sure would
be nice if you had it. Linear is truly foundational for most interesting math.

SLarson’s pg. 100-102 # 22
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The theorem that follows here collects the various ideas we have discussed concerning an n X n
matrix and invertibility and solutions of Az = b.

Theorem 3.12.1.

Let A be a real n x n matrix then the following are equivalent:

a.) A is invertible,
b.) rref[A|0] = [I|0] where 0 € R",

)
c.) Az =0iff z =0,
) A is the product of elementary matrices,

e.) there exists B € R "*" such that AB =1,

(

(

(

(

(

(f.) there exists B € R ™™ such that BA = I,
(g.) rreflA] =1,

(h.) rref[A|b] = [I|x] for an = € R",

(i.) Az = b is consistent for every b € R",

(j.) Az = b has exactly one solution for every b € R",
(

k.) AT is invertible.

These are in no particular order. If you examine the arguments in this chapter you’ll find we’ve
proved most of this theorem. What did I miss? m

"teaching moment or me trying to get you to do my job, you be the judge.
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Chapter 4

determinants

I should warn you there are some difficult calculations in this Chapter. However, the good news
is these are primarily to justify the various properties of the determinant. The determinant of
a square matrix is simply a number which contains lots of useful information. We will conclude
this Chapter with a discussion of what the determinant says about systems of equations. There
are a lot of different ways to introduce the determinant, my approach is rooted in my love of
index calculations from physics. A pure mathematician would likely take another approach (mine
is better). Geometrically, determinants are used to capture the idea of an oriented volume. I
illustrate this with several examples before we get too deep into the more esoteric calculations.

4.1 determinants and geometry

The determinant of a square matrix can be defined by the following formulas. I'll give the general
formula in the next section, but more often than not the formulas given here are more than enough.
Well, this one is just silly:

deta = a.

Then the 2 x 2 case is perhaps more familar,

a b
det (c d)—ad—bc.

we’ve seen this before somewhere. Then the 3 x 3 formula is:

b ¢
e floaaet (¢ ) bodet (T F)4eoden (¢ €
noi h i g i g h

a
det | d
g 1

119



120 CHAPTER 4. DETERMINANTS

and finally the 4 x 4 determinant is given by

“ ; ¢ Z f g h e g h
det f ; Z | =adet(j k1) —bedet | i ko1 (4.1)
mon oo p n oo p m o p
e [ h e [ g
+c-det| i j 1) —d-det| ¢ j k (4.2)
m n p m n o

What do these formulas have to do with geometry?

Example 4.1.1. Consider the vectors < 1,0 > and < 0,w >. They make two sides of a rectangle
with length | and width w. Notice

[ 0
det[o w]—lw

In contrast,

0 w
det[l O}——lw.

Interestingly this works for parallellograms with sides < a,b > and < c¢,d > the area is given by
+det [25].

s : L;iﬂa ;

uui)[albjz m[gzé ol = ab. = b,
& al

Nu%ef e d\i'mw -,é}[ Bargs, = O, by ~ bIU\-‘,_

Maybe you can see it better in the diagram below: the point is that triangles T1 and T2 match nicely
but the T'3 is included in the red rectangle but is excluded from the green parallelogram. The area
of the red rectangle A1Bo less the area of the blue square As By is precisely the area of the green
parallelogram.
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)

/T3

™™/

=

/13

T/

By

T2

Perhaps you recall from calculus II1 that we learned a parallelogram with sides ff, B can be parametrized
by 7(u,v) = uA+vB. We have A = (a,b,0) and B = (¢, d,0) if you view the parallelogram from a
three dimensional perspective. Moreover,

B €1 €y €3
AxB=det| a b 0 | =(ad—bc)es.
c d 0

The sign of ad — bc indicates the orientation of the paralellogram. If the paralellogram lives in
the xy-plane then it has an up-ward pointing normal if the determinant is positive whereas it has a
downward pointing normal if the determinant is negative.

Example 4.1.2. If we look at a three dimensional box with vectors /T, E,é pointing along three
edges with from a common corner then it can be shown that the volume V is given by the determinant

—

A
V =+4det | B

—_—

c

Of course it’s easy to see that V = lwh if the sides have length [, width w and height h. However,
this formula is more general than that, it also holds if the vectors lie along a paralell piped. Again
the sign of the determinant has to do with the orientation of the box. If the determinant is positive
then that means that the set of vectors {ff, E, C_"} forms a righted-handed set of vectors. In terms
of calculus II1, (C’) and A x B both point off the same side of the plane containing A and E; the
ordering of the vectors is roughly consistent with the right-hand rule. If the determinant of the
three vectors is negative then they will be consistent with the (inferior and evil) left-hand rule. I
say "roughly” because A x B need not be parallel with C.

If you study the geometry of cross and dot products it is not too hard to see that V = ]ff (E X é)]



122 CHAPTER 4. DETERMINANTS

This formula is easy to reproduce,

Ay Ay Az
det | Bi By Bg = A1(3203 — B3CQ) + A2(3103 — Bgcl) + A3(3102 — BQCl)
Chi Cy C5

=A-(BxOQ).

If you’d like to know more about the geometry of cross products then you should take calculus
IIT and read more than Stewart. It is interesting that the determinant gives formulas for cross
products and the so-called ”triple product” above.

Example 4.1.3. To calculate the cross-product of/_f and B we can use the heuristic rule

€1 €2 €3
A x B =det Al A2 A3
By By Bj

technically this is not a real "determinant” because there are vectors in the top row but numbers in
the last two rows.

Example 4.1.4. The infinitesimal area element for polar coordinate is calculated from the Jacobian:

rsin(f) —rcos(d)

d5 = det cos(6) sin(6)

drdf = (rsin®(0) + r cos®(0))drdd = rdrdh
Example 4.1.5. The infinitesimal volume element for cylindrical coordinate is calculated from the
Jacobian:

rsin(f) —rcos(d) 0
dV =det | cos() sin(@) 0 | drdfdz = (rsin®(0) + r cos?())drdfdz = rdrdfdz
0 0 1

Jacobians are needed to change variables in multiple integrals. The Jacobianﬂ is a determinant
which measures how a tiny volume is rescaled under a change of coordinates. Each row in the
matrix making up the Jacobian is a tangent vector which points along the direction in which a
coordinate increases when the other two coordinates are fixed.

see pages 206-208 of Spence Insel and Friedberg or perhaps my advanced calculus notes where I develop differ-
entiation from a linear algebraic viewpoint.
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4.2 cofactor expansion for the determinant

The precise definition of the determinant is intrinsically combinatorial. A permutation o : N,, — N,
is a bijection. Every permutation can be written as a product of an even or odd composition of
transpositions. The sgn(oc) = 1 if o is formed from an even product of transpositions. The
sgn(o) = —1 if o is formed from an odd product of transpositions. The sum below is over all
possible permutations,

d(if(A) = Z Sgn((r)Alo(l)AQ(r(Q) T An(r(n)

(e

this provides an explicit definition of the determinant. For example, in the n = 2 case we have
oo(x) = or 01(1) = 2,01(2) = 1. The sum over all permutations has just two terms in the n = 2
case,

det(A) = sgn(00) A1g,(1)A20,(2) + 591(01) Ao, (1) A20, (2) = A11 422 — A12A2;
In the notation Aj; = a, A19 = b, Agy = ¢, Asg = d the formula above says det(A) = ad — be.

Pure mathematicians tend to prefer the definition above to the one I am preparing below. I would
argue mine has the advantage of not summing over functions. My sums are simply over integers.
The calculations I make in the proofs in this Chapter may appear difficult to you, but if you gain
a little more experience with index calculations I think you would find them accessible. I will not
go over them all in lecture. I would recommend you at least read over them.

Definition 4.2.1.

Let €;,4,..i, be defined to be the completely antisymmetric symbol in n-indices. We define
€12..n, = 1 then all other values are generated by demanding the interchange of any two
indices is antisymmetric. This is also known as the Levi-Civita symbol.

We have nice formulas for the determinant with the help of the Levi-Civita symbol, the following
is yet another way of stating the definition for det(A),

det(A) = Z €irinyomnrin Aliy A2iy *++ Aniy,

11,8254yt

Example 4.2.2. [ prefer this definition. I can actually calculate it faster, for example the n = 3
case is pretty quick:
det(A) = e123A11A22A33 + €231 A12 A3 A31 + €312A13A21 A3p
+e321 A13A20A31 + €213A12A21 A3z + €132 A11A23A32
In principle there are 27 terms above but only these 6 are nontrivial because if any index is repeated
the €;;1 is zero. The only nontrivial terms are €123 = €231 = €312 = 1 and €321 = €213 = €132 = —1.
Thus,
det(A) = A11 A Ass + A19Ass Az + A3 A Asg
—A13A22A31 — A12A21 A3 — A11 A3 A3
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This formula is much closer to the trick-formula for calculating the determinant without using
minors. (I’ll put it on the board in class, it is above my skill-level for these notes)

The formalism above will be used in all my proofs. I take the Levi-Civita definition as the primary
definition for the determinant. All other facts flow from that source. The cofactor expansions of
the determinant could also be used as a definition.

Definition 4.2.3.

Let A = [A;;] € R™™. The minor of A;; is denoted M;; which is defined to be the
determinant of the R™®=D*(=1) matrix formed by deleting the i-th column and the j-th
row of A. The (i, j)-th co-factor of A is Cj; = (1) M;;.

Theorem 4.2.4.

The determinant of A € R ™™ can be calculated from a sum of cofactors either along any

row or column;
1. det(A) = AinCi1 + AipCia + - - - + AjnCiy, (i-th row expansion)

2. det(A) = A1;C1j + A;Coj + - - + A,;Cy;j (j-th column expansion)

Proof: T’ll attempt to sketch a proof of (2.) directly from the general definition. Let’s try to
identify Ay;, with Ay then Ay, with Ag; and so forth, keep in mind that j is a fixed but arbitrary
index, it is not summed over.

det(A) = Z €iryin,eninAlin A2iy * Aniy,

11,02,--in

= g €inyinA1jA2iy - Apa, + E €irin,inAt1iy A2iy - - Aniy,

02,000y i17,12,e..vim

= Z €in,inA1jA2iy - Apay, + Z €ir jyoinAr1iy Aoj - Apay
ioyin 13 yeemrin
+oe > €irizsenmin—1,jA1i * An—1,i, 1 Anj
117,527 ]y sin—17£]
+ E €ir,osin Atin Aty -+ - Aniy,
il#jv--win?&j

Consider the summand. If all the indices i1, 12, ...14, # j then there must be at least one repeated
index in each list of such indices. Consequently the last sum vanishes since €;,, . ;, is zero if any
two indices are repeated. We can pull out A;; from the first sum, then Ay; from the second sum,
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and so forth until we eventually pull out A,; out of the last sum.

det(A) = A1j< Z €inyyin Aig =+ Anin> + A2j< Z €iryjyrin ATy =+ Amn) +---

120 yin 1] rin

+ Anj ( E €irin,ej Arip A2iy + - An—l,z‘M)
7;17&]':7:275.7'»"'7.]'75@'77«71

The terms appear different, but in fact there is a hidden symmetry. If any index in the summations
above takes the value j then the Levi-Civita symbol with have two j’s and hence those terms are
zero. Consequently we can just as well take all the sums over all values except j. In other words,
each sum is a completely antisymmetric sum of products of n — 1 terms taken from all columns
except j. For example, the first term has an antisymmetrized sum of a product of n — 1 terms not
including column j or row 1.Reordering the indices in the Levi-Civita symbol generates a sign of
(—1)'*7 thus the first term is simply Ay;Cy;. Likewise the next summand is As;Co; and so forth
until we reach the last term which is A,,;C,,;. In other words,

det(A) = AUCU + AQjCQj —+ -+ Ananj

The proof of (1.) is probably similar. We will soon learn that det(AT) = det(A) thus (2.) = (1.).
since the j-th row of A7 is the j-th columns of A.

All that remains is to show why det(A) = det(AT). Recall (AT);; = Aj; for all i, j, thus

det(AT) = " €irinin (A1 (A )2iy -+ (AT s,

= Z €irin,....in A1i1 A2iy - - Ani, = det(A)

11,8250yl

to make the last step one need only see that both sums contain all the same terms just written in
a different order. Let me illustrate explicitly how this works in the n = 3 case,

det(AT) = €193A11 Agg A3z + €931 Aoy Ao Ay3 + €312 431 A1 Aos
+e301A31A20A13 + €213 A21 A12A33 + €132A11 A32A23

The I write the entries so the column indices go 1,2,3

det(AT) = €193A11 Aga A3z + €231 A13A21 Az + €319 A12 Ag3 Az
+e321A13A20A31 + €213 A12 421 A33 + €132A11 A23 A3
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But, the indices of the Levi-Civita symbol are not in the right order yet. Fortunately, we have
identities such as €s31 = €312 which allow us to reorder the indices without introducing any new
signs,
det(AT) = e103A11 Aoa Az + €312 A13A21 Aga + €231 A12 A3 Az
+ez01 A13A20A31 + €213A12A21 A3z + €132 A11A23A32

But, these are precisely the terms in det(A) just written in a different order (see Example [4.2.2]).
Thus det(A”) = det(A). I leave the details of how to reorder the order n sum to the reader. [J

Remark 4.2.5.

Lay’s text circumnavigates many of the difficulties I face in this chapter by using the co-
factor definition as the definition of the determinant. One place you can also find a serious
treatment of determinants is in Linear Algebra by Insel, Spence and Friedberg where you’ll
find the proof of the co-factor expansion is somewhat involved. However, the heart of the
proof involves multilinearity. Multilinearity is practically manifest with our Levi-Civita def-
inition. Anywho, a better definition for the determinant is as follows: the determinant
is the alternating, n-multilinear, real valued map such that det(I) = 1. It can be
shown this uniquely defines the determinant. All these other things like permutations and
the Levi-Civita symbol are just notation.

Remark 4.2.6.

The best way to prove things about determinants is likely the wedge product formalism.
In that notation the Levi-Civita symbol is implicit within the so-called wedge product of
vectors. For a nxn matrix the det(A) is defined implicitly by the formula col; (A) Acola(A)A
-+ A colp(A) = det(A)e; Aeg A--- Ae,. One nice place to read more about these things
from a purely linear-algebraic perspective is the text Abstract Linear Algebra by Morton L.
Curtis.

Example 4.2.7. [ suppose it’s about time for an example. Let

A=

~ b~ =

2 3
5 6
8 9
I usually calculate by expanding across the top row out of habit,

det(A)Zldet[5 6]—2det[4 6}+3det[4 5]

8 9 79 7 8
— 1(45 — 48) — 2(36 — 42) + 3(32 — 35)
= 34+12-9

=0.
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Now, we could also calculate by expanding along the middle row,

det(A)——4det[§ 3}+5det[i S]—Gdet[; z]

— —4(18 — 24) +5(9 — 21) — 6(8 — 14)
=24 — 60 + 36
— 0.

Many other choices are possible, for example expan along the right column,

det(A)—3det[4 5]—6det[1 2}+9det[1 2]

7 8 7 8 45
=3(32 — 35) — 6(8 — 14) + 9(5 — 8)

= —9+36—27

= 0.

which is best? Certain matrices might have a row or column of zeros, then it’s easiest to expand
along that row or column.

Example 4.2.8. Let’s look at an example where we can exploit the co-factor expansion to greatly
reduce the difficulty of the calculation. Let

1 2 3 0 4
0 0 5 00
A= 6 7 8 00
0 9 3 40
-1 -2 -3 01

Begin by expanding down the 4-th column,

1 2 3 4
0 5 0
_ (_1\4+4 _
det(A) = (—=1)""" Myy = 4det 6 7 8 0
-1 -2 -3 1
Next expand along the 2-row of the remaining determinant,

1 2 4
det(A) = (4)(5(=1)*T3My3) = —20det | 6 7 0
-1 -2 1

Finish with the trick for 3 x 3 determinants, it helps me to write out

1 2 411 2
6 7 0] 6 7
-1 -2 1|-1 -2
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then calculate the products of the three down diagonals and the three upward diagonals. Subtract
the up-diagonals from the down-diagonals.

det(A) = —20(7 + 0 — 48 — (—28) — (0) — (12)) = —20(—25) = 500.

4.3 properties of determinants

We're finally getting towards the good part.

Proposition 4.3.1.

Let A € R ™™,
1. det(AT) = det(A),
2. If there exists j such that row;(A) = 0 then det(A) =0,
3. If there exists j such that colj(A) = 0 then det(A) =0,
4. det[A1]|As|---|aAr +bBg|- - - An] = adet[Aq] - - - |Ag| - - |An] +bdet[Ar] - - - | Bg| - - - | Anl,
5. det(kA) = k™det(A)
6. if B={A:ry < r;} then det(B) = —det(A),
7. if B={A:ry+ar; — r} then det(B) = det(A),
8. if row;(A) = krow;(A) for ¢ # j then det(A) =0

where I mean to denote r; <+ r; as the row interchange and 7 + ar; — r; as a column
addition and I assume £k < j.

Proof: we already proved (1.) in the proof of the cofactor expansion Theorem The proof of
(2.) and (3.) follows immediately from the cofactor expansion if we expand along the zero row or
column. The proof of (4.) is not hard given our Levi-Civita defintion, let
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Calculate from the definition,

det(C’) = Z E’il,iz,...,inclil . Ckzk c. Onin

11,12,..yin
= > €iigin Aty (@Agi, + DB, -+ Ani,
11,12,..yin
=a< E €irin,.., z’nAlil"‘Akik"'Anin>
11,02,..yn
+b E 6z‘1,z‘2,...,z‘r,~41i1“'Bkz‘k”'Am'n)
11,6250y

= adet[Ay|Ag| - - - |Ag|- - - [An] 4 bdet[Ay|Ag| - - - [By| - - - |An].
by the way,the property above is called multilinearity. The proof of (5.) is similar,

det(kA) = Z Eh,ig,...,inkAlilkAQiz cee ]{?Amn

01,02;050n

n
=k § €irinyomnin Aliy A2iy *++ Aniy,

11,8250yl

= k" det(A)
Let B be as in (6.), this means that coly(B) = col;j(A) and vice-versa,

det(B) = Z 6i1,...,ik,...7ij7...,inA1i1 . AJZk e Akij . Anzn

11,82,--50n,

= E —€iyronigosiprin Aiy 0 Agig o Agiy oo Any,

11,02, 050m

= —det(A)

where the minus sign came from interchanging the indices 7; and .

To prove (7.) let us define B as in the Proposition: let rowy(B) = rowy(A) + arow;(A) and
row;(B) = row;(A) for i # k. This means that By = Ay + aAj and B; = Ay for each .
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Consequently,

det(B) = Z €irorsiprnsin Atiy - (Agiy, +aAji) - - Aniy,

11,02,00in
= g €irynsinAtiy - Akiy, - Aniy,
11,82,00in
+ a( g €iyyifyomsityyinALiy *  Ajay Ajig Ani )
11,802,000
= E €ir,onnin Aty Ay, - Aniy,
11,82,-0in
= det(A).
The term in parenthesis vanishes because it has the sum of an antisymmetric tensor in i;, 7, against
a symmetric tensor in 4;,4;. Here is the pattern, suppose S;; = Sj; and T;; = —Tj; for all 7, j then
consider

Z Z Sij T = Z Z S;iTyi switched indices
j i

( J
= Z Z —8i; T35 used sym. and antisym.
FE
= — Z Z Sii T interchanged sums.
i g
thus we have ) S;;T;; = — > S;;T;; which indicates the sum is zero. We can use the same argu-

ment on the pair of indices ij, i¢ in the expression since Aj;; Aj;, is symmetric in 4,1 whereas the
Levi-Civita symbol is antisymmetric in i;, iy.

We get (8.) as an easy consequence of (2.) and (7.), just subtract one row from the other so that
we get a row of zeros. [J

Proposition 4.3.2.

‘ The determinant of a diagonal matrix is the product of the diagonal entries.

Proof: Use multilinearity on each row,

d 0 --- 0 1 0 0 1 0 - 0

0 do -+ O 0 do --- O 01 - 0
det . . =dydet | . . ) =...=didy---d,det

0 0 - dy 0 0 dy, 00 1

Thus det(D) = dids - - - d,, as claimed. [J
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Proposition 4.3.3.

Let L be a lower triangular square matric and U be an upper triangular square matrix.
1. det(L) = L11L22 tee Lnn
2. det(U) = U11U22 tee Unn

Proof: T'll illustrate the proof of (2.) for the 3 x 3 case. We use the co-factor expansion across the
first column of the matrix to begin,

Ui Ui Uiz
det 0 Uy Usz | = Aqrdet {
0 0 Uss

Uso Usz |

0 Us |~ U11U22Uss
The proof of the n x n case is essentially the same. For (1.) use the co-factor expansion across the
top row of L, to get det(L) = L11C11. Not the submatrix for calculating Cq; is again has a row of
zeros across the top. We calculate C17 = LgoC2. This continues all the way down the diagonal.
We find det(L) = L11L22 e Lnn |

Proposition 4.3.4.

Let A€ R ™" and k # 0 € R,
L. det(Eresr;) = —1,
2. det(Egry—r;) = k,
3. det(Er ypr;—r;) = 1,
4. for any square matrix B and elementary matrix E, det(EB) = det(E)det(B)

5. if Eq, Ea, ..., Ey are elementary then det(E1Es - - Ey) = det(E1)det(Es) - - - det(Ey)

Proof: Proposition shows us that det(I) = 1 since I~' = I (there are many easier ways to
show that). Note then that E,. ., is a row-swap of the identity matrix thus by Proposition
we find det(Er, ;) = —1. To prove (2.) we use multilinearity from Proposition For (3.) we
use multilinearity again to show that:

det(ETi"l‘ij—)Ti) = dEt(I) + bdet(Eij)
Again det(I) = 1 and since the unit matrix Ej; has a row of zeros we know by Proposition m
det(EZ-j) = 0.

To prove (5.) we use Proposition multiple times in the arguments below. Let B € R "*"
and suppose F is an elementary matrix. If E is multiplication of a row by k then det(F) = k
from (2.). Also E'B is the matrix B with some row multiplied by k. Use multilinearity to see that
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det(EB) = kdet(B). Thus det(EB) = det(E)det(B). If E is a row interchange then EB is B with a
row swap thus det(EB) = —det(B) and det(E) = —1 thus we again find det(EB) = det(E)det(B).
Finally, if E is a row addition then FB is B with a row addition and det(EB) = det(B) and
det(E) = 1 hence det(EB) = det(F)det(B). Notice that (6.) follows by repeated application of
(5.). O

Proposition 4.3.5.

A square matrix A is invertible iff det(A) # 0.

Proof: recall there exist elementary matrices E1, Eo, ..., E such that rref(A) = E1Es--- ERA.
Thus det(rref(A)) = det(E)det(Esy) - - - det(Ey)det(A). Either det(rref(A)) = 0 and det(A) =0

or they are both nonzero.

Suppose A is invertible. Then Ax = 0 has a unique solution and thus rref(A) = I hence
det(rref(A)) = 1 # 0 implying det(A) # 0.

Conversely, suppose det(A) # 0, then det(rref(A)) # 0. But this means that rref(A) does not
have a row of zeros. It follows rref(A) = I. Therefore A~ = E1Ey--- Ey,. [

Proposition 4.3.6.

If A,B € R ™" then det(AB) = det(A)det(B).

Proof: If either A or B is not invertible then the reduced row echelon form of the nonivert-
ible matrix will have a row of zeros hence det(A)det(B) = 0. Without loss of generality, assume
A is not invertible. Note rref(A) = Ei1Fy--- ExA hence E3 1By E; lrref(A)B = AB. No-
tice that rref(A)B will have at least one row of zeros since rref(A) has a row of zeros. Thus
det(E3s ' Ey By Yrref(A)B) = det(E3 By By Ydet(rref(A)B) = 0.

Suppose that both A and B are invertible. Then there exist elementary matrices such that A =
Ei---Ey,and B=FE,;---E, 4 thus

det(AB) = det(E1 - EpEpi1 -+ Epyyg)
=det(Ey -+ Ep)det(Epi1 -+ Epiq)
= det(A)det(B).

We made repeated use of (6.) in Proposition O

Proposition 4.3.7.

If A€ R ™" is invertible then det(A~!) = m.
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Proof: If A is invertible then there exists A~' € R ™*” such that AA~! = I. Apply Proposition
[4.3.6] to see that

det(AA™) = det(A)det(A™") = det(I) = det(A)det(A™1) = 1.
Thus, det(A™!) = 1/det(A) O

Many of the properties we used to prove det(AB) = det(A)det(B) are easy to derive if you were
simply given the assumption det(AB) = det(A)det(B). When you look at what went into the proof
of Proposition [4.3.6]it’s not surprising that det(AB) = det(A)det(B) is a powerful formula to know.

Proposition 4.3.8.

If A is block-diagonal with square blocks Ay, Ao, ..., A then

det(A) = det(Aq)det(As) - - - det(Ay).

Proof: for a 2 x 2 matrix this is clearly true since a block diagonal matrix is simply a diagonal
matrix. In the 3 x 3 nondiagonal case we have a 2 x 2 block A; paired with a single diagonal
entry Ao. Simply apply the cofactor expansion on the row of the diagonal entry to find that
det(A) = Aadet(Ay) = det(Az)det(Ay). For a 4 x 4 we have more cases but similar arguments
apply. I leave the general proof to the reader. [

Example 4.3.9. If M = [ 61 lg ] is a block matrix where A, B are square blocks then det(M) =
det(A)det(B).

4.4 examples of determinants

In the preceding section I worked pretty hard to prove a number of useful properties for determi-
nants. I show how to use them in this section.

Example 4.4.1. Notice that row 2 is twice row 1,
1 2 3
det| 2 4 6 | =0.
7 8 9

Example 4.4.2. To calculate this one we make a single column swap to get a diagonal matrix.
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The determinant of a diagonal matriz is the product of the diagonals, thus:

060000 600000
800000 080000
001000 001000

dtlgoo1o00|= "% 000100]|%
000010 000010
(00000 1) 00000 1,

Example 4.4.3. [ choose the the column/row for the co-factor expansion to make life easy each
time:

103 711 g : 0 12
det Tl =_sdet| 0 3 4
0 3 0 4 R
-2 e 0 @G
1 2
= —5( 2)det[3 4}
=10(4 — 6)
— _90.

Example 4.4.4. Find the values of A such that the matriz A — X is singular given that

1 0 2 3

1 000

A= 00 20

00 0 3

The matrix A — X is singular iff det(A — \I) =0,

1—X 0 2 3
1 —A 0 0
det(A — \I) = det 0 0 2-)x 0

0 0 0 3-2x
1-X 0 2
=(B=MNdet| 1 A 0
0 0 2-2A

1-X 0
—(3—)\)(2—)\)det[ 1 )\]
=B-ME2-N)1-=X(=X)
=AA=1)(A=2)(A=13)
Thus we need A = 0,1,2 or 3 in order that A — X\ be a noninvertible matriz. These values are
called the eigenvalues of A. We will have much more to say about that later.
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Example 4.4.5. Suppose we are given the LU-factorization of a particular matriz (borrowed from
the text by Spence, Insel and Friedberg see Example 2 on pg. 154-155.)

1 -1 2 1 0 0 1 -1 2
A=13 -1 7|=1]3 1 0 0 2 1 |=LU
2 -4 5 2 -1 1 0 0 2

The LU-factorization is pretty easy to find, we may discuss that at the end of the course. It is an
important topic if you delve into serious numerical work where you need to write your own code
and so forth. Anyhow, notice that L,U are triangular so we can calculate the determinant very
easily,

det(A) =det(L)det(U) =1-1-1-1-2-2=4.

From a numerical perspective, the LU-factorization is a superior method for calculating det(A) as
compared to the co-factor expansion. It has much better ”convergence” properties. Incidentally,
your text has much more to say about algorithmics so please keep that in mind if my comments
here leave you wanting more.

Example 4.4.6. Recall that the columns in A are linearly independent iff Ax = 0 has only the
x = 0 solution. We also found that the existence of A~ was equivalent to that claim in the case A
was square since Az = 0 implies A~' Az = A710 = 0 hence x = 0. Clearly then the columns of a
square matriz A are linearly independent iff A~' exists. Suppose A~' exists then AA™" = I thus
det(AA™Y) = det(A)det(A™! = det(I) = 1 hence det(A) # 0. Conversely, the adjoint formula for
the inverse is well-defined if det(A) # 0. To summarize: for A € R ™*"

’ columns of A are linearly independent <  det(A) # 0.‘

Observe that this criteria is only useful if we wish to examine the linear independence of preciely
n-vectors in R™. For example, (1,1,1),(1,0,1),(2,1,2) € R? have

1112
det | 1]10|1 | =0.
11112

Therefore, {(1,1,1),(1,0,1),(2,1,2)} form a linearly dependent set of vectors.
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4.5 Kramer’s Rule

The numerical methods crowd seem to think this is a loathsome brute. It is an incredibly clumsy
way to calculate the solution of a system of equations Az = b. Moreover, Kramer’s rule fails in the
case det(A) = 0 so it’s not nearly as general as our other methods. However, it does help calculate
the variation of parameters formulas in differential equations so it is still of theoretical interest at a
minimum. Students sometimes like it because it gives you a formula to find the solution. Students
sometimes incorrectly jump to the conclusion that a formula is easier than say a method. It is
certainly wrong here, the method of Gaussian elimination beats Kramer’s rule by just about every
objective criteria in so far as concrete numerical examples are concerned.

Proposition 4.5.1.

If Ax = b is a linear system of equations with x = [x] a9 --- xn]T and A € R ™" guch that
det(A) # 0 then we find solutions

det(Ay) det(Asz) det(Ay)
T1=——, L= ———2, ..., Tp=——
det(A) det(A) det(A)
where we define Ag to be the n x n matrix obtained by replacing the k-th column of A by
the inhomogeneous term b.

Proof: Since det(A) # 0 we know that Az = b has a unique solution. Suppose z; = Cif;((’%)) where

Aj = [coli(A)] - |colj—1(A)|blcolji1(A)|---|col,(A)]. We seek to show = = [z;] is a solution to
Az = b. Notice that the n-vector equations

Aey = coli(A),...,Aej_1 = colj_1(A), Aej11 = colj11(A), ..., Ae, = col,(A), Az = b
can be summarized as a single matrix equation:

Alea]. . lej-alzleja] - |en] = [coli(A)]- -~ |colj_1(A)|blcolj 1 (A)] - - - |coln(A)] = A;

this is precisely A;
Notice that if we expand on the j-th column it’s obvious that
detle]. .. |ej-1|zleji1] - |en] = x;

Returning to our matrix equation, take the determinant of both sides and use that the product of
the determinants is the determinant of the product to obtain:

det(A)x; = det(Aj)

Since det(A) # 0 it follows that z; = % for all . O
This is the proof that is given in Lay’s text. The construction of the matrix equation is not really
an obvious step in my estimation. Whoever came up with this proof originally realized that he
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would need to use the determinant product identity to overcome the subtlety in the proof. Once
you realize that then it’s natural to look for that matrix equation. This is a clever prooiﬂ

Example 4.5.2. Solve Ax = b given that

“[32] [

where © = [x1 x2]T. Apply Kramer’s rule, note det(A) = 2,

1 1 3 1 -7
and,
1 11 1 3
The original system of equations would be x1 4+ 3x9 = 1 and 2x1 + 8xo = 5. As a quick check we
can substitute in our answers x1 = —7/2 and x2 = 3/2 and see if they work.

Example 4.5.3. An nonhomogeneous system of linear, constant coefficient ordinary differential
equations can be written as a matriz differential equation:

do _

A
7 x4+ f

It turns out we’ll be able to solve the homogeneous system dx/dt = Ax via something called the
matriz exponential. Long story short, we’ll find n-solutions which we can concatenate into one big
matriz solution X. To solve the given nonhomogeneous problem one makes the ansatz that x = Xv

18 a solution for some yet unknown vector of functions. Then calculus leads to the problem of solving
dv

X— =
dt

where X is matriz of functions, dv/dt and f are vectors of functions. X is invertible so we expect
to find a unique solution dv/dt. Kramer’s rule says,

d 1 Wi ‘ ‘ ,
<d1t}>z - Jet(X) det[Z1] - |g] - |Zn] = det([;;]) defining W; in the obvious way

For each i we integrate the equation above,

[ Wil fldt
vilt) = det(X) "
The general solution is thus,
Wil fldt
= X = X .
e [ det(X) }

Zas seen from my humble vantage point naturally
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The first component of this formula justifies n-th order variation of parameters. For erample in
the n = 2 case you may have learned that y, = y1v1 + yav2 solves ay” + by + cy = g if

B / —gy2dt _ / gyrdt
U1 = / / V2 = / 7
Y1Ys — Y21 Y1Ys — Y241

These come from the general result above. Notice that these formulas need yi1yh — yoyi # 0. This
is precisely the Wronskian Wly1,ye] = y1yh — y2y) of the fundamental solutions yi,ya. It turns
out that the Wronskian is nonzero for fundamental solutions thus the formulas above are entirely
general. Linear independence of functions is considerably trickier than linear independence in R,
I’ll say more in the chapter on vector spaces.

Example 4.5.4. here’s a problem from Advanced calculus last year. I use Kramer’s rule to cal-
culate derivatives of variables which are implicitly defined by several equations. The idea is rather
stmple; take the total differential of each constraint equation then solve for the differentials of the in-
dependent variables in terms of the dependent variables. The total differentials give linear relations
between all the differentials of the variables where the coefficients are functions.

Problem 5 [300pts] Suppose that
P Hytz+e’=2 and z+yP+z+ui=0

Calculate (32} . State which variables are dependent and which are independent at the
start of your calculation.

Use w, 4 Jtﬁwmcé an Jhéfﬁhdﬁu@ X, 3
Wdx +dy +d3 + eVdw = o
dy + 29d9 +d% + 3widW = @
JY ceWdw = -dxdx —dl

29dY 43w = —dy ~ o2~

I g% ] 9(59- — dx olx -—o/’}f
[w st llaw) T [ e -2

/ —ox el ~d3
dw = oD /39 [ Sie = o8
3w? —QyeW -

= —dx-d3 +ay(oxdx +d3) . 7
= (x4 =1)dx +(29-1)d3 . @;‘/j wa-)
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4.6 adjoint matrix

Definition 4.6.1.

Let A € R ™*™ the the matrix of cofactors is called the adjoint of A. It is denoted adj(A)
and is defined by and adj(A);; = C% where Cj; is the (7, j)-th cofactor.

I’ll keep it simple here, lets look at the 2 x 2 case:

a b
a-[e ]
has cofactors Cy; = (—1)'*1det(d) = d, C1a = (—1)'2det(c) = —c, Ca1 = (—1)*Tdet(b) = —b and

Coz = (—1)?"2det(a) = a. Collecting these results,

adj(A) = [ e ]

a

This is interesting. Recall we found a formula for the inverse of A (if it exists). The formula was

1 d —b
A7l =
ad — be [ —Cc a ]
Notice that det(A) = ad — be thus in the 2 x 2 case the relation between the inverse and the adjoint
is rather simple:

= detl(A) adj(A)"
It turns out this is true for larger matrices as well:
Proposition 4.6.2.
If A is invertible then A~1 = madj(A)T.
Proof I: Calculate the product of A and adj(A)7,
A A 0 Ay, Cn Ci2 -+ Cn
aagiayt = | P2 A A O G O
A A o Aw | [ G G o G

The (i, j)-th component of the product above is
(Aadj(A)T)ij = rowi(A)colj(adj(A)T) = row;(A)row;(adj(A)) = AnCj1 + AinCja + - - + AinCiin,
Suppose that ¢ = j then the sum above is precisely the i — th row co-factor expansion for det(A):

(Aadj(A)T)i; = AnCi + ApCig + - -+ + Ay Cipy = det(A)
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If © # j then the sum vanishes. I leave the details to the readeIEI U

Proof II: To find the inverse of A we need only apply Kramer’s rule to solve the equations implicit

within AA™! = I. Let A~ = [v1|vg|- - |vn] We need to solve
Avy = eq, Avg = e, Av, = e,

Kramer’s rule gives us (v1); = Tei(ny Where O = (=1)™J M;; is the cofactor formed from delet-
ing the first row and j-th column. More generally we may apply Kramer’s rule to deduce the

j-component of the i-th column in the inverse (v;); = W&)' Therefore, COli(Ail)j = (Ail)ji -
%SE%. By definition adj(A) = [Cj;] hence adj(A)g;- = Cj; and it follows that A~ = ﬁ(A)adj(A)T‘

Example 4.6.3. Let’s calculate the general formula for the inverse of a 3 X 3 matriz. Assume it
exists for the time being. ( the criteria for the inverse eristing is staring us in the face everywhere
here). Let

a b c
A=|d e f

g h i
Calculate the cofactors,

Ciy =det [{ 1] =ei— fh,
Cp = —det [j{] = fg—di,
Ciz =det [§ ;] = dh — eg,
Cor = —det [} ¢] = ch — bi,
Coy =det|g 5] = ai — cg,
Coz = —det [4}] = bg — ah,
Cap =det [2§] =bf — ce,
Csp = —det[q f] = cd — af,

C33 = det [‘52] = ae — bd.

31 don’t have an easy proof that these terms cancel for i # j. It’s simply to verify for the n = 2 or n = 3 cases
but the reason appears to be a combinatorial cancellation. If you can provide a concrete and readable proof for the
general case it would definitely earn you some points.
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Hence the adjoint is

141

et — fh| fg—di | dh—eg
adj(A) = | ch—0bi | ai —cg | bg—ah
bf —ce | cd—af | ae — bd
Thus, using the A~ = det(A)adj(A)T
= 1 et — fh | ch—"bi | bf —ce

a b c
d e f =
g h i

aet +bfg+ cdh — gec — hfa — idb

fg—di| ai—cg | cd—af
dh —eg | bg —ah | ae — bd

You should notice that are previous method for finding A~' is far superior to this method. It required
much less calculation. Let’s check my formula in the case A = 31, this means a = e =1 =3 and

the others are zero.

L [9]o]o
I‘lzﬁ 9]0
0]9

1
=1
3

This checks, (31)(31) = 311 = I. I do not recommend that you memorize this formula to calculate

inverses for 3 X 3 matrices.
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4.7 applications

The determinant is a convenient mnemonic to create expressions which are antisymmetric. The key
property is that if we switch a row or column it creates a minus sign. This means that if any two
rows are repeated then the determinant is zero. Notice this is why the cross product of two vectors
is naturally phrased in terms of a determinant. The antisymmetry of the determinant insures the
formula for the cross-product will have the desired antisymmetry. In this section we examine a few
more applications for the determinant.

Example 4.7.1. The Pauli’s exclusion principle in quantum mechanics states that the wave func-
tion of a system of fermions is antisymmetric. Given N -electron wavefunctions x1,X2,-.., XN the
following is known as the Slater Determinant

xa(r1) - xa(m) X (71)
W ) et | X ) ()
) xal) o ()
Notice that V(71,71,...,7n) = 0 and generally if any two of the position vectors 7; = 7; then the

total wavefunction ¥ = 0. In quantum mechanics the wavefunction’s modulus squared gives the
probability density of finding the system in a particular circumstance. In this example, the fact that
any repeated entry gives zero means that no two electrons can share the same position. This is
characteristic of particles with half-integer spin, such particles are called fermions. In contrast,
bosons are particles with integer spin and they can occupy the same space. For example, light is
made of photons which have spin 1 and in a laser one finds many waves of light traveling in the
same space.

Example 4.7.2. This is an example of a Vandermonde determinant. Note the following curious
formula:

I z1 wn
det | 1 x2 yo | =0
1 =z g

Let’s reduce this by row-operationd]

1 Y1 1 = Y1

1

1”2—’/“1—)72
Ly e | T 0 z2—x1 Y2—Ww
1 =z y B 1s 0 z—z1 y—u1

Notice that the row operations above could be implemented by multiply on the left by Ey,_r,—r, and
Ery_ri—ry. These are invertible matrices and thus det(Ey,—p, —y,) = k1 and det(Ers—r,—ry) = ko

4of course we could calculate it straight from the co-factor expansion, I merely wish to illustrate how we can use
row operations to simplify a determinant
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for some pair of nonzero constants ki, ks. If X is the given matriz and Y is the reduced matriz
above then Y = Er,_y g Bry—r —ry X thus,

1 1 »n 1 = Y1
0 = det 1 T2 Y2 = klkgdet 0 2 —T1 Y2 — Y1
Iz vy 0 z—21 y—wn

= kika[(z2 — 21)(y — 1) — (y2 — 1) (x — 21)]
Divide by k1ko and rearrange to find:

T2 — I

(- —y) = o — )@ —a1) = y=y1+(y2‘yl)<x2—x1>

The boxed equation is the famous two-point formula for a line.

Example 4.7.3. Let us consider a linear transformation T([x,y]T) = [2x,2 + y]*. Furthermore,
let’s see how a rectangle R with corners (0,0),(3,0),(3,1),(0,1). Since this linear transformation is
invertible (I invite you to prove that ) it follows that the image of a line is again a line. Therefore,
if we find the image of the corners under the mapping T then we can just connect the dots in the
image to see what T'(R) resembles. Our goal here is to see what a linear transformation does to a
rectangle.

As you can see from the picture we have a paralellogram with base 6 and height 1 thus Area(T'(R)) =
6. In constrast, Area(R) = 3. You can calculate that det(T) = 2. Curious, Area(T(R)) =
det(T)Area(R). I wonder if this holds in general? El

%ok, actually T don’t wonder, I just make it your homework problem.
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4.8 conclusions

We continue Theorem [3.12.1] from the previous chapter.

Theorem 4.8.1.

Let A be a real n x n matrix then the following are equivalent:

A is invertible,
rref[A|0] = [I|0] where 0 € R",

d.) A is the product of elementary matrices,

e.) there exists B € R ™" such that AB =1,

(a.)

(b.)

(c.) Az =0iff z =0,
(d.)

(e.)

(f.) there exists B € R ™" such that BA = I,
(g.) rref[A] =1,

(h.) rref[Alp] = [I|z] for an = € R,

(i) Az = b is consistent for every b € R”,

§
(
(
(

j.) Az = b has exactly one solution for every b € R",

k.) AT is invertible,

L) det(A) # O,

m.) Kramer’s rule yields solution of Az = b for every b € R™.

It’s a small addition, however the determinant is a nice tool for small systems since it’s pretty easy
to calculate. Also, Kramer’s rule is nice for small systems since it just gives us the solution. This is
all a very special case, in general we could have an inconsistent system or infinitely many solutions.

Theorem 4.8.2.

Let A be a real n x n matrix then the following are equivalent:

A is not invertible,

there exists b € R™ such that Az = b is inconsistent,

)
.) Az = 0 has at least one nontrivial solution.,
c.)

(a
(b
(
(d

) det(A) =0,

It turns out this theorem is also useful. We shall see it is fundamental to the theory of eigenvectors.



Chapter 5

linear algebra

Up to this point the topics we have discussed loosely fit into the category of matrix theory. The
concept of a matrix is milienia old. If I trust my source, and I think I do, the Chinese even had
an analogue of Gaussian elimination about 2000 years ago. The modern notation likely stems from
the work of Cauchy in the 19-th century. Cauchy’s prolific work colors much of the notation we
still use. The theory of determinants occupied much of the professional mathematicians’ for a large
part of the 19-th century. Determinants produce all sorts of useful formulae, but in the modern
view they play a secondary role. The concept of coordinate geometry as introduced by Descartes
and Fermat around 1644 is what ultimately led to the concept of a vector spaceﬂ Grassmann,
Hamilton, and many many others worked out volumous work detailing possible transformations
on what we now call R2,R3 R* . Argand(complex numbers) and Hamilton(quaternions) had more
than what we would call a vector space. They had a linear structure plus some rule for multiplica-
tion of vectors. A vector space with a multiplication is called an algebra in the modern terminology.

Honestly, I think once the concept of the Cartesian plane was discovered the concept of a vector
space almost certainly must follow. That said, it took a while for the definition I state in the
next section to appear. Giuseppe Peano gave the modern definition for a vector space in 188@
In addition he put forth some of the ideas concerning linear transformations which we discuss in
the next chapter. Peano is also responsible for the modern notations for intersection and unions
of set&{ﬂ He made great contributions to proof by induction and the construction of the natural
numbers from basic set theory.

Finally, I should mention the work of Hilbert, Lebesque, Fourier, Banach and others were greatly
influential in the formation of infinite dimensional vector spaces. Our focus is on the finite dimen-
sional case[]

! Bourbaki 1969, ch. ”Algebre lineaire et algebre multilineaire”, pp. 7891.

ZPeano, Giuseppe (1888),Calcolo Geometrico secondo I Ausdehnungslehre di H. Grassmann preceduto dalle Oper-
azioni della Logica Deduttiva, Turin

3see Pg 87 of A Transition to Advanced Mathematics: A Survey Course By William Johnston

4this history is flawed, one-sided and far too short. You should read a few more books if you’re interested.
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Finally, let me summarize what a vector space is before we define it. In short, a vector space over
F is simply a set which allows you to add its elements and multiply by the numbers in F. The
theorems and overall layout of this chapter mirror Chapter 5 of Anton and Rorres’ Elementary

CHAPTER 5. LINEAR ALGEBRA

Linear Algebra (9-th ed.).

5.1 definition and examples

Axioms are not derived from a more basic logic.
ultimately judged by their use. However, this definition is naturally motivated by the structure of

vector addition and scalar multiplication in R™ (see Proposition [2.2.9))

Definition 5.1.1.

1.

2.

10.

A vector space V over R is a set V' together with a function +: V x V — V called vector
addition and another function - : R x V' — V called scalar multiplication. We require
that the operations of vector addition and scalar multiplication satisfy the following 10
axioms: for all z,y,2z € V and a,b € R,

Al)z+y=y+axforall z,y e V,
A2) (z+y)+z=ax+(y+2) forall z,y,z €V,

A3) there exists 0 € V such that z + 0 =x for all z € V,

>

5)1-x=xforall z eV,

)
)
)
A4) for each z € V there exists —z € V such that 4+ (—z) = 0,
)
)
ATYa-(z+y)=a-x+a-yforal z,yeV and a €R,

A8) (a+b)-z=a-x+b-zforallz €V and a,b € R,

A9) If z,y € V then x + y is a single element in V', (we say V is closed with respect
o addition)

(
(
(
(
(
. (A6) (ab)-z=a-(b-z) forallz € V and a,b € R,
(
(
(
t

(A10) If x € V and ¢ € R then ¢- x is a single element in V. (we say V is closed with
respect to scalar multiplication)

We call 0 in axiom 3 the zero vector and the vector —z is called the additive inverse of
x. We will sometimes omit the - and instead denote scalar multiplication by juxtaposition;
a-r=ax.

Axioms (9.) and (10

They are the starting point. Their validity is

.) are admittably redundant given that those automatically follow from the
statements that +:V xV — V and - : R x V — V are functions. I've listed them so that you are
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less likely to forget they must be checked.

The terminology ”vector” does not necessarily indicate an explicit geometric interpretation in this
general context. Sometimes I’ll insert the word ”abstract” to emphasize this distinction. We'll see
that matrices, polynomials and functions in general can be thought of as abstract vectors.

Example 5.1.2. R is a vector space if we identify addition of real numbers as the vector addition
and multiplication of real numbers as the scalar multiplication.

The preceding example is very special because we can actually multiply the vectors. Usually we
cannot multiply vectors.

Example 5.1.3. Proposition shows R™ forms a vector space with respect to the standard
vector addition and scalar multiplication.

Example 5.1.4. The set of all m x n matrices is denoted R ™*™. [t forms a vector space with
respect to matriz addition and scalar multiplication as we defined previously. Notice that we cannot
miz matrices of differing sizes since we have no natural way of adding them.

Example 5.1.5. The set of all linear transformations from R™ to R™ is denoted L(R™,R™). De-
fine addition and scalar multiplication of the transformations in the natural manner: if S,T €
L(R™,R™) then for c € R and each v € R"

(S+T)(w) = Sw) + T(), (e T)(v) = cT(w).
we can show S+ T € L(R",R™) and ¢-T € L(R",R™) and the other axioms follow easily.

Example 5.1.6. Let F(R) denote the set of all functions with domain R. Let f,g € F(R) and
suppose ¢ € R, define addition of functions by

(f+9)(z) = f(z) + g(z)

for all x € R. Likewise for f € F(R) and ¢ € R define scalar multiplication of a function by a
constant in the obvious way:

(cf)(x) = cf (x)

for oll x € R. In short, we define addition and scalar multiplication by the natural "point-wise”
rules. Notice we must take functions which share the same domain since otherwise we face difficulty
in choosing the domain for the new function f+g, we can also consider functions sharing a common
domain I C R and denote that by F(I). These are called function spaces.

Example 5.1.7. Let P, = {az? +bx +c | a,b,c € R}, the set of all polynomials up to quadratic
order. Define addition and scalar multiplication by the usual operations on polynomials. Notice
that if ax® + bx + ¢, dx® +ex + f € Py then

(ax® +br+c)+ (d2? +ex + f) = (a+d)x> + (b+e)x + (c+ f) € P
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thus + : Py X Py — Py (it is a binary operation on Py). Similarly,
d(az® 4 bx + ¢) = dax® + dbx + dc € Py

thus scalar multiplication maps R x Py — P5 as it ought. Verification of the other 8 axioms is
straightfoward. We denote the set of polynomials of order n or less via P, = {apx™ + -+ + a1z +
aola; € R}. Naturally, P, also forms a vector space. Finally, if we take the set of all polynomials
P it forms a vector space. Notice,

PcPasCP,C---CP

The theorem that follows is full of seemingly obvious facts. Each of these facts can be derived
from the vector space axioms.

Theorem 5.1.8.

Let V be a vector space with zero vector 0 and let ¢ € R,

1. 0-z=0forallz eV,
2. ¢-0=0 for all c € R,
3. (1) z=—xforallz eV,

4. if cx =0 then c=0 or z = 0.

Lemma 5.1.9. Law of Cancellation:

Let a,z,y be vectors in a vector space V. If x +a =y + a then z = y. ‘

Proof of Lemma: Suppose = + a = y + a. By A4 there exists —a such that a + (—a) = 0. Thus
r+a =y+aimplies (z+a)+(—a) = (y+a)+ (—a). By A2 we find z+ (a+(—a)) = y+ (a+(—a))
which gives x40 = y+0. Continuing we use A3 to obtain x+0 = 0 and y+0 = y and consequently
rz=y. L.
Proof of Theorem: Begin with (1.). Let = € V, notice that by A6,

2:(0-2)=(2-0)-2=0"=z.

By A8 and A6,
2-0-2)=(1+1)-(0-2)=1-(0-2)+1-(0-2)=(1-0)-z+(1-0)-2=0-24+0-z.
Thus, 0z =0-24+0 -2 and by ABwe find 04+0-2 =0-2 + 0- 2. Using the Lemma we cancel
off the 0-x on both sides leaving 0 = 0-x. Since x was arbitrary it follows that 0-z = 0 for all x € V.

I'm leaving (2.), (3.) and (4.) as exercises for the reader. What makes these challenging is you
have to fight the urge to use things we have yet to prove true. Essentially, all we have to work with
is the cancellation Lemma and the vector space axioms. [J
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5.2 subspaces

Definition 5.2.1.

Let V be a vector space. If W C V such that W is a vector space with respect to the
operations of V restricted to W then we say that W is a subspace of V' and we write
W<V,

Example 5.2.2. Let V be a vector space. Notice that V C V' and obviously V is a vector space with
respect to its operations. Therefore V. < V. Likewise, the set containing the zero vector {0} < V.
Notice that 0 +0 =0 and c¢-0 =0 so Azxioms 9 and 10 are satisfied. I leave the other axioms to
the reader. The subspaces {0} is called the trivial subspace.

Example 5.2.3. Let L = {(z,y) € R%|ax + by = 0}. Define addition and scalar multiplication
by the natural rules in R%. Note if (x,y),(z,w) € L then (z,y) + (z,w) = (¥ + 2,y + w) and
a(x+z)+bly+w) =ar+by+az+bw=0+0=0 hence (z,y) + (2,w) € L. Likewise, if c € R
and (x,y) € L then ax+by = 0 implies acx +bcy = 0 thus (cx,cy) = c(x,y) € L. We find that L is
closed under vector addition and scalar multiplication. The other 8 axzioms are naturally inherited
from R?. This makes L a subspace of R?.

Example 5.2.4. If V = R? then
1. {(0,0,0)} is a subspace,
2. any line through the origin is a subspace,
3. any plane through the origin is a subspace.

Example 5.2.5. Let W = {(z,y,2) | * +y + 2z = 1}. Is this a subspace of R3 The answer is no.
There are many reasons,

1. (0,0,0) ¢ W thus W has no zero vector, axiom 8 fails. Notice we cannot change the idea of
“zero” for the subspace, if (0,0,0) is zero for R? then it is the only zero for potential subspaces.
Why? Because subspaces inherit their structure from the vector space which contains them.

2. let (u,v,w), (a,b,c) € W then u+v+w =1 and a+b+c = 1, however (u+a,v+b,w+c) ¢ W
since (u+a)+(v+b)+(w+c)=wu+v+w)+(a+b+c)=1+1=2.

3. let (u,v,w) € W then notice that 2(u,v,w) = (2u,2v,2w). Observe that 2u + 2v + 2w =
2(u+ v+ w) = 2 hence (2u,2v,2w) ¢ W. Thus aziom 10 fails, the subset W is not closed
under scalar multiplication.

Of course, one reason is all it takes.

My focus on the last two axioms is not without reason. Let me explain this obsession.
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Theorem 5.2.6.

Let V' be a vector space and suppose W C V with W # () then W < V if and only if the
following two conditions hold true

1. if x,y € W then z +y € W (W is closed under addition),

2. ifx € W and ¢ € R then ¢-x € W (W is closed under scalar multiplication).

Proof: (=)If W < V then W is a vector space with respect to the operations of addition and
scalar multiplication thus (1.) and (2.) hold true.

(<) Suppose W is a nonempty set which is closed under vector addition and scalar multiplication
of V. We seek to prove W is a vector space with respect to the operations inherited from V. Let
x,y,z € W then x,y,z € V. Use Al and A2 for V ( which were given to begin with) to find

r+y=y+z  and (x+y)+z=z+ (y+2).

Thus Al and A2 hold for W. By (3.) of Theorem [5.1.§] we know that (—1) -z = —z and —z € W
since we know W is closed under scalar multiplication. Consequently, x 4+ (—z) =0 € W since W
is closed under addition. It follows A3 is true for W. Then by the arguments just given A4 is true
for W. Let a,b € R and notice that by A5,A6,A7,A8 for V we find

lrz=z, (ab)-z=a-(b-z), a-(r+y)=a-z+a-y, (a+bdb)-z=a-xz+0b-x.

Thus A5,A6,A7,A8 likewise hold for W. Finally, we assumed closure of addition and scalar mul-
tiplication on W so A9 and A10 are likewise satisfied and we conclude that W is a vector space.
Thus W < V. (if you're wondering where we needed W nonempty it was to argue that there exists
at least one vector x and consequently the zero vector is in W.) O

Remark 5.2.7.

The application of Theorem [5.2.6]is a four-step process
1. check that W C V
2. check that 0 € W
3. take arbitrary x,y € W and show x +y € W
4. take arbitrary x € W and ¢ € R and show cx € W

Step (2.) is just for convenience, you could just as well find another vector in W. We need
to find at least one to show that W is nonempty. Also, usually we omit comment about
(1.) since it is obvious that one set is a subset of another.
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Example 5.2.8. The function space F(R) has many subspaces.
1. continuous functions: C(R)
2. differentiable functions: C*(R)
3. smooth functions: C*°(R)
4. polynomial functions
5. analytic functions

6. solution set of a linear homogeneous ODE with no singular points

The proof that each of these follows from Theorem . For example, f(x) = x is continuous there-
fore C(R) # (0. Moreover, the sum of continuous functions is continuous and a scalar multiple of a
continuous function is continuous. Thus C'(R) < F(R). The arguments for (2.),(3.),(4.),(5.) and
(6.) are identical. The solution set example is one of the most important examples for engineering
and physics, linear ordinary differential equations.

Example 5.2.9. The null space of a matriz A € R ™*" is a subspace of R™*! defined as follows:

Null(A) = {z e R™*! | Az =0}

Let’s prove Null(A) < R™*1. Observe that A0 = 0 hence 0 € Null(A) so the nullspace is nonempty.
Suppose x,y € Null(A) and c € R,
Alx +cy) = Az +cAy=0+¢(0) =0

thus x + cy € Null(A). Closure of addtion for Null(A) follows from ¢ = 1 and closure of scalar
multiplication follows from x = 0 in the just completed calculation. O

Sometimes it’s easier to check both scalar multiplication and addition at once. It saves some writing.
If you don’t understand it then don’t use the trick I just used, we should understand what we are
doing.

Example 5.2.10. Let W = {A ¢ R ™" | AT = A}. This is the set of symmetric matrices, it
is nonempty since I” = I (of course there are many other examples, we only need one to show it’s
nonempty). Let A, B € W and suppose ¢ € R then

(A+B)T = AT + BT prop. of transpose
=A+B since A, Be W

thus A+ B € W and we find W is closed under addition. Likewise let A € W and ¢ € R,

(eA)T = cAT prop. of transpose
=cA since A, BeW

thus cA € W and we find W is closed under scalar multiplication. Therefore, by the subspace test

Theorem [5.2.6, W < R ™*",
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Example 5.2.11. Let W = {f € F(R) | f}l f(x)dx = 0}. Notice the zero function 0(x) = 0 is
in W since f_ll 0dx =0. Let f,g € W, use linearity property of the definite integral to calculate

1 1 1
| @ +g@nis= [ f@dos [ g@iz=0+0=0
-1 -1 -1
thus f + g € W. Likewise, if c€ R and f € W then
1 1
/ cf(:v)d$:c/ f(z)dr =¢c(0)=0
-1 -1

thus cf € W and by subspace test Theorem[5.2. W < F(R).

5.3 spanning sets and subspaces

The expression x+cy is a ”linear combination” of x and y. Subspaces must keep linear combinations
of subspace vectors from escaping the subspace. We defined linear combinations in a previous
chapter (see [2.2.7)). Can we use linear combinations to form a subspace?

Theorem 5.3.1.

Let V be a vector space which contains vectors vy, va, ..., v then
1. the set of all linear combinations of vq,vo, ..., v, forms a subspace of V, call it W,
2. W, is the smallest subspace of V' which contains vy, ve,...,vr. Any other subspace
which contains vy, ve, ..., v, also contains W,,.

Proof: Define W, = {c1v1 + cova + -+ -+ cxvg | ¢; € Rfor i = 1,2,...,k}. Notice 0-v; = 0 hence
0 € W,. Suppose that z,y € W, then there exist constants ¢; and b; such that

T = C1v] + CoU2 + - - - CLUL y = bivi + bovg + - - bpug
Consider the sum of z and y,

T+y =crup + cua + - - e + bivr + bava + - - by,
= (c1 +b1)vr + (c2a + ba)va + -+ - + (cx + b)) vg

thus x +y € W, for all z,y € W,. Let a € R and observe
ar = a(civy + cavy + - -+ + ¢V ) = acivy + acgve + -+ - + acgvy
thus cx € W, for all x € W, and ¢ € R. Thus by the subspace test theorem we find W, < V.
To prove (2.) we suppose R is any subspace of V' which contains v, vs,...,v,. By defintion R is
closed under scalar multiplication and vector addition thus all linear combinations of vy, vo, ..., vk

must be in R hence W, C R. Finally, it is clear that vy, vo, ..., vr € W, since v1 = 1v14+0vg+- - -+0vp
and vy = Ovy + 1vg + - - 4+ Ovg and so forth. [
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Definition 5.3.2.

Let S = {v1,v2,...,vx} be a finite set of vectors in a vector space V then span(S) is defined
to be the sset of all linear combinations of S

k
span{vi,ve,...,vp} = {chi ci€ERfori=1,2,...,k}

=1

If W = span(S) then we say that S is a generating set for WW.

In view of Theorem the definition above is equivalent to defining span(S) to be the smallest
subspace which contains S.

Example 5.3.3. Spans help us understand three dimensional geometry:
1. a line through the origin is spanned by its direction vector.
2. a plane through the origin is spanned by any two non-paralell vectors that lie in that plane.

A~

3. three dimensional space is spanned by three non-coplanar vectors. For example, %,3,1@ span
R3.

Example 5.3.4. Proposition explained how R™ was spanned by the standard basis; R" =
span{e;}7_ ;. Likewise, Proposition showed the m x n matriz units F;; spanned the set of all
m X n matrices; R ™X" = span{Eij}ijl.

Example 5.3.5. Let S = {1,z,22,...,2"} then span(S) = P,. For exzample,
span{l,z,2°} = {ax® + b +c| a,b,c € R} = Py

The set of all polynomials is spanned by {1,z,2% 23,...}. We are primarily interested in the span
of finite sets however this case is worth mentioning.

The following definition explains what is meant by the span of an infinite set. In words, the span is
the set of all finite linear combinations in the possibly infinite set. (I used this definition implicitly
in the preceding example)

Definition 5.3.6.

Let S be a set of vectors. We say that S is spanned by a set of vectors B iff each v € S is
a finite linear combination of the vectors in B. Moreover, given vectors v, vs, ..., v of the
same type,

span{vi,ve, ..., v} = {w | J¢; such that w = cyv; + cove + -+ - + vk}
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Example 5.3.7. Let W = {[s +t,2s +t,3s +t]T | s,t € R}. We can show W is a subspace of
R3X1. What is a generating set of W ¢ Let w € W then by definition there exist s,t € R such that

s+t 1 1
w=|2s+t | =s| 2 | +t]| 1
35+t 3 1

Thus w € span{[1,2,3]T, [1,1,1]7} and it follows W C span{[1,2,3]T, [1,1,1]T}. Conversely, if
y € span{[1,2,3]T, [1,1,1]T} then there exist c1,ca € R such that y = ¢1[1,2,3]7 +¢2[1,1,1]7. But
then y = [c1 + ca,2¢1 + ¢, 3c1 +co]” s0 it is clear y € W, therefore span{[1,2,3]T, [1,1,1]T} C W.
It follows that W = span{[1,2,3]", [1,1,1]T}. Finally, Theorem m gaurantees that W < R3*1,

The lesson of the last example is that we can show a particular space is a subspace by finding
its generating set. Theorem tells us that any set generated by a span is a subspace. This
test is only convenient for subspaces which are defined as some sort of span. In that case we can
immediately conclude the subset is in fact a subspace.

Example 5.3.8. Suppose a,b,c € R and a # 0. Consider the differential equation ay” +by' +cy = 0.
There is a theorem in the study of differential equations which states every solution can be written
as a linear combination of a pair of special solutions y1,y2; we say y = c1y1 + coyo is the "general
solution” in the terminology of Math 334. In other words, there exist solutions yi,ys such that the
solution set S of ay” + by’ +cy =0 is

S = span{y1, y2}.
Since S is a span it is clear that S < F(R).

Example 5.3.9. Suppose L = P(D) where D = d/dx and P is a polynomial with real coefficients.
This makes L a smooth operator on the space of smooth functions. Suppose deg(P) = n, a the-
orem in differential equations states that there exist solutions yi,ya2,...,yn of Lly] = 0 such that
every solution of L[y] = 0 can be written in the form y = c1y1 + cay2 + -+ - + cuyn for constants
€1,€2,...,cn € R. In other words, the solution set S of L[y] = 0 is formed from a span:

S = span{yi,y2,...,Yn}-
Notice the last example is a subcase of this example. Simply set L = aD? + bD + c.

It is entirely likely that the abstraction of the last two examples has confounded the majority of
the audience for these notes. Let me give a couple specific examples in the same vein.

Example 5.3.10. Consider y' = y. Or, taking t as the independent variable, % =y. Separation
of variables (that you are required to know from calculus II) shows % =dt hence lnly| =t+c. It

follows that y = +eet. Note y = 0 is also a solution of y' = y. In total, we find solutions of the
form y = c1et. The solution set of this differential equation is a span; S = span{e'} < F(R).

Example 5.3.11. Consider y" —y = 0. I invite the reader to verify that y; = cosh(t) and
y2 = sinh(t) are solutions. The solution set is S = span{y1,y2} < F(R).



5.3. SPANNING SETS AND SUBSPACES 155

Example 5.3.12. Consider y’+y = 0. I invite the reader to verify that y1 = cos(t) and yo = sin(t)
are solutions. The solution set is S = span{y1,y2} < F(R). Physically, this could represent
Newton’s equation for a spring with mass m = 1 and stiffness k = 1, the set of all possible physical
motions forms a linear subspace of function space.

Example 5.3.13. Consider, y"" = 0. Integrate both sides to find y" = ci. Integrate again to find
Y = cit + co. Integrate once more, y = c15t> + cot + c3. The general solution of y" = 0 is a
subspace S of function space:

1
S = span{2t2, t, 1} < F(R)

Physically, we usually have the situation ¢y = g.

Examples [5.3.10] and [5.3.13] are fair game for test, quizzes etc... they only assume prerequisite
knowledge plus linear algebra. In constrast, I don’t expect you can find y;,y2 as in Examples
5.3.11] and [5.3.12] since Math 334 is not a prerequisite.

Example 5.3.14. Let A € R ™*™. Define the column space of A as the span of the columns of
A:

Col(A) = span{col;(A) | j =1,2,...,n}

this is clearly a subspace of R™ 1 since it is constructed as a span of vectors in E11 and Eos. We
also can define row space as the span of the rows:

’Row(A) = span{row;(4) | i =1,2,...,m} ‘

this is clearly a subspace of RY™ since it is formed as a span of vectors. Since the columns of AT
are the rows of A and the rows of AT are the columns of A we can conclude that Col(AT) = Row(A)
and Row(AT) = Col(A).

I would remind the reader we have seen examples with more bite for the case V' = R"” in the vector
chapter. We began with R™ because it is a nice concrete case from which everything else finite
dimensional flows.

Remark 5.3.15.

If we are given B = {b1,ba,...,bx} C R" and T = {wy,wa,...,w,} C R™ and we wish to
determine if 7' C span(B) then we can answer the question by examining if [by|ba| - - - |bg]z =
w; has a solution for each j = 1,2,...7. Or we could make use of Proposition [3.6.1) and
solve it in one sweeping matrix calculation;

rref[bi|ba] - - - |b|wi|wa| - - - [wy]

If there is a row with zeros in the first k-columns and a nonzero entry in the last r-columns
then this means that at least one vector wy is not in the span of B( moreover, the vector
not in the span corresponds to the nonzero entrie(s)). Otherwise, each vector is in the span
of B and we can read the precise linear combination from the matrix. I will illustrate this
in the example that follows.
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Example 5.3.16. Let W = span{e; + e, ea + e3,e1 — e3} and suppose T = {e1,ea,e3 —e1}. Is
T < W? If not, which vectors in T are not in W ¢ Consider,

1 0 1 1 0 -1
[e1 + e1]e2 + esler — es||er|ezles —e1] = 11 010 1 O T —T1 =T
(01 —1]0 0 1
1 0 1 1 0 -1
1 -1 1 1 1 r3 — 179 —>r§
01 —-1j 0 0 1

T2+T3—>Tg
O 1 rR —1Tr3 —7T
00 01 1 -1 0 I B

—
|
—_
|
—_
—_

10 10 1 -1
1 —-1{0 O 1
|00 0 |1 -1
Let me summarize the calculation:
10 10 1 -1
rrefle; + ealea + es|ler — esleieales —er]=1 0 1 =10 0 1
00 O0¢Y}1 -1 0O

We deduce that e; and ey are not in W. However, e; — ez € W and we can read from the matriz
—(e1+e2)+ (ea+e3) = e3—e1. I added the double vertical bar for book-keeping purposes, as usual
the vertical bars are just to aid the reader in parsing the matriz.

The tricks we’ve developed in these last few examples really only work for vectors in R”. If we have
abstract vectors, or even just row vectors, then we’ll need to deal with spanning questions by other
methods. However, once we have the idea of coordinates ironed out then we can use the tricks on
the coordinate vectors then push back the result to the world of abstract vectors. For now we’ll
just confront each question by brute force.

Example 5.3.17. Is Ey1 € span{E2+2FE11, E12 — E11}? Assume E;; € R2%2 for alli,j. We seek
to find solutions of

E11 = a(E12+2E11) + b(E12 — E11)
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in explicit matriz form the equation above reads:

o o) =e(o ol 5o ]) (ool o))
pkRINEN]

| 2a—b a+b
o 0 0

thus 1 =2a — b and 0 = a + b. Substitute a = —b to find 1 = 3a hence a = % and b = —71 Indeed,

1
3
Therefore, E11 € span{F12 + 2E11, E12 — E11}.

(Erz +2F1) — 3(F12 — En) = 3B + B = By

Example 5.3.18. Find a generating set for the set of symmetric 2 X 2 matrices. That is find a set
S of matrices such that span(S) = {A € R?*2 | AT = A} = W. There are many approaches, but I
find it most natural to begin by studying the condition which defines W. Let A € W and

a b a c¢ a b
A_[c d] i[b d]_[c d]
this means we need b = ¢ but we find no particular condition on a or d. Notice A € W implies

b 10 0 1 00
A:[Z d]:a[o 0]+b[1 0]+d[0 1]:aE11+b(E12+E21)+dE22

Thus A € W implies A € span{E11, Ei2 + E21, Ea}, hence W C span{E11, Fi12 + FEa1, Ea}.
Conversely, if B € span{E11, E12+ E21, Ea} then there exist ¢, ca,c3 € R such that

B=cFE1+ CQ(Elg + E21) + c3FE99

B [ e }
Cy C3
so B is symmetric and it follows span{ E11, E12+E21, Ea} CW. Consequently W = span{E11, Eia+
Es1, Es} and the set {E11, E12 + E21, Ea} generates W. This is not unique, there are many

other sets which qlso generate W. For example, if we took S = {E11, Fia + Eo1, Ea9, E11 + Ex}
then the span of S would still work out to W.

but this means
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Theorem 5.3.19.

If S ={s1,s9,...,8.} and T = {t1,to,...,t, } are subsets of a vector space V then span(S) =
span(T) if and only if every vector in S is a linear combination of vectors in 7" and every
vector in 7' is a linear combination of vectors in S.

Proof: (=) Assume span(S) = span(T). If v € S then v € span(S) hence v € span(T) and it fol-
lows that v is a linear combination of vectors in T". If w € T' then w € span(T') hence w € span(S)
and by definition of the span(S) we find w is a linear combination of vectors in S.

(<) Assume every vector in S is a linear combination of vectors in 7" and every vector in T is a
linear combination of vectors in S. Suppose v € Span(S) then v is a linear combination of vectors
in S, say

V=118 +C289 + -+ CLSk.

Furthermore, each vector in S is a linear combination of vectors in 7" by assumption so there exist
constants d;; such that
s; = dj1ty + dijoto + - - - + djpt,

for each i = 1,2,..., k. Thus,
v =181 + €282 + -0+ CESk-

= ci(dity + diata + -+ - + dipty) + ca(dorts + daata + - - - + doyty )+
coFoep(dinty + diata + - - + dirty)

= (01d11 +codoy + - + dekl)tl + (Cldlg + codog + - + dekg)tg—l-
oo+ (e1dyy + cadoy + -+ -+ crdig )ty

thus v is a linear combination of vectors in 7', in other words v € span(T') and we find span(S) C
span(T). Notice, we just proved that a linear combination of linear combinations is again a linear
combination. Almost the same argument shows span(T") C span(S) hence span(S) = span(T). [.



5.4. LINEAR INDEPENDENCE 159

5.4 linear independence

We have seen a variety of generating sets in the preceding section. In the last example I noted
that if we added an additional vector E17 + E99 then the same span would be created. The vector
Fh1 + Ey is redundant since we already had Fq; and Fas. In particular, Fq1; + Foo is a linear
combination of F1; and FEso so adding it will not change the span. How can we decide if a vector
is absolutely necessary for a span? In other words, if we want to span a subspace W then how
do we find a minimal spanning set? We want a set of vectors which does not have any linear
dependencies. For example, %,j’,ff spans R3 however if we took any one of these away we would
only generate a plane. We say such vectors are linearly independent. Let me be precise:

Definition 5.4.1.

If a vector vg can be written as a linear combination of vectors {vi,vs,...,vx_1} then we
say that the vectors {vi,v,...,vk_1,v;} are linearly dependent.

If the vectors {vy, v, . .., vk_1, Ux} are not linear dependent then they are said to be linearly
independent.

Example 5.4.2. Let v = [1 2 3|7 and w = [2 4 6]T. Clearly v,w are linearly dependent since
w = 2v.

I often quote the following proposition as the defintion of linear independence, it is an equivalent
statement and as such can be used as the definition. If this was our definition then our definition
would become a proposition. Math always has a certain amount of this sort of ambiguity.

Proposition 5.4.3.

Let vy,v9,...,v € V a vector space. The set of vectors {vy,va,..., v} is linearly
independent iff

vl +cvg+ - v =0 = cp=cp=---=¢, = 0.

Proof: (=) Suppose {v1,v2,...,v;} is linearly independent. Assume that there exist constants
c1,Ca, ..., cL such that
c1v] + covg + - -+ v =0

and at least one constant, say c¢;, is nonzero. Then we can divide by ¢; to obtain
Lo+ Log At v+ o+ Eup =0
) ) “J

solve for v;, (we mean for 0; to denote the deletion of v; from the list)

~

U] - cj v1 cj U2 U] cj Uk

but this means that v; linearly depends on the other vectors hence {vi,vs,..., v} is linearly de-
pendent. This is a contradiction, therefore ¢; = 0. Note j was arbitrary so we may conclude ¢; = 0
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for all j. Therefore, civ1 + covg + -+ cpvp =0 = c1=co=---=¢, = 0.

Proof: (<) Assume that
civi +covg+ -+ =0 = cp=co=---=c=0.

If’l}j = b101+b2v2+~--+lgv\j+---+bkvk then bivy + bovg + - -+ + bjv; + -+ + by, = 0 where
bj = —1, this is a contradiction. Therefore, for each j, v; is not a linear combination of the other
vectors. Consequently, {vi,ve,...,vx} is linearly independent.

Proposition 5.4.4.

S is a linearly independent set of vectors iff for all vy, ve,...,vp € S,
a1v1 + agVg + - - - + apvy, = byvr + bovg + - - - + brug

implies a; = b; for each ¢ = 1,2, ..., k. In other words, we can equate coefficients of linearly
indpendent vectors. And, conversely if a set of vectors allows for equating coefficients then
it is linearly independent.

Proof: see the Problem Set. This is important, you need to prove it for yourself. This is yet
another equivalent definition of linear independence, as such I will at times say we can equation
coefficients since the vectors are linearly independent. [J

Proposition 5.4.5.

‘If S is a finite set of vectors which contains the zero vector then S is linearly dependent.

Proof: Let {0,vs,...v;} =S and observe that
10 + Ovg + -+ + Ovp = 0

Thus 016 4+ covg + -+ + cpvr = 0 does not imply ¢; = 0 hence the set of vectors is not linearly
independent. Thus S is linearly dependent. [

Proposition 5.4.6.

Let v and w be nonzero vectors.

v, w are linearly dependent < Jk # 0 € R such that v = kw.

Proof: Suppose v,w are linearly dependent then there exist constants ¢y, co, not all zero, such
that c;v 4+ cow = 0. Suppose that ¢; = 0 then cow = 0 hence ¢ = 0 or w = 0 by (4.) of Theorem
But this is a contradiction since v, w are nonzero and at least one of ¢q, co must be nonzero.
Therefore, ¢; # 0. Likewise, if co = 0 we find a similar contradiction. Hence ¢y, ¢o are both nonzero
and we calculate v = (—ca/c1)w, identify that k = —co/c;. O
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Remark 5.4.7.

We should keep in mind that in the abstract context statements such as v and w go in
the same direction” or ”wu is contained in the plane spanned by v and w” are not statments
about ordinary three dimensional geometry. Moreover, you cannot write that u, v, w € R"
unless you happen to be working with that rather special vector space. These ”vectors”
could be matrices, polynomials or even operators. All of this said, we will find a way to
correctly think of an abstract vector space V' as another version of R". We’ll see how V'
and R™ correspond, we will not be so careless as to say they are equal.

Recall that we used Proposition [2.5.8|in Examples|2.5.10} [2.5.11} [2.5.12| and |2.5.13| to ascertain the
linear independence of certain sets of vectors. If you pay particular attention to those examples
you may have picked up on a pattern. The columns of the rref[vi|ve|- - |vk] depend on each other
in the same way that the vectors vy, vs,...v; depend on each other. These provide examples of the
so-called ”column correspondence property”. In a nutshell, the property says you can read
the linear dependencies right off the rreflvi|ve|- - - |uk].

Proposition 5.4.8. Column Correspondence Property (CCP)

Let A = [coli(A)|---|col,(A)] € R™™ and R = rref[A] = [coli(R)| - |col,(R)]. There
exist constants ¢y, ca, . .. ¢ such that ¢ycoli(A) 4 cacola(A) + - - -+ cxcoli(A) = 0 if and only
if c1coli(R) + cacola(R) + - - - + cpeoli,(R) = 0. If colj(rref[A]) is a linear combination of
other columns of rref[A] then col;(A) is likewise the same linear combination of columns
of A.

We prepare for the proof of the Proposition by establishing a useful Lemma.

Lemma 5.4.9.

Let A € R ™*" then there exists an invertible matrix £ such that col;(rref(A)) = Ecol;(A)
forall j =1,2,...n.

Proof of Lemma: Recall that there exist elementary matrices Ei, Eo,...FE, such that A =
E1Ey--- E.rref(A) = E-'rref(A) where I have defined E~! = Ey F5 - - - E}, for convenience. Recall
the concatenation proposition: X|[by|be|- - |bg] = [Xb1|Xba]| -+ |Xbg]. We can unravel the Gaussian
elimination in the same way,

EA = E[coly(A)|coly(A)] - - - |col, (A)]
= [Ecoly(A)|Ecoly(A)|- - |Ecol,(A)]

Observe that FA = rref(A) hence we find the above equation says col;(rref(A)) = Ecol;(A) for
all j. O

Proof of Proposition: Suppose that there exist constants ci,ca,..., ¢, such that cjcoly(A) +
cacola(A) + - - - + cpeol(A) = 0. By the Lemma we know there exists E such that colj(rref(A)) =
Ecol;(A). Multiply linear combination by E to find:

c1Ecoli(A) + caEcoly(A) + - - - + ¢ Ecol(A) = 0
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which yields
crcoli(rref(A)) 4 cocola(rref(A)) + - - - + cxcoli(rref(A)) = 0.

Likewise, if we are given a linear combination of columns of rref(A) we can multiply by E~! to
recover the same linear combination of columns of A. [

Example 5.4.10. I will likely use the abbreviation "CCP” for column correspondence property.
We could have deduced all the linear dependencies via the CCP in FExamples [2.5.1012.5.12 and

12.5.15. We found in that

1 01
rrefluifvajvs] = | 0 1 1
0 00
Obviously col3(R) = coli(R) + cola(R) hence by CCP vz = vy + va.
We found in that
1 0 -1
01 1
TTGf[’Uﬂ’UQ"Ug] = 0 0 0
00 O
By inspection, cols(R) = cola(R) — coli(R) hence by CCP vz = vy — vy.
We found in that
1 01 -1
011 1
TT@f[U1’U2|U3‘U4] - 00 0 0
000 O

By inspection, cols(R) = coli(R) + cola(R) hence by CCP vs = v1 + vy. Likewise by inspection,
coly(R) = cola(R) — coli(R) hence by CCP vy = v — v

You should notice that the CCP saves us the trouble of expressing how the constants ¢; are related.
If we are only interested in how the vectors are related the CCP gets straight to the point quicker.
We should pause and notice another pattern here while were thinking about these things.

Proposition 5.4.11.

The non-pivot columns of a matrix can be written as linear combinations of the pivot
columns and the pivot columns of the matrix are linearly independent.

Proof: Let A be a matrix. Notice the Proposition is clearly true for rref(A). Hence, using Lemma
£.4.9 we find the same is true for the matrix A. O

Proposition 5.4.12.

The rows of a matrix A can be written as linear combinations of the transposes of pivot
columns of AT, and the rows which are transposes of the pivot columns of AT are linearly
independent.
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Proof: Let A be a matrix and AT its transpose. Apply Proposition to AT to find pivot
columns which we denote by col;; (AT) for j = 1,2,...k. These columns are linearly independent
and they span Col(AT). Suppose,

cirow;, (A) + carow;, (A) + - - - + ¢prow;, (A) = 0.
Take the transpose of the equation above, use Proposition to simplify:
c1(row;, (AN + ca(row, (AN + -+ - + e (row;, (A)T = 0.
Recall (row;(A))T = colj(AT) thus,
crcoli, (A1) + cacoliy (AT) 4 - - - 4 cpeol; (AT) = 0.

hence ¢; = ¢y = --- = ¢;, = 0 as the pivot columns of AT are linearly independendent. This shows
the corresponding rows of A are likewise linearly independent. The proof that these same rows
span Row(A) is similar. [J

5.4.1 linear independence in abstract vector spaces

Given a set of vectors in R” the question of LI is elegantly answered by the CCP. In this section we
leave the comfort zone and study LI in abstract vector spaces. For now we only have brute force
at our disposal. In other words, I'll argue directly from the definition without the aid of the CCP
from the outset.

Example 5.4.13. Suppose f(x) = cos(z) and g(x) = sin(z) and define S = {f,g}. Is S linearly
indpendent with respect to the standard vector space structure on F(R) ¢ Let c¢1,co € R and assume
that

c1f +c2g=0.

It follows that ¢y f(x) 4+ cag(x) = 0 for each x € R. In particular,
¢1 cos(x) + e sin(z) =0

for each x € R. Let x = 0 and we get c; cos(0) + casin(0) = 0 thus ¢; = 0. Likewise, let x = 7/2
to obtain cj cos(m/2) + casin(m/2) = 0+ ca = 0 hence ca = 0. We have shown that c1f + cag =0
implies ¢y = co = 0 thus S = {f, g} is a linearly independent set.

Example 5.4.14. Let f,(t) = t" forn =0,1,2,.... Suppose S = {fo, f1,..., fn}. Show S is a
linearly independent subset of function space. Assume cg,c1,...,c, € R and

cofotcifitcafot+ - -+cnfn=0. *

I usually skip the expression above, but I'm including this extra step to emphasize the distinction
between the function and its formula. The * equation is a function equation, it implies

co+ et +et? 4+t =0 * %
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for all t € R. Evaluate »x at t = 0 to obtain cy = 0. Differentiate > and find
142t 4+ nept" =0 x3

Evaluate %3 at t = 0 to obtain c¢; = 0. If we continue to differentiate and evaluate we will similarly
obtain co = 0, c3 = 0 and so forth all the way up to ¢, = 0. Therefore, x implies cog =c1 = -+ =
¢, = 0.

Linear dependence in function space is sometimes a source of confusion for students. The idea of
evaluation doesn’t help in the same way as it just has in the two examples above.

Example 5.4.15. Let f(t) =t —1 and g(t) = t +t is f linearly dependent on g? A common
mistake is to say something like f(1) =1—1=0 so {f, g} is linearly independent since it contains
zero. Why is this wrong? The reason is that we have confused the value of the function with the
function itself. If f(t) = 0 for all t € R then f is the zero function which is the zero vector in
function space. Many functions will be zero at a point but that doesn’t make them the zero function.
To prove linear dependence we must show that there exists k € R such that f = kg, but this really
means that f(t) = kg(t) for all t € R in the current context. I leave it to the reader to prove that
{f,g} is in fact LI. You can evaluate at t =1 and t = 0 to obtain equations for c¢1,ce which have
a unique solution of ¢ = co = 0.

Example 5.4.16. Let f(t) =12 — 1, g(t) =2 + 1 and h(t) = 4t>. Suppose
Cl(t2—1)+02(t2—|—1)—|—03(4t2) =0 *

A little algebra reveals,
(01 —+ co + 463)t2 — (01 — 02)1 =0

Using linear independence of t> and 1 we find
c1+ca+4c3=0 and cp—co=0

We find infinitely many solutions,
d 1( + c2) =
c1=c¢ an cs=—=(c1+ ) =—=c
1=C2 3 gl te 52

Therefore, x allows nontrivial solutions. Take co = 1,
1
1t —1)+1(t*+1) - 5(4t2) = 0.
We can write one of these functions as a linear combination of the other two,
1
=— —h.
f=-9+5

Once we get past the formalities of the particular vector space structure it always comes back to
solving systems of linear equations.
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5.5 bases and dimension

We have seen that linear combinations can generate vector spaces. We have also seen that sometimes
we can remove a vector from the generating set and still generate the whole vector space. For
example,

span{ey, es, e + ex} = R?*!

and we can remove any one of these vector and still span R?*!,
span{ei, ea} = span{ey, e1 + ea} = span{es, e; + ex} = R**!

However, if we remove another vector then we will not span R?*!. A generating set which is just
big enough is called a basis. We can remove vectors which are linearly dependent on the remaining
vectors without changing the span. Therefore, we should expect that a minimal spanning set is
linearly independent.

Definition 5.5.1.

A basis for a vector space V is a set of vectors S such that
1. V = span(9),

2. S is linearly independent.

Example 5.5.2. [t is not hard to show that By = {e1,e2} and By = {e1,e1 + e2} and Bs =
{ea,e1 + ea} are linearly independent sets. Furthermore, each spans R?*'. Therefore, By, Bo, B3
are bases for R¥1. In particular, By = {e1,es} is called the standard basis.

Example 5.5.3. [ called {e1,ea,...,e,} the standard basis of R™*!. Since v € R™ can be written

as
v = E vie;
7

it follows R™ = span{e; | 1 < i < n}. Moreover, linear independence of {e; | 1 < i < n} follows
from a simple calculation:

0= Z cie; = 0= [Z ciei] = Z ci&k = CL
i i ki
hence ¢, = 0 for all k. Thus {e; | 1 <i < n} is a basis for R", we continue to call it the standard

basis of R™. The vectors e; are also called "unit-vectors”.

Example 5.5.4. Since A € R ™*™ can be written as

A=) AyE;

Z"j
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it follows R ™ ™ = span{E;; | 1 < i < m, 1 < j < n}. Moreover, linear independence of
{Eij | 1<i<m, 1<j<n} follows from a simple calculation:

0= E CijEij = 0= E CijEZ‘j = E Cij(sikéjl:(}kl
.3 .3 kl i3

hence cp = 0 for all k,1. Thus {E;; | 1 <i<m, 1 <j<n} isa basis for R ™", we continue to

call it the standard basis of R ™*". The matrices E;; are also called "unit-matrices”.

Definition 5.5.5.
Suppose B = {f1, fa,..., fn} is a basis for V. If v € V has

v=vfit+vafot+- - +vnfn

then [v]p = [v1 v2 --- v,|T € R™ is called the coordinate vector of v with respect to B.

Technically, the each basis considered in the course is an ”ordered basis”. This means the set of
vectors that forms the basis has an ordering to it. This is more structure than just a plain set since
basic set theory does not distinguish {1, 2} from {2,1}. I should always say ”we have an ordered
basis” but I will not (and most people do not) say that in this course. Let it be understood that
when we list the vectors in a basis they are listed in order and we cannot change that order without
changing the basis. For example v = [1,2,3]7 has coordinate vector [v]p, = [1,2,3]” with respect
to B1 = {e1,e2,e3}. On the other hand, if By = {es,e1,e3} then the coordinate vector of v with
respect to By is [v]p, = [2,1,3]7.

Proposition 5.5.6.

Suppose B = {fi, f2,..., fu} is a basis for V. Let v € V, if [z;] and [y;] are coordinate
vectors of v then [z;] = [y;]. In other words, the coordinates of a vector with respect to a
basis are unique.

Proof: Suppose v = x1f1 +22fo + -+ xpnfrn and v = y1 f1 + Y2 fo + - - - + Yn frn Dotice that

O=v—v =(z1fi+xafo+ - +anfn) — (Wf1+y2fo+ -+ ynfn)
= (@1 —y)fi+ (@2 —y2)fo+-+(xn—yn)fn

then by linear independence of the basis vectors we find x; — y; = 0 for each 7. Thus x; = y; for all
i. Notice that linear independence and spanning were both necessary for the idea of a coordinate
to make sense. [J

Example 5.5.7. Let v = find the coordinates of v relative to By, By and Bs where By =

1
3
{e1,e2} and By = {e1,e1 + e} and B3 = {ea,e1 + ea}. We'll begin with the standard basis, (I hope
you could see this without writing it )

=[] [3] 2] e
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thus [v]p, = [1 3]T. Find coordinates relative to the other two bases is not quite as obvious. Begin
with Bs. We wish to find x,y such that

v=uxe; +yler + e2)
we can just use brute-force,
v =e1+3ex = ze; +y(er + e2) = (x4 y)er + yer

using linear independence of the standard basis we find 1 = x4y andy =3 thusx =1—-3 = -2
and we see v = —2e1 +3(e1 +e2) s0 [v]p, = [~2 3]T. This is interesting, the same vector can have
different coordinate vectors relative to distinct bases. Finally, let’s find coordinates relative to Bs.
I’ll try to be more clever this time: we wish to find x,y such that

v=urmes+yler +e) [;}:[(1) 1}{5}

We can solve this via the augemented coefficient matrix

0 1)1
rref [ 1 1l3 } =
Thus, [v]p, = [2 1]T. Notice this is precisely the rightmost column in the rref matriz. Perhaps my
approach for Bs is a little like squashing a fly with with a dumptruck. However, once we get to an

example with 4-component vectors you may find the matric technique useful.

{1 02

0 1 1] &S =2, y=1.

Example 5.5.8. Given that B = {by,by, b3, by} = {e1 + e2,ea + e3,e3 + eq, eq} is a basis for R**!
find coordinates for v = [1,2,3,4]7 € R**1. Given the discussion in the preceding example it is
clear we can find coordinates [x1, 2, 3, 4]7 such thatv =", x;b; by calculating rref[b|ba|bs|bs|v]
the rightmost column will be [v]p.

rref = |[vlp=

S O ==
O = = O
= = O O
— o O O
I
[ e R
O O = O
O = O O
_ o O O
N DN =
NN ==

This calculation should be familar. We discussed it at length in the spanning section.
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Remark 5.5.9.

Curvelinear coordinate systems from calculus I1I are in a certain sense more general than the
idea of a coordinate system in linear algebra. If we focus our attention on a single point in
space then a curvelinear coordinate system will produce three linearly independent vectors
which are tangent to the coordinate curves. However, if we go to a different point then the
curvelinear coordinate system will produce three different vectors in general. For example,
in spherical coordinates the radial unit vector is e, =< cossin ¢, sin 6 sin ¢, cos ¢ > and
you can see that different choices for the angles 6,  make e, point in different directions. In
contrast, in this course we work with vector spaces. Our coordinate systems have the same
basis vectors over the whole space. Vector spaces are examples of flat manifolds since they
allow a single global coordinate system. Vector spaces also allow for curvelinear coordinates
(which are not coordinates in the sense of linear algebra). However the converse is not true;
spaces with nonzero curvature do not allow for global coordinates. I digress, we may have
occassion to discuss these matters more cogently in our Advanced Calculus course (Math
332) offered in the Spring (join us)

Definition 5.5.10.

If a vector space V' has a basis which consists of a finite number of vectors then we say that
V is finite-dimensional vector space. Otherwise V is said to be infinite-dimensional

Example 5.5.11. R" R ™*" P, are examples of finite-dimensional vector spaces. On the other

hand, F(R), CO(R), CY(R),C°(R) are infinite-dimensional.

Example 5.5.12. We can prove that S from Ezample is linearly independent, thus sym-
metric 2 X 2 matrices have a S as a basis

S=A{lodl, 1891, 951}

thus the dimension of the vector space of 2 x 2 symmetric matrices is 3. (notice S from that
example is not a basis because it is linearly dependent). While we’re thinking about this let’s find

the coordinates of A = [} 3] with respect to S. Denote [Alg = [z,y, 2]7. We calculate,
1
[33] =258l +ulB9]+=2[80] = [Als=| 2
3

5.5.1 how to calculate a basis for a span of row or column vectors

Given some subspace of R" we would like to know how to find a basis for that space. In particular,
if V.= span{vi,ve,...,vx} then what is a basis for W? Likewise, given some set of row vectors
W = {w,ws, ... wp} C R™ how can we select a basis for span(W). We would like to find answers
to these question since most subspaces are characterized either as spans or solution sets(see the
next section on Null(A)). We already have the tools to answer these questions, we just need to
apply them to the tasks at hand.
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Proposition 5.5.13.

169

vectors that reside in the pivot columns of [vq|ve|- - - |vg].

Let W = span{vi,va,...,ux} C R™ then a basis for W can be obtained by selecting the

Proof: this is immediately obvious from Proposition [5.4.8] [J

The proposition that follows is also follows immediately from Proposition [5.4.8

Proposition 5.5.14.

Let A € R ™*" the pivot columns of A form a basis for Col(A).

Example 5.5.15. Suppose A is given as below: (I omit the details of the Gaussian elimination)

12 3 4 10 5/3 0
A=|2 1 4 1 = rref[A]=10 1 2/3 0
0 0 0 3 00 0 1

Identify that columns 1,2 and 4 are pivot columns. Moreover,

Col(A) = span{coly(A), cola(A), cols(A)}

In particular we can also read how the second column is a linear combination of the basis vectors.

col3(A) = Scoli(A) + 3colz(A)
= 3[L2,00" + 3[2,1,0"
= [5/3,10/3,0]" +[4/3,2/3,0]T
=[3,4,0]"
What if we want a basis for Row(A) which consists of rows in A itself?

Proposition 5.5.16.

A basis for W is given by the transposes of the pivot columns for AT

Let W = span{wy,ws, ..., w;} C R'*™ and construct A by concatenating the row vectors
in W into a matrix A:

wq

w2

Wi,

Proof: this is immediately obvious from Proposition [5.4.12| [J

The proposition that follows is also follows immediately from Proposition [5.4.12
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Proposition 5.5.17.

Let A € R ™ " the rows which are transposes of the pivot columns of AT form a basis for
Row(A).

Example 5.5.18.

1 20 1 00

r 210 o010
A—340 = rref[A]-OOl
4 1 3 0 0 O

Notice that each column is a pivot column in AT thus a basis for Row(A) is simply the set of all rows
of A; Row(A) = span{][1,2,3,4],[2,1,4,1],[0,0,1,0]} and the spanning set is linearly independent.

Example 5.5.19.

1235 120 2
= AT=11 2 4 6 = rref[AT]= 10 0 1 1
120 2 0000

Tt W N~
DD N
N O N

We deduce that rows 1 and 3 or A form a basis for Row(A). Notice that rowa(A) = 2row;(A)
and rowy(A) = rows(A) 4+ 2rowi(A). We can read linear dependendcies of the rows from the
corresponding linear dependencies of the columns in the rref of the transpose.

The preceding examples are nice, but what should we do if we want to find both a basis for Col(A)
and Row(A) for some given matrix ? Let’s pause to think about how elementary row operations
modify the row and column space of a matrix. In particular, let A be a matrix and let A’ be the
result of performing an elementary row operation on A. It is fairly obvious that

Row(A) = Row(A').

Think about it. If we swap to rows that just switches the order of the vectors in the span that
makes Row(A). On the other hand if we replace one row with a nontrivial linear combination of
itself and other rows then that will not change the span either. Column space is not so easy though.
Notice that elementary row operations can change the column space. For example,

A:“ H ;wref[A]z[é (1)]

has Col(A) = span{[1,1]T} whereas Col(rref(A)) = span([1,0]T). We cannot hope to use columns
of ref(A) (or rref(A)) for a basis of Col(A). That’s no big problem though because we already
have the CCP-principle which helped us pick out a basis for Col(A). Let’s collect our thoughts:
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Proposition 5.5.20.

Let A € R ™™ then a basis for Col(A) is given by the pivot columns in A and a basis for
Row(A) is given by the nonzero rows in ref(A).

This means we can find a basis for Col(A) and Row(A) by performing the forward pass on A. We
need only calculate the ref(A) as the pivot columns are manifest at the end of the forward pass.

Example 5.5.21.

(N R U 111 111
A=1]1 11 ﬁ 0 00 Ty 0 1 2| =refl[4]
1 23| B2 g1 2 000

We deduce that {[1,1,1],]0,1,2]} is a basis for Row(A) whereas {[1,1,1]7,[1,1,2]T} is a basis for
Col(A). Notice that if I wanted to reveal further linear dependencies of the non-pivot columns
on the pivot columns of A it would be wise to calculate rref[A] by making the backwards pass on

ref[A].
1 11 1 0 -1
01 2| ri—ry— ry 01 2 = rref[A4]
0 00 00 O
From which I can read col3(A) = 2cola(A) — col1(A), a fact which is easy to verify.

Example 5.5.22.

1 2 3 4 — 1 2 3 4
9 r —7r
A=|1 3 8 10 ;j;ﬁ:f 015 6 |=ref[A]
1 2 4 11 B-17s 0017

We find that Row(A) has basis
{[1,2,3,4],]0,1,5,6],[0,0,1,7]}

and Col(A) has basis

Proposition [5.5.20| was the guide for both examples above.
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5.5.2 calculating basis of a solution set

Often a subspace is described as the solution set of some equation Az = 0. How do we find a basis
for Null(A)? If we can do that we find a basis for subspaces which are described by some equation.

Proposition 5.5.23.

Let A € R ™™ and define W = Null(A). A basis for W is obtained from the solution set
of Az = 0 by writing the solution as a linear combination where the free variables appear
as coefficients in the vector-sum.

Proof: x € W implies Az = 0. Denote x = [z1,79,...,2,]7. Suppose that rref[A] has r-pivot
columns ( we must have 0 < r < n). There will be (m — r)-rows which are zero in rref(A) and
(n — r)-columns which are not pivot columns. The non-pivot columns correspond to free-variables
in the solution. Define p = n — r for convenience. Suppose that z; ,z;,,...,z;, are free whereas
Zj,Tj,, ..., T, are functions of the free variables: in particular they are linear combinations of the
free variables as prescribed by rref[A]. There exist constants b;; such that

xj, = buwi +biowiy, + - + bipwy,
ij = bzlxil -+ b22$i2 + -+ bgpxip
Tj, = brmiy + browiy, + -+ by,

For convenience of notation assume that the free variables are put at the end of the list. We have

r1 = bi1Trp1 + b12Trg2 + -+ b1pay,
To = boTrp1 + b2oTrgo + -+ bopxy,
Ty = brlxr—&—l + br2xn—p+2 +--+ brpxn
and z; = xj for j =7+ 1,74+2,...,r+p = n (those are free, we have no conditions on them, they

can take any value). We find,

x1 b1 b12 bip
T2 bo1 ba2 bap
B T, B br1 bro brp
€r = Tri = Tr41 1 + Tpy2 0 + + zy 0
Lr42 0 1 0
| Tn | . 0 ] | 0 | | 1
We define the vectors in the sum above as vy, v2,...,v,. If any of the vectors, say v;, was linearly

dependent on the others then we would find that the variable x,; was likewise dependent on the
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other free variables. This would contradict the fact that the variable x,; was free. Consequently
the vectors vy, v2, ..., v, are linearly independent. Moreover, they span the null-space by virtue of
their construction. [

Didn’t follow the proof above? No problem. See the examples to follow here. These are just the
proof in action for specific cases. We’'ve done these sort of calculations in §1.3. We're just adding
a little more insight here.

Example 5.5.24. Find a basis for the null space of A given below,

10010
A=12 2 0 0 1
4 4 4 00

Gaussian elimination on the augmented coefficient matriz reveals (see Example for details of
the Gaussian elimination)

10010 100 1 0
rref| 2 2 00 1|=|010 -1 1/2
4 4 4 00 001 0 -—1/2

Denote x = [x1, 12, 23,24, 75]" in the equation Ax = 0 and identify from the calculation above that

x4 and x5 are free thus solutions are of the form

Ty = —T4
T9 = T4 — %1'5
T3 = %565
XTy4 = T4
T5 = Ty

for all x4, x5 € R. We can write these results in vector form to reveal the basis for Null(A),

—X4 -1 0

Ty — %:Eg, 1 —%

T = %.CC5 =57 0| +az5 %
Ty 1 0

T5 0 1

It follows that the basis for Null(A) is simply

—1 0
1

! 73
0|, 5
1 0
0 1

Of course, you could multiply the second vector by 2 if you wish to avoid fractions. In fact there is
a great deal of freedom in choosing a basis. We simply show one way to do it.
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Example 5.5.25. Find a basis for the null space of A given below,
11 11
A=1]11 1 1 1
11 11
Gaussian elimination on the augmented coefficient matriz reveals:
11 11 11 11
rref | 1 1 1 1| =100 00
11 11 00 00

Denote x = [$1,$2,$3,$4]T in the equation Ax = 0 and identify from the calculation above that

T9, T3 and x4 are free thus solutions are of the form

L1 = —T2— T3 — T4
T2 = T2
I3 = T3
T4 = T4

for all xo, 3,24 € R. We can write these results in vector form to reveal the basis for Null(A),

—T2 — X3 — T4 -1 —1 -1

. T2 . 1 0 0
T = s = X9 0 + 3 1 + x4 0
T4 0 0 1

—N—
S O = =
O = O =
_ o O =
——

5.5.3 what is dimension?

We prove a number of theorems in the section which show that dimension is a well-defined quantity
for a finite dimensional vector space. Up to this point we have only used the phrase "finite-
dimensional” to mean that there exists one basis with finitely many vectors. In this section we
prove that if that is the case then all other bases for the vector space must likewise have the same
number of basis vectors. In addition we give several existence theorems which are of great theoret-
ical importance. Finally, we discuss dimensions of column, row and null space of a matrix.

The proposition that follows is the baby version of Proposition [5.5.30] I include this proposition in
the notes because the proof is fun.
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Proposition 5.5.26.

Let V' be a finite-dimensional vector space and suppose B = {b1,ba,...,b,} is any basis of
v,

1. BU{wv} is linearly dependent

2. for any 1 <k <n, B— {bx} does not span V'

Proof of (1.): Since B spans V it follows that v is a linear combination of vectors in B thus
B U {v} is linearly dependent.

Proof of (2.): We argue that by ¢ span(B — {br}). Argue by contradiction. Suppose that
by, € span(B — {by}) then there exist constants ci,ca, ..., Cg, ¢, such that

bk:(3151+0252+---+C/kb\k+“'+0nbn
but this contradicts the linear independence of the basis as
ciby +cobo+ - — b+ -+ by, =0

does not imply all the coefficients are zero. Therefore, using proof by contradiction, span(B —

{ox}) #V. O
Proposition 5.5.27.

Let V be a finite-dimensional vector space and suppose B = {by,ba,...,b,} is any basis of
V' then any other basis for V' also has n-elements.

Proof: Suppose B = {b1,ba,...,b,} and F' = {f1, fo,..., fp} are both bases for a vector space V.
Since F' is a basis it follows by € span(F') for all k so there exist constants ¢;; such that

b = cipf1 + carfo+ -+ i fp
for k =1,2,...,n. Likewise, since f; € span(B) there exist constants d;; such that
fj = dijb1 +dajby + - - - + dpjby
for j =1,2,...,p. Substituting we find
fi = dijby +dojba + - - -+ dyjby
= dij(ciifi+eanfot+ -+ epifp)t+

+daj(cr2f1 + caafo + -+ cpafp)+
+-Fdpjlcinfi +canfo+ -+ cpnfp)

= (dljcn + d2j012 + - dnjcln)fl
(dljcgl + d2j022 + - dnjCQn)fQ"_
+-- 4 (d1j6p1 + d2jcp2 + - dnjcpn)fp
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Suppose j = 1. We deduce, by the linear independence of F', that
dyicry +daicia + - dpicip = 1
from comparing coefficients of f1, whereas for fo we find,
di1co1 + daicog + - - dpicop =0

likewise, for f, with g # 1,
dllcql + d210q2 4+ dnlcqn =0

Notice we can rewrite all of these as

0g1 = cqudi1 + cqador + -+ cqgndna
Similarly, for arbitrary j we’ll find

0gj = Cqi1dij + cqadaj + -+ Cqndnj

If we define C' = [¢;;] € RP*"™ and D = [d;;] € R "*P then we can translate the equation above into

the matrix equation that follows:
CD = 1I,.

We can just as well argue that
DC =1,

From your Problem Set, we learned that tr(AB) = tr(BA) if the product AB and BA are both
defined. Moreover, you also proved tr(I,) = p and tr(I;) = ¢. It follows that,

tr(CD) =tr(DC) = tr(l,) =tr(l;) = p=gq.
Since the bases were arbitrary this proves any pair have the same number of vectors. [

Given the preceding proposition the following definition is logical.

Definition 5.5.28.

If V is a finite-dimensional vector space then the dimension of V' is the number of vectors
in any basis of V' and it is denoted dim(V).

Example 5.5.29. Let me state the dimensions which follow from the standard bases of R™ and

R ™" regpective,
dim(R™) =n dim(R ™*™) = mn

these results follow from counting.
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Proposition 5.5.30.

Suppose V' is a vector space with dim(V') = n.
1. If S is a set with more than n vectors then S is linearly dependent.

2. If S is a set with less than n vectors then S does not generate V.

Proof of (1.): Suppose S = {s1,52,...,Sn} has m vectors and m > n. Let B = {by,ba,...,b,}
be a basis of V. Consider the corresponding set of coordinate vectors of the vectors in S, we denote

[S]B = {[s1]B, [s2]B; - - -, [sm]|B}

The set [S] g has m vectors in R™ and m > n therefore by Proposition we know [S]p is a linearly
dependent set. Therefore at least one, say [s;|p, vector can be written as a linear combination of
the other vectors in [S]p thus there exist constants ¢; with (this is a vector equation)

—

[Sj]B =cilsilp+calsalp+ -+ Cj[Sj]B + -+ cmlsmlB

Also notice that ( introducing a new shorthand B|s;| which is not technically matrix multiplication
since b; are not column vectors generally, they could be chickens for all we know)

8; = B[Sj] = Sjlbl + Sjgbg +---+ Sjnbn
We also know, using the notation ([s;]g)r = sj,

—_—
Sjk = C181k -+ C2S59} R Cijk + -+ CmSmk

for k =1,2,...,n. Plug these into our s; equation,
sj = (c1s11+casor + -+ 81+ + CmSm1)b1+

(c1s12 +cos22 + + Gisj2 + o + CmSma2)bat
+oo ot (esin +easan o+ G+ CnSmn)bn

= c1(s1101 + s12b2 + - - - + S1pbp)+
ca(s21b1 + s22b2 + - - - + S2n.bn)+
+ - 4 e (Smibt + Smab2 + - - + Smnby) ¢ excluding ¢;(-- )

=c181 +cas2 -+ Cj8j + o A Cpsp.

Well this is a very nice result, the same linear combination transfers over to the abstract vectors.
Clearly s; linearly depends on the other vectors in S so S is linearly dependent. The heart of the
proof was Proposition and the rest was just battling notation.

Proof of (2.): Use the corresponding result for R” which was given by Proposition Given
m abstract vectors if we concantenate their coordinate vectors we will find a matrix [S] in R ™*™
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with m < n and as such there will be some choice of the vector b for which [S]z # b. The abstract
vector corresponding to b will not be covered by the span of S. [J

Anton calls the following proposition the ”Plus/Minus” Theorem.

Proposition 5.5.31.

Let V be a vector space and suppose S is a nonempty set of vectors in V.

1. If S is linearly independent a nonzero vector v ¢ span(S) then S U {v} is a linearly
independent set.

2. If v € S is a linear combination of other vectors in S then span(S — {v}) = span(5).

Proof of (1.): Suppose S = {s1, S2,..., s} and consider,
c151 + 282+ -+ cpsg +cpr1v =0

If c;41 # 0 it follows that v is a linear combination of vectors in S but this is impossible so cx41 = 0.
Then since S is linear independent

c1s1+caso+ -4 cepsp =0 = ci=c=--=c¢c.=0

thus S U {v} is linearly independent.

Proof of (2.): Suppose v = s;. We are given that there exist constants d; such that
55 :d151+"‘+d/j-3\j+"‘+dk5k
Let w € span(S) so there exist constants ¢; such that
W =181 +C282 + -+ ¢S5 + -+ Cp Sk
Now we can substitute the linear combination with d;-coefficients for s;,

w 20151+0282+"'+Cj(d181+"'+d/j«9\j++"'+dk8k)+"'+Ck5k

= (Cl + del)sl + (02 + de2>$2 —+ -+ CJd/J\SJ + -+ (Ck + dek)sk

thus w is a linear combination of vectors in S, but not v = s;, thus w € span(S — {v}) and we find
span(S) C span(S — {v}).

Next, suppose y € span(S — {v}) then y is a linear combination of vectors in S — {v} hence y is
a linear combination of vectors in S and we find y € span(S) so span(S — {v}) C span(S). (this
inclusion is generally true even if v is linearly independent from other vectors in S). We conclude
that span(S) = span(S —{v}). O
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Proposition 5.5.32.

Let V be an n-dimensional vector space. A set S with n-vectors is a basis for V if S is
either linearly independent or if span(S) = V.

Proof: Assume S has n-vectors which are linearly independent in a vector space V' with dimension
n. Suppose towards a contradiction that S does not span V. Then there exists v € V such that
v ¢ span(S). Then by Propositionwe find V' U{wv} is linearly independent. But, Proposition
the set V' U {v} is linearly dependent. This is a contradiction, thus S spans V' and we find
D is a basis.

Assume S has n-vectors which span a vector space V with dimension n. Suppose towards a con-
tradiction that S is not linearly independent V. This means there exists v € S which is a linear
combination of other vectors in S. Therefore, by S does not span V. This is a contradicts
the assumption span(S) =V therefore S is linearly independent and consequently S is a basis. [

Remark 5.5.33.

Intuitively speaking, linear independence is like injectivity for functions whereas spanning is
like the onto property for functions. Suppose A is a finite set. If a function f: A — Ais 1-1
then it is onto. Also if the function is onto then it is 1-1. The finiteness of A is what blurs the
concepts. For a vector space, we also have a sort of finiteness in play if dim (V) = n. When
a set with dim(V')-vectors spans (like onto) V' then it is automatically linearly independent.
When a set with dim(V')-vectors is linearly independent (like 1-1) V' then it automatically
spans V. However, in an infinite dimensional vector space this need not be the case. For
example, d/dx is a surjective linear mapping on R[z] = span{l,z,z% 23,...} however if
fyg € Rlz] and df /de = dg/dx we can only conclude that f = g + ¢ thus d/dz is not
injective on vector space of polynomials in z. Many theorems we discuss do hold in the
infinite dimensional context, but you have to be careful.

Proposition 5.5.34.

Let S be a subset of a finite dimensional vector space V.

1. If span(S) = V but S is not a basis then S can be modified to make a basis by
removing redundant vectors.

2. If S is linearly independent and span(S) # V then S can be modified to make a basis
by unioning vectors outside span(S).

Proof of (1.): If span(S) = V but S is not a basis we find S is linearly dependent. (if S is linearly
independent then Proposition says S is a basis which is a contradiction). Since S is linearly
dependent we can write some v € S as a linear combination of other vectors in S. Furthermore, by
Proposition span(S) = span(S — {v}). If S — {v} is linearly independent then S — {v} is a
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basis. Otherwise S — {v} is linearly dependent and we can remove another vector. Continue until
the resulting set is linearly independent (we know this happens when there are just dim(V')-vectors
in the set so this is not an endless loop)

Proof of (2.): If S is linearly independent but span(S) # V then there exists v € V but
v ¢ span(S). Proposition shows that S U {v} is linearly independent. If span(S U {v}) =V
then S U {v} is a basis. Otherwise there is still some vector outside span(S U {v}) = V and we
can repeat the argument for that vector and so forth until we generate a set which spans V. Again
we know this is not an endless loop because V' is finite dimensional and once the set is linearly
independent and contains dim/(V') vectors it must be a basis (see Proposition . (]

Remark 5.5.35.

We already saw in the previous sections that we can implement part (1.) of the preceding
proposition in R” and R'*" through matrix calculations. There are really nice results about
row and column spaces which show us precisely which vectors we need to remove or add
to obtain a basis. I'll probably ask a homework question which tackels the question in the
abstract. Once you understand the R™-case you can do the abstract case by lifting the
arguments through the coordinate maps. We've already seen this ”lifting” idea come into
play in several proof of Proposition Part (2.) involves making a choice. How do you
choose a vector outside the span? I leave this question to the reader for the moment.

Proposition 5.5.36.

If V is a finite-dimensional vector space and W <V then dim(W) < dim(V'). Moreover, if
dim(V') = dim(W) then V = W.

Proof: Left to the reader, I don’t want to be too greedy. Besides, I need something to put on the

testEl O

These were defined before, I restate them here along with their dimensions for convenience.

Definition 5.5.37.

Let A € R ™*™. We define
1. Col(A) = span{col;j(A)|j =1,2,...,n} and r = rank(A) = dim(Col(A))
2. Row(A) = span{row;(A)|i =1,2,...,m}

3. Null(A) = {x € R"|Azx = 0} and v = nullity(A) = dim(Null(A))

°I'm kidding
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Proposition 5.5.38.

Let A € R ™*" then dim(Row(A)) = dim(Col(A))

Proof: By Proposition we know the number of vectors in the basis for Col(A) is the number
of pivot columns in A. Likewise, Proposition showed the number of vectors in the basis for
Row(A) was the number of nonzero rows in ref(A). But the number of pivot columns is precisely
the number of nonzero rows in ref(A) therefore, dim(Row(A)) = dim(Col(A)). O

Proposition 5.5.39.

Let A € R ™*" then n = rank(A) + nullity(A).

Proof: The proof of Proposition [5.5.23| makes is clear that if a m x n matrix A has r-pivot columns
then there will be n — r vectors in the basis of Null(A). It follows that

rank(A) + nullity(A) =r + (n—r) = n.

5.6 general theory of linear systems

Let A € R ™*™ we should notice that Null(A) < R™ is only possible since homogeneous systems of
the form Ax = 0 have the nice property that linear combinations of solutions is again a solution:

Proposition 5.6.1.

Let Az = 0 denote a homogeneous linear system of m-equations and n-unknowns. If v; and
v9 are solutions then any linear combination civy + covs is also a solution of Ax = 0.

Proof: Suppose Avy = 0 and Avy = 0. Let ¢1,co € R and recall Theorem [3.3.16] part 13,
A(Cl’Ul + CQUQ) = c1Avy + cgAvg = 10+ 20 = 0.

Therefore, civ1 + covg € Sol[A‘O]. O
We proved this before, but I thought it might help to see it again here.

Proposition 5.6.2.

Let A € R™ ", 1If v1,vg,...,v; are solutions of Av = 0 then V = [vi|va]---|ug] is a
solution matrix of Av =0 ( V a solution matrix of Av =0 iff AV = 0)

Proof: Let A € R "™*" and suppose Av; =0 for i =1,2,... k. Let V = [v1|va|- - |vg] and use the
solution concatenation Proposition [3.6.1

AV = A[v1]v2| te |Uk] = [AUl’A'U2| te |Avk] = [0‘0| s ’0] = 0.
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O

In simple terms, a solution matrix of a linear system is a matrix in which each column is itself a
solution to the system.

Proposition 5.6.3.

Let A € R ™*". The system of equations Az = b is consistent iff b € Col(A).

Proof: Observe,
Ar=b < Zi,j Aijzcjei =b
& 2% ) Aijei = b
& > jwjcolj(A) =0
< be Col(A)
Therefore, the existence of a solution to Az = b is interchangeable with the statement b € Col(A).
They both amount to saying that b is a linear combination of columns of A. [J

Proposition 5.6.4.

Let A € R ™*" and suppose the system of equations Az = b is consistent. We find x € R™
is a solution of the system if and only if it can be written in the form

T =2Xp+ Tp=ClU] +CoU2 + -+ CU, + Ty

where Az, = 0, {Uj}§:1 are a basis for Null(A), and Az, = b. We call z; the
homogeneous solution and x,, is the nonhomogeneous solution.

Proof: Suppose Az = b is consistent then b € Col(A) therefore there exists z, € R™ such that
Az, = b. Let x be any solution. We have Az = b thus observe

Alx —zp) =Ar —Azp=Arx—b=0 = (x—uxp) € Null(A).
Define zj, = x — x,, it follows that there exist constants ¢; such that x; = civ1 4+ cova + -+ - + v,
since the vectors v; span the null space.
Conversely, suppose « = x, + x}, where zj, = c1v1 +cova + - - -+ ¢,v, € Null(A) then it is clear that
Ax = A(xp +op) = Axp + Az, =b+0=0

thus x = x, + xj, is a solution. [J

Example 5.6.5. Consider the system of equations x +y + z = 1,x 4+ z = 1. In matrixz notation,
11 1 x 1 11 11 11 11
1 01 y | =11 = rrefl[AlbJ=rref | 1 0 1|1 | =10 0 00
000 z 0 00 0|0 0 0 0]0
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It follows that t =1 — y — z is a solution for any choice of y,z € R.

z l—y—=z 1 -1 -1
v=|y | = ] =10 |+y| 1 [+2z]| O
z z 0 0 1

We recognize that v, = [1,0,0]7 while v, = y[—-1,1,0] + 2[-1,0, 1T and {[-1,1,0]7, [-1,0,1]7}
is a basis for the null space of A. We call y, z parameters in the solution.

We will see that null spaces play a central part in the study of eigenvectors. In fact, about half of
the calculation is finding a basis for the null space of a certain matrix. So, don’t be too disappointed
if I don’t have too many examples here. You’ll work dozens of them later.

The following proposition simply summarizes what we just calculated:

Proposition 5.6.6.

Let A € R ™ ", If the system of equations Az = b is consistent then the general solution
has as many parameters as the dim(Null(A)).

5.6.1 linear algebra in DEqns (optional)

A very similar story is told in differential equations. In Math 334 we spend some time unraveling
the solution of L]y] = g where L = P(D) is an n-th order polynomial in the differentiation operator
with constant coefficients. In total we learn that y = ciy1 + coy2 + - -+ + ¢cnyn + yp is the solution
where y; are the homogeneous solutions which satisfy L[y;] = 0 for each j = 1,2,...,n and, in
contrast, y, is the so-called ”particular solution” which satisfies L{y,] = g. On the one hand, the
results in DEqns are very different because the solutions are functions which live in the infinite-
dimensional function space. However, on the other hand, L[y] = g is a finite dimensional problem
thanks to the fortunate fact that Null(L) = {f € F(R)|L(f) = 0} = span{y1,y2,...,yn}. For this
reason there are n-parameters in the general solution which we typically denote by c¢i,ca,...,cp
in the Math 334 course. The particular solution is not found by row reduction on a matrix in
DEqnsﬂ Instead, we either use the annihilator method, power series techniques, or most generally
the method of variation of parameters will calculate y,. The analogy to the linear system Av = b
is striking:

1. Av = b has solution v = civ1 + cova + - - - + ¢V, + v, where v; € Null(A) and Av, = b.
2. Lly] = g has solution v = c1y1 + c2y2 + - - - + cxyn + yp where y; € Null(L) and Lly,| = b.

The reason the DEqn L[y] = g possesses such an elegant solution stems from the linearity of L. If
you study nonlinear DEqns the structure is not so easily described.

S0k, to be fair you could use coordinate vectors of the next chapter to convert yi,%s, ...y, to coordinate vectors
and if you worked in a sufficiently large finite dimensional subspace of function space perhaps you could do a row
reduction to find g, but this is not the typical calculation.
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5.7 conclusions

We continue Theorem [£.8.1] from the previous chapter.

Theorem 5.7.1.

Let A be a real n x n matrix then the following are equivalent:

A is invertible,
rref[A|0] = [I|0] where 0 € R",

C~

d.) A is the product of elementary matrices,

there exists B € R "*" such that AB =1,

)
)
) Az =0iff z =0,
)
e.)

f.) there exists B € R ™™ such that BA = I,
g.) rreflA]l =1,

h.) rref[A|b] = [I|z] for an x € R,

i.) Az = b is consistent for every b € R",

j.) Az = b has exactly one solution for every b € R",

L) det(A) # 0,
m.) Kramer’s rule yields solution of Az = b for every b € R™.

Col(A) =R "¥1,

n.

0.) Row(A) =R t*xn,

p.) rank(A) = n,

T.

v =0 for A where v = dim(Null(A)),

s.) the columns of A are linearly independent,

(a
(b
(
(
(
(
(
(
(
(
(k.) AT is invertible,
(
(
(
(
(
(
(
(
(

)
)
)
q.) Null(A) = {0},
)
)
)

t.) the rows of A are linearly independent

The addition of the comments about row, column and null space are huge since these gives us easy
concise tools to characterize subspaces in R™. As we’ve seen in this chapter we can test for linear
independence and spanning all through solving particular systems. However, clever use of matrix
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notations allows us to do these calculations even without explicitly writing those equations. Again,
continuing Theorem from the previous chapter:

Theorem 5.7.2.

Let A be a real n x n matrix then the following are equivalent:

A is not invertible,

Az = 0 has at least one nontrivial solution.,

d.) det(A) =0,

(a.)
(b.)
(c.) there exists b € R™ such that Az = b is inconsistent,
(d.)
(e.)

Null(A) # {0},

(f.) there are v = dim(Nwull(A)) parameters in the general solution to Az = 0,

Can you think of anything else to add here? Let me know if you think I missed something here. If
it’s sufficiently interesting it’ll be worth some points.
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Chapter 6

isomorphism and coordinate change

Functions which preserve the structure of a vector space are called linear transformations. Many
important operations in calculus are linear transformations: definite integrals, differentiation even
taking a limit. Many differential equations can be written as a linear transformation acting on a
function space. Linear transformations which are 1-1 and onto are called isomorphisms. It turns out
that all finite dimensional vector spaces of the same dimension are isomorphic. Coordinate maps
are isomorphisms. In the finite dimensional case, we can always use coordinate maps to convert a
linear transformation to matrix multiplication at the level of coordinate maps. We discuss how to
find the matrix of a linear transformation from R” to R™*!. Finally we study change of basis. It
turns out the matrix of a linear transformation undergoes a similarity transformation as coordinates
are changed.

6.1 examples of linear transformations

Definition 6.1.1.

Let V, W be vector spaces. If a mapping L : V — W satisfies
1. L(zx+y) = L(x) + L(y) for all z,y € V,

2. L(cx) =cL(z) forallz € V and c € R

then we say L is a linear transformation.

We already saw many examples for the particular case V = R? and W = R2. T'll focus on abstract
vector space examples here.

Example 6.1.2. Define L : R ™*" — R "™ by L(A) = AT. This is clearly a linear transformation
since

L(cA+ B) = (cA+ B)" = cAT + BT = cL(A) + L(B)
for all A,B € R ™ ™ and c € R.

187
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Example 6.1.3. Let VW be a vector spaces and L : V — W defined by L(x) =0 for allx € V.
This is a linear transformation known as the trivial transformation

Lz+y)=0=0+4+0=L(z) + L(y)
and
L(cx) =0 = c0 = cL(x)
forallceR and x,y € V.

Example 6.1.4. The identity function on a vector space is also a linear transformation. Let
Id:V —V satisfy L(z) = x for each x € V. Observe that

Id(z +cy) =z +cy=x+c(y) = Id(z) + cld(y)
for alle,y € V and c € R.
Example 6.1.5. Define L : C°(R) — R by L(f) = fol f(z)dz. Notice that L is well-defined since

all continuous functions are integrable and the value of a definite integral is a number. Furthermore,

1

1 1 1
L +eq) = [ (Fre@idr= [ [ @)+ egta) Jdo = [ p@s+e [ gt = 107+ cLlg)

for all f,g € CO(R( and c € R. The definite integral is a linear transformation.

Example 6.1.6. Let L : C'(R) — C%(R) be defined by L(f)(x) = f'(z) for each f € Ps. We know
from calculus that

L(f + 9)(z) = (f + 9)'(z) = f'(x) + ¢'(x) = L(f)(z) + L(g)(2)

and
Lief)(@) = (cf)(2) = of () = cL(f)(x).

The equations above hold for all z € R thus we find function equations L(f +g) = L(f) + L(g) and
L(cf) = cL(f) for all f,g € C*(R) and c € R.

Example 6.1.7. Let a € R. The evaluation mapping ¢, : F(R) — R is defined by ¢o(f) = f(a).
This is a linear transformation as (f +cg)(a) = f(a)+ cg(a) by definition of function addition and
scalar multiplication.

Example 6.1.8. Let T : R ™" — R be the determinant map; T(A) = det(A). Notice this
is not a linear map since we found det(A + B) # det(A) + det(B) in general. Also we know
det(cA) = c"det(A). As I mentioned in the determinants chapter, the determinant is actually a
multilinear tranformation on the columns of the matrix.
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Proposition 6.1.9.

Let L : V — W be a linear transformation,
1. L(0)=0

2. L(civr +cova+- - cpuy) = c1L(v1) +caL(ve) 4+ - -+ e L(vy,) for all v; € V and ¢; € R.

Proof: to prove of (1.) let z € V and notice that z —z = 0 thus
L(0) = L(x — x) = L(x) + L(—1z) = L(x) — L(z) = 0.

To prove (2.) we use induction on n. Notice the proposition is true for n=1,2 by definition of linear
transformation. Assume inductively L(civi+cova+-- - cpvpn) = c1L(v1)+caL(v2)+- - - +¢pL(vy,) for
all v; € V and ¢; € R where i = 1,2,...,n. Let v1,v2,...,0n,0p4+1 € V and c1,¢2,...¢Cn,cnp1 € R
and consider, L(civy + cova + -+ CrUp + Cpy1Un41) =

= L(civ1 4 cova + -+ - cpvp) + cnp1 L(vp41) by linearity of L
=c1L(v1) + coL(v2) + -+ - + cn L(vy) + ¢ny1L(vn41) by the induction hypothesis.

Hence the proposition is true for n+ 1 and we conclude by the principle of mathematical induction
that (2.) is true for all n € N. [J

Remark 6.1.10.

I may have neglected an induction here or there earlier. Pretty much any time I state
something for n there is likely an induction lurking about. Many times in mathematics if
we can state a proposition for two objects then we can just as well extend the statement
for n-objects. Extended linearity of limits, derivatives, integrals, etc... all follow from (2.)
since those operations are linear operations.

6.2 properties of linear transformations and coordinate maps

The theorems we proved for the case of linear transformations from R™ to R™ likewise transfer over
to the case of a linear transformation from V to W where V,W are abstract vector spaces. For
example, if S, T € L(V,W) then S+ 71,5 —T,cT € L(V,W) for any ¢ € R. If we have two abstract
linear transformations say 71 : U — V and Ty : V. — W then Th Ty € L(U,W). If you examine
the arguments made to prove these assertions in R™ you’ll find we only used the axioms of a vector
space as opposed to the specificities of R™. However, this is not true for statements about the
matrix of the linear operator. In the abstract case we need to work with coordinate maps. I used
the notation [v] in the last chapter since it was sufficient. Now we need to have better notation
for the coordinate maps so we can articulate the concepts clearly:
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Definition 6.2.1.

Let V be a finite dimensional vector space with basis 5 = {v1,v2,...v,}. The coordinate
map ®g: V — R" is defined by

(1)5(11111 + xov9 + - - - + Ji'n,l)n) = x1€e1 + x2egy + -+ xTpey

for all v = xqv1 + x2v2 + -+ - + THv, € V.

This is a linear mapping, I leave the details to the reader. The next section makes use of the notation
introduced here. Particularly for calculation of the matrix of an abstract linear transformation. I
want to talk a little about isomorphism before I do that so I stop here for now.

6.3 isomorphism of vector spaces

A one-one correspondence is a map which is 1-1 and onto. If we can find such a mapping between
two sets then it shows those sets have the same cardnality. Cardnality is a crude idea of size, it
turns out that all finite dimensional vector spaces have the same cardnality. In linear algebra we
will find it useful to have a way of characterizing when two vector spaces are essentially the same
space. At a minimum we should expect they are in 1-1 correspondence. In addition we would like
for linear combinations to be maintained. We’ve seen an example of this already, the coordinate
mapping maintains linear combinations. This is absolutely crucial if coordinates of a vector are to
completely describe it. E|

Definition 6.3.1.

Let V, W be vector spaces then ® : V — W is an isomorphism if it is a 1-1 and onto
mapping which is also a linear transformation. If there is an isomorphism between vector
spaces V' and W then we say those vector spaces are isomorphic and we denote this by
V=Ww.

Other authors sometimes denote isomorphism by equality. But, I'll avoid that custom as I am
reserving = to denote set equality.

Example 6.3.2. Let V =R3 and W = P,. Define a mapping ® : Py — R3 by

®(az?® + bz +¢) = (a,b,c)
for all ax® +bx+c € Py. To prove this function is onto we should chose an arbitrary element in the
codomain, say (c1,c2,c3) € R3. I think it’s pretty obvious that c1x? + cox + c3 maps to (c1,ca,c3)

under ® hence ® is onto. To prove ® is one-one, assume ®(a12%+ agx + az) = ®(b1a? + box + b3),

(al,ag,ag) = (bl,bg,bg) = a1 = bl,ag = bg,ag, = b3

1T assume you know what the terms ”onto”, ”?1-1”, ”injective”, ”surjective”, ”1-1 correspondence”, ”bijection”

mean. I also assume you know the basic theorems for compositions and inverses of functions.
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thus a122 + asx + a3 = bia? + box + by. Therefore, ® is a bijection. Check for linearity,

®(a12% + agz + ag + c(b1x? + box + b3)) = ®((a1 + cb1)x? + (ag + cba)x + az + cbs)
= (a1 + ¢b1, a0 + cbo, as + Cbg)
= (al, as, ag) + C(bl, ba, bg)
= <I>(a13:2 + asx + ag) + c@(b1x2 + ng + bg)

for all a1x® + asx + a3, b1x? + box + b3 € Py and ¢ € R. Therefore, ® is an isomorphism and
R3 = P,. As vector spaces, R? and polynomials of upto quadratic order are the same.

Example 6.3.3. Let & : R ™*" — R™" pe defined by

é( ZAl]El] ) — (Alla"'7A1n7A215"'3A2n7~-'aAm17°"aAmn)
1,3

This map simply takes the entries in the matrix and strings them out to a vector of length mn. [
leave it to the reader to prove that ® is an isomorphism.

Remark 6.3.4.

Notice that the two examples above basically prove that ® is a coordinate map for the given
abstract vector space. The example below examines the inverse of a coordinate map, if you
think about it ¥ ! : R3 — S, gives a coordinate system on So.

Example 6.3.5. Let So be the set of 2 x 2 symmetric matrices. Let ¥ : R3 — Sy be defined by

wepo) = | 0 Y]

Notice

(Vo) = | 0 T? M

Yy = y =

so the function VU is well-defined, it actually maps where I said it should. Also, if A = [ z Z ] €S

clearly V(x,y,z) = A thus U is surjective. Injectivity is also easy to verify,

- T yl| |ab - - -
U(z,y,z) =¥(a,b,c) = [y z]_[b c] r=a,y=bz=c

thus (z,y,z) = (a,b,c). Apparently 2 x 2 symmetric matrices are also the same as R? as vector
spaces.
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Proposition 6.3.6.

Let V1, Vs, V3 be vector spaces and @ : Vi — Vo and ¥ : V5 — V3 are isomorphisms.
1. &~ : V5 — V; is an isomorphism.

2. Wod : V] — V3 is an isomorphism.

Proof: The inverse of a bijection is a bijection. We need only demonstrate linearity, let x,y € V5
and ¢ € R. Note by surjectivity of ¥ there exist a,b € V; such that ¥(a) = x and ¥(b) = y which
means U~ !(z) = a and ¥~ !(y) = b. Consider then

Pz +cy) =0 HV(a)+c¥(b) VY isonto
= d 1 (U(a+ cb)) U is linear
=a+cb defn of inverse function
=V () + eV l(y) defn. of a,b.

this proves (1.). To prove (2.) recall that the composition of bijections is again a bijection. More-
over, Proposition [3.3.1] proves the composition of linear transformation is a linear transformation.

O

Theorem 6.3.7.

‘Vector spaces with the same dimension are isomorphic.

Proof: Let V,W be a vector spaces of dimension n. It follows by definition of dimension there
exists bases By of V and By of W. Moreover, we have coordinate maps with respect to each basis,

Oz, VR Dy W R”

These are isomorphisms. By (1.) of Proposition W (IDEVIV is an isomorphism. Observe that the

map @5&/ o®g, : V — W is the composition of isomorphisms and by (2.) (1.) of Proposition W
this mapping provides an isomorphism of V' and W. [J

This theorem helps affirm my contention that coordinates encapsulate the linear structure of a
vector space. The technique used in this proof is also used in many discussions of abstract vector
spaces. We take some idea for matrices and lift it up to the abstract vector space by the coordinate
isomorphism. Then we can define things like the trace or determinant of a linear transformation.
We simply define the trace or determinant of a linear transformation to be the trace of determinant
of the matrix of the operator. We need to understand coordinate change a little better before we
make those definitions.



6.3. ISOMORPHISM OF VECTOR SPACES 193

Remark 6.3.8.

There is much more to say about the theory of linear operators. There are interesting
theorems about invariant operators and minimal polynomials. My intent in this chapter
is just to alert you to the basics and a few technical results. There is more to say. For
example, ker(T) = {0} iff T is one-one. We saw that result in the case of R™ but it just
as well applies to the abstract vector space linear transformation. It’s probably a useful
exercise to make a list of all the important properties of linear transformations we’ve seen
this semester. These notes lack that organizational summary at the present. If you would
like to read more about polynomials in abstract linear algebra just ask me sometime, I'll
point you towards a book or two.
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6.4 change we can believe in (no really, no joke)

A vector space does not come with a basis. We typically choose a basis and work out everything
in terms of that particular choice. The coordinates prescribed from our choice are but one of many
choices. It is natural to inquire how the coordinates of vectors and the matrices of linear trans-
formations change form when we begin using a different basis. Coordinate change is an important
idea in physics and engineering since a correct choice of coordinates will better reveal hidden sym-
metries and special properties of a given system. One of the great contributions of Einstein was to
emphasize that coordinates were simply a picture of an underlying coordinate independent physics.
That physical principle encouraged the study of coordinate free geometry which is at the heart
of modern differential geometry. Linear algebra is perhaps the simplest implementation of these
ideas. The linear transformations are coordinate free objects which have many different matrix
representations in various coordinate systems. These various representations are related according
to a similarity transformations as described later in this section.

6.4.1 matrix of an abstract linear transformation

Let me be a little more concrete about the task before us: The standard coordinates are just one
of many choices of R”, we would like to be able to find matrix representations that are consistent
with nonstandard bases. In addition, it would be nice if we could find a matrix representation of a
linear operator on an abstract vector space. It can’t be direct since abstract vectors do not form
column vectors to multiply on a matrix. For example, f(z) = 22 + 3z + 2 € P, but we cannot
write D f(z) = 2x 4+ 3 as a matrix multiplication using just polynomials. We need to make use of
coordinates. Coordinates allow us to switch 2 4+ 3z + 2 to a corresponding column vector.

Definition 6.4.1.

Let T : V — W be linear transformation bewteen vector spaces V' and W and suppose
Qp:V - R"and @5: W — R™*! are coordinate mappings with respect to the bases 3, 8
for V, W respective. Given all the preceding data we define the matrix of 1" with respect to
B, to be [T] 5.5 € R ™™ which is defined implicitly through the equation

=il
T= (I)BOL[T]ﬁ,g o@B .
Or if you prefer, for each x € R™

[Tls,5% = 25(T(®5" (2)))

Or, you may find it easier to calculate with ®5°T = L[T}ﬁ 5° ®5 which suggests we calculate the

matrix [T]4 5 by inspecting the equation:
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This is the technique we used in lecture a couple times. I do expect you understand the notation
here. Both [z]g and ®g(x) and the diagrams I wrote in lecture. These diagrams guide the thinking
and if you understand them the definition above is not a burden. Instead, it’s a logically inevitabil-
ity. In other words, it’s natural. 1 elaborate on this point in the next paragraph.

Let’s walk through the formula [T 52 = <I>B(T(<I>El(:z:))): we begin on the RHS with a column
vector z, then @gl lifts the column vector up to the abstract vector @gl(:ﬂ) in V. Next we operate
by T" which moves us over to the vector T’ (@El(x)) which is in W' . Finally the coordinate map @3
pushes the abstract vector in W back to a column vector (I)B(T((I)EI(CL'))) which is in R™*1. The
same journey is accomplished by just multiplyingﬂ x by the m x n matrix [T 8,3

T

\% — w
<I>ﬁ1T i%
R™ — R™
Liry, 5

Proposition 6.4.2.

Given the data in the preceding definition,

coli([T]g,5) = ®5(T (5" (€:))-

Proof: Apply Theorem [3.7.12] [J

Enough generalities, let’s see how this definition is fleshed out in a concrete example.

Example 6.4.3. Let § = {1,3@,3:2} be the basis for Py and consider the derivative mapping D :
Py, — P,. Find the matriz of D assuming that Py has coordinates with respect to B on both copies
of Py. Define and observe

®(z") = eny1 whereas (I)fl(en) — gn1

2

Lz

remember the notation Lz, ; indicates the operation of left multiplication by the matrix [T]5 5; that is

5.5@) = [T]g o for all z.
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forn=0,1,2. Recall D(az? + bz + ¢) = 2az + bx.

col1([D]g,p) = ©3(D(P4 )
cola([D]s,5) = @5(D(P}'(€2))) = @(D(x)) = @5(1) = €1
ca([D)s5) = (D 2

Therefore we find,

Calculate D3. Is this surprising?

We saw this example before, but I thought it might be comforting to see it again. In the example
below the coordinate maps are simply the identity maps so we don’t bother to write them.

Example 6.4.4. Suppose that L([t,z,y,2]") = (t +x+y+ 2,2 —2,0,3t — 2)7, find [L].

L(e1) = L([1,0,0,0]7) = (1,0,0,3)T 1 1 1 1
L(ez) = L([0,1,0,07) = (1,-1,0,0)" |0 -10 1
L(e3) = L([0,0,1,0]7) = (1,0,0,0)7 L] = 0 0 0 O
L(eq) = L([0,0,0,1]7) = (1,1,0, - 1)T 3 0 0 —1

I invite the reader to check my answer here and see that L(v) = [L]v for all v € R**! as claimed.
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Example 6.4.5. Here we find the matriz of T(A) = A+AT with respect to B = {E11, E12, a1, Eaa}.
Assume both domain and codomain are given same basis in this example.

T i ez
T(A) = AxA ) neE
‘QN.[" ma-{'Frp( p-f' T woef 4L E'hmn‘v‘*-ﬂ{ bﬂ!:l et poa
E"—'I{ E".r En‘ En‘, Eli‘.} - { L Vl'f \_.r?’ V‘:‘E

L)
J nnu,!hp{rg_qﬁm

)|

Lo aopr

o
\
L
[

o
<]
)
3

[
|
1

o
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198
Example 6.4.6. Again, we find the matrixz for the linear transformation with respect to a pair of

bases:

?‘Z j] ‘E‘J’KI xzj:'ll-?

Hxl

o axebx wwerd F_:HJF&,ILLL

low to Bnd  cwordinges
H JEO . ‘::’{1' = a4 bax A

Ceﬁ + "::.1{1 f_c:‘i{?
mﬁ 0 é
P Q.ax?=f£{z’£'

{.'f/.f""‘f
O G, G, GG is ¢
e c, + (G+G )X+ (G- G)X +GX =

S.;.,l'..f#;

L(6ean)

b 7
2a )\‘, G = L{b-2e)

C?’—'EJ
[, = &
¥ be
— —_ rta
iﬁ'f;“"z*é"‘) = [t s j

(, =
G+ G

WU o

a

(D oo [;1 ~
— o -
t(-r—ani %‘%{ﬁxﬂéh{m) = Z..Il vi E ! t} = by +a

& o oo o
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6.4.2 change of basis for linear transformations on R"

We already know how to find the matrix of a linear transformation with respect to standard bases.
Finding a matrix with respect to a nonstandard basis is not much harder. We consider the case
where the domain and range are the same dimension since this is the case of most interest. Since
both domain and range are column vectors of the same dimension we can express the coordinate
mappings and their inverses directly by a matrix multiplication.

Proposition 6.4.7.

If R™ has basis 8 = {f1, fo, ..., fn} and we denote [B] = [fi|f2] - |fn] then

Proof: Let v € R" then v = vie; + veeg + - -+ + vye, = [e;][v] where e; denote the standard basis
and [v] is the standard coordinate vector of v ( which is the same as v in this rather special case).
We also may write v = wy fi + wafo + -+ + w, fr = [fi][v]g where [w;] = [v]g are the coordinates
of v with respect to the basis 5. Since {fi, fa,..., fn} form a basis the matrix [f;] is invertible and
we can solve for [v]g = [fi]'v. Consider then,

D(v) = [v]g = [fi] .

We find @3 = L, -1. Since dgo®,' = Id it follows that [®s][®5'] = I thus [@5]~" = [@;] and

we conclude @El = Lyy,) which means @51(;1;) = Ly, (y) = [fily for all y e R™. OJ

Proposition 6.4.8. Coordinate change for vectors and linear transformations on R™.

Let R™ have bases 8 = {f1, fa, ..., fn} and /5:: {fl,_fg, ..., fa} such that [3]P = [3] where
I denoted [B] = [fil|fe| -+ |fn] and [B] = [filfa| - [fn] - v =" vifi and v =3, 0, f; we

denote [v]g = [v;] and [v]5 = [v;] and the coordinate vectors of v are related by
[v]g = P~'[vls
Moreover, if T': R™ — R" is a linear operator then

[T155 =P '[T]gsP.

Proof: Given the data above, note we can write >, v; f; = [5][v]s and }; v; f; = [B][v]z ( we can
do this since we are in R™)

v = [Bl[v]s = [BIPP ! [v]s = [BIP~"[v]g

However, we also have v = [§][v]5. But [4] is an invertible matrix thus [3][v]5 = [8]P~'[v] implies
[v]g = P~*[v]s.
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We defined [T]B,B implicitly through the equation T = @Bfl OL[T}B 5° P5. In this special case the

coordinate maps and their inverses are matrix multiplication as described by Proposition [6.4.7] and
we calculate
T = LB o L[T]B,B o LB_1

But the matrix of a composite of linear transformations is the product the matrices of those
transformations, thus

T = Lig)ry; 508
Therefore, the standard matrix of T is [T] = [3][T]5 58]~ By the same argument we find [T] =
[B][T]p,5(8]". Thus,

7] = BIT)5,5181 " = Bl T]p6l8]" = [Tlg,5 = 181" 18[T,608] " (]

However, we defined P to be the matrix which satisfies [B]P = [3] thus P = [B]7'[3] and
Pt =[g71[8]. O.

Example 6.4.9. Let 8 = {[1,1]7,[1,-1]T} and v = {[1,0]1,[1,1]T} be bases for R%. Find [v]s
and [v], if v =[2,4]T. Let me frame the problem, we wish to solve:

v=[Blklp  and  v=[]],

where I'm using the basis in brackets to denote the matriz formed by concatenating the basis into a
single matrix,

[ 1 1] 11
This is the 2 X 2 case so we can calculate the inverse from our handy-dandy formula:
171 1] 1 -1
-1 _ -1 _

1

Then multiplication by inverse yields [v]g = [8]~ v and [v]y = [y]7 v thus:

e | H N e | H R

Let’s wverify the relation of [v], and [v]g relative to the change of basis matriz we denoted by P in
the prop; we hope to find [v], = P~[v]g ( note 7 is playing the role of B in the statement of the
prop.)

BIP =0 = P—lzm—l[ﬁ]:[é —”“ _H:[(l) _?]

Consider then ( as a check on our calculations and also the proposition)

P2 2] 4]-[ 4]
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Now that we’ve seen an example, let’s find [v]g for an arbitrary v = [z,y]T,

1[1 1][= 1m+w]
v = — = 2
L s | b g e
If we denote [v]g = [Z,y]" then we can understand the calculation above as the relation between the
barred and standard coordinates:

]T

z=35(+y)  g=5(-y)

Conversely, we can solve these for x,y to find the inverse transformations:

T=T+Y Yy=x—9.
Similar calculations are possible with respect to the ~y-basis.
Example 6.4.10. Let § = {[1,0,1]7,[0,1,1]7, [4,3,1]T}. Furthermore, define a linear transforma-

tion T : R 3*1 — R 3*1 by the rule T([z,y, 2]7) = [22 — 2y + 22, © — 2, 2z — 3y + 22]T. Find the
matriz of T with respect to the basis B. Note first that the standard basis is read from the rule:

T 20 — 2y + 2z 2 =2 2 T
T( Y >: Tr—z =1 0 -1 Y
z 20 — 3y + 2z 2 -3 2 z

Nezxt, use the proposition, take = {e1,ea,es3} thus [B] = Is and then P satisfies IsP = [(]. The
change of basis matrix for changing from the standard basis to a nonstandard basis is

just the matrix of the nonstandard matrix; P = [5] Consider then (omitting the details of
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calculating P~1)

1/3 —2/3 2/37[2 -2 2 1 0 4
PAMP=1| -1/2 1/2 1/2 1 0 -1 01 3
/6 1/6 —-1/6 | [ 2 -3 2 111
1/3 —2/3 2/37[4 0 4
= -1/2 1/2  1/2 0 -1 3
16  1/6 —1/6 | [ 4 -1 1

Il
S O =
|
O = O
= o O

Therefore, in the [3-coordinates the linear operator T takes on a particularly simple form:

g

In other words, if B = {f1, fo, f3} then

N QLRI
~_
_
™I

Il

|
N @

T([z,5,2)") = 42fi — yfo + 2f3

This linear transformation acts in a special way in the fi, fo and fs directions. The basis we
considered here is actually what is known as a an eigenbasis for T.

We uncovered a useful formula in the proof preceding the example. Let me state it clearly for
future reference

Corollary 6.4.11.

Given a linear transformation 7" : R™ — R™ and a basis [ for R™ the matrix of 7" with
respect to (3 is related to the standard matrix by

(7] = 18][T]s,618] "

which is equivalent to stating,

[Ts,5 = 6] [T118]

If two matrices are related as [T] and [Tz are related above then the matrices are similar.
Something similar occurs in the abstract.
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6.4.3 coordinate change of linear transformations on abstract vector spaces

In this section we will discover again some of the formulas we found in the last subsection in the
special context of a linear transformation on R™. Naturally you might wonder what are the rules for
coordinate change in the case the linear transformation goes between spaces of unequal dimension.
We also examine how change of basis matrices are defined for abstract vector spaces. The story is
not so different than the case of R™. If you understand the diagram then the rest is just algebra.
Finally, let me just explain that coordinate change is an important topic which only finds it’s fullest
justification once we develope further tools about eigenvectors and orthogonal bases ( the next two
chapters in these notes)

T

=

You can read from the diagram above that

_ —1 —1
Liryg, oy = Py ooy o Ly, 0 Ppy 0 P,

B2,72

Since the matrix of the composition of linear transformations from R™ to R™ is given by matrix
multiplication we can simplify the above to yield H

[T]ﬁz,’m = [(I)'yz ° ¢;11][T],81>'Yl] [(1)51 ° (1)521]

3in fact, this was our motivation for the definition of matrix multiplication!
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here the [ | notation indicates the matrix of the linear transformation with respect to the standard
basis. Furthermore, note the map ®,, o@;ll : REMW) y RAMW) and @, o@E; : REV)
R4“m(V) g0 these are in fact linear transformations on R™ or R™. This notation is a bit ugly so
we like to introduce P, @Q to be the change of basis matrices for V, W respective. In particular we
define them by ®g, © @E; = Lp and ®,, ° <I>;21 = Lq. It follows that:

P =[5, 03] Q' =[Py, 0@,

Then we can relate the matrix of T with respect the two bases as follows:

[T]BL’YQ = Q_l [T]ﬁl,’hp

I continue to use the general notation introduced here to work the examples that follow in this
section. The main point of these examples is simply to demystify the discussion following the
diagram on the previous page.
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Example 6.4.12. .
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E}i’ (ﬂwf'!.é) = (&..,6) P fr:f{a;ﬁ)= a-l»z'fy
Ty (avib) = (b,2) , Ep(48)=b+ai

— —m —

. L § ]_f,,,'b’-, =] ¢ 3 ::'I__
wsrked 7| i e o :-|
ST I a]h’ o;]

=0k
=1 a 2l
= [T)

FMTI‘ :
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Example 6.4.13. .

Gomg| T:R— R

| T(x9) = (x+Y, xX-Y, ¥)

© Feb- (][] 2 [

beud e [ELY= %)
gﬁ: ['f"J #= [-z_{‘x_y)}
~

=|
ONQERIEL!{, Efgl = LE%] ¢ gﬁt i Ltfa-]
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The following calculation we did before, but maybe the following notation is easier to understand
for some of you.

@E’(ML Case, Y., B, ?’,,p,)

Att Jit™or 1" gorey

Toie : L0 7r) = [ ) [T)le]lp )"

[T..?Lg”‘)’;
[y = o7 (rif6.]

Naﬁ, How, =] ~/
[Thy = (5l7) (T] 5 (8 IR

= (5] Iy rale ) ted (AT
= [%)"[T1Ce.],

(-;: any_}.éﬁt; or UlE ef )MI%?MQH ;4!"
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6.5 similar matrices and invariants

Definition 6.5.1.

Let A, B € R ™" we say A and B are similar matrices if there exists an invertible matrix
P such that A = P~'BP. Moreover, we say that A is obtained from B by a similarity
transformation if A and B are similar.

There are many nice properties for similar matrices. I'll state a few of those here but I'm leaving
the proof for you. They’re not too hard to prove so I figure they’ll make nice Problem Set problems.

Proposition 6.5.2.
Let A, B,C € R ™",

1. A is similar to A.

2. If A is similar to B then B is similar to A.

3. If A is similar to B and B is similar to C then A similar to C.

4. If A and B are similar then det(A) = det(B)

5. If A and B are similar then tr(A) = tr(B)

6. If A and B are similar then Col(A) = Col(B) and Null(A) = Null(B)

Given the proposition above we can make the following definitions without ambiguity.

Definition 6.5.3.

Let T : V — V be a linear transformation on a finite-dimensional vector space V and let
be any basis of V,

1. det(T) = det([T]p,p).-
2. tr(T) = tr([T)s,)

3. rank(T) = rank([T)s3).

Finally, we can define analogs of the null space and column space of a matrix in the abstract. These
are called the kernel and range of the linear transformation.

Definition 6.5.4.

Let T : V — W be a linear transformation then

1. ker(T) = T~1({0}).

2. range(T) =T(V)
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It is easy to show ker(T) < V and range(T) < W. Incidentally, it can be argued that every
subspace is the kernel of some linear transformation. One method for arguing a given set is a
subspace is simply to find a mapping which is clearly linear and happens to have the subspace in
question as the kernel. The idea I describe here is an abstract algebraic idea, I have not made
much effort to bring these sort of ideas to the forefront. If you would like to read a book on linear
algebra from the abstract algebra perspective I highly reccommend the lucid text Abstract Linear
Algebra by Morton L. Curtis

Proposition 6.5.5.

Let T : V. — W be a linear transformation then V/ker(T') is a vector space and V/ker(T') =
range(T).

The space V/ker(T) is called a quotient space. It is formed from the set of cosets of ker(T"). These
cosets have the form z + ker(T") where x ¢ ker(T). If ker(T) is a plane through the origin then
the cosets are planes with the same normal but shifted off the origin. Of course, ker(T') need
not be a plane, it could be the origin, a line, a volume, a hypervolume. In fact, ker(T) C V so
ascribing geometry to ker(T) is likely misguided if you want to be literal. Remember, V' could be
a solution set to a DEqn or a set of polynomials, it hardly makes sense to talk about a plane of
polynomials. However, we could talk about a subset of polynomials whose coordinates fill out some
plane in R™. Coordinates take abstract vector spaces and convert them back to R™. Anyhow, this
proposition is an example of the Fundmental Theorem of Homomorphisms from abstract algebra.
In the langauge of Math 421, a vector space is an abelian group with respect to vector addition
with an R-module structure given by the scalar multiplication. A linear transformation is just a
mapping which preserves addition, it is a homomorphism in abstract-algebra-speak. You might
recall from Math 200 that there is a more basic theorem, any mapping induces a bijection from its
fiber quotient to its range. That is at the base of all other such fundamental theorems. Category
theory is the study of such generalities in mathematics. If you intend to study pure mathematics
make sure to look into category theory at some point. The basic idea is that different things in
math form categories. Each category permits some family of morphisms. One can then look for
theorems which hold for all categories. Or, if you see a theorem in one branch of mathematics you
can use category theoretic intuition to propose analogus theorems in another branch of math. This
is abstraction at its core. We try to extend patterns that we know to more general patterns. The
only trouble is sometimes we can get so abstract we forget where we are. This may be an argument
for women in mathematics.
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6.6 conclusions

Continuing Theorem from the previous chapter,

Theorem 6.6.1.

215

Let A be a real n x n matrix then the following are equivalent:

A is invertible,

rref[A|0] = [I|0] where 0 € R™,
d.) A is the product of elementary matrices,

there exists B € R "*™ such that AB =1,

)

)
c.) Az=0iff z =0,
)
e.)

)

f.) there exists B € R "*" such that BA =1,
) rref[A] =1,
.) rref[Alb] = [I|z] for an z € R™,

i.) Az =b is consistent for every b € R",

k.) AT is invertible,
1.) det(A) # 0,
n.) Col(A) =R ™,

Row(A) =R '*",

o

rank(A) = n,

p-

r.) v =0 for A where v = dim(Null(A)),

s.) the columns of A are linearly independent,

(a
(b
(
(
(
(
(8
(b
(i
(j.) Az = b has exactly one solution for every b € R™,
(
(
(
(
(
(
(
(
(
(

)
)
)
q.) Nuli(A) = {0},
)
)
)

t.) the rows of A are linearly independent,

m.) Kramer’s rule yields solution of Az = b for every b€ R™.
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Let A be a real n x n matrix then the following are equivalent:

u.) the induced linear operator L4 is onto; L4(R"™) = R"™.

v.) the induced linear operator L4 is 1-1

w.) the induced linear operator L4 is an isomorphism.

(
(
(
(

x.) the kernel of the induced linear operator is trivial; ker(L4) = {0}.

Again, we should pay special attention to the fact that the above comments hold only for a square
matrix. If we consider a rectangular matrix then the connection between the concepts in the theo-
rem are governed by the dimension formulas we discovered in the previous chapter.

Next, continuing Theorem from the previous chapter:

Theorem 6.6.2.

Let A be a real n x n matrix then the following are equivalent:
(a.) A is not invertible,
(b.) Az = 0 has at least one nontrivial solution.,
(c.) there exists b € R™ such that Az = b is inconsistent,
(d.) det(A) =0,
() Null(4) # {0},
(f.) there are v = dim(Nwull(A)) parameters in the general solution to Az = 0,
(g.) the induced linear operator L4 is not onto; L4(R™) # R".
(h.) the induced linear operator L, is not 1-1
(i.) the induced linear operator L4 is not an isomorphism.
(j.) the kernel of the induced linear operator is nontrivial; ker(La) # {0}.

Can you think of anything else to add here? Let me know if you think I missed something here. If
it’s sufficiently interesting it’ll be worth some points.



Chapter 7

eigenvalues and eigenvectors

The terms eigenvalue and vector originate from the German school of mathematics which was very
influential in the early 20-th century. Heisenberg’s formulation of quantum mechanics gave new
importance to linear algebra and in particular the algebraic structure of matrices. In finite di-
mensional quantum systems the symmetries of the system were realized by linear operators. These
operators acted on states of the system which formed a complex vector space called Hilbert Space. E]

Operators representing momentum, energy, spin or angular momentum operate on a physical sys-
tem represented by a sum of eigenfunctions. The eigenvalues then account for possible value which
could be measured in an experiment. Generally, quantum mechanics involves complex vector spaces
and infinite dimensional vector spaces however many of the mathematical difficulties are already
present in our study of linear algebra. For example, one important question is how does one pick
a set of states which diagonalize an operator? Moreover, if one operator is diagonalized by a par-
ticular basis then can a second operator be diagonalized simultaneously? Linear algebra, and in
particular eigenvectors help give an answer for these questions. E]

Beyond, or perhaps I should say before, quantum mechanics eigenvectors have great application
in classical mechanics, optics, population growth, systems of differential equations, chaos theory,
difference equations and much much more. They are a fundmental tool which allow us to pick apart
a matrix into its very core. Diagonalization of matrices almost always allow us to see the nature of
a system more clearly.

However, not all matrices are diagonalizable. It turns out that any matrix is similar to a Jordan
Block matrix. Moreover, the similarity transformation is accomplished via a matrix formed from
concatenating generalized eigenvectors. When there are enough ordinary eigenvectors then the

'Hilbert Spaces and infinite dimensional linear algebra are typically discussed in graduate linear algebra and/or
the graduate course in functional analysis, we focus on the basics in this course.

2in addition to linear algebra one should also study group theory. In particular, matrix Lie groups and their
representation theory explains most of what we call ”chemistry”. Magic numbers, electronic numbers, etc... all of
these are eigenvalues which label the states of the so-called Casimir operators

217
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Jordan Form of the matrix is actually a diagonal matrix. The general theory for Jordan Forms,
in particular the proof of the existence of a Jordan Basis, is rather involved. I will forego typical
worries about existence and just show you a few examples. I feel this is important because the
Jordan Form actually does present itself in applications.

In my Chapter 9 (which I'm covering lightly this semester) we explore how eigenvectors and the
Jordan form are connected to solutions of systems of differential equations. The double root so-
lution for constant coefficient 2nd order ODEs actually has the Jordan form hiding in the details.
The matrix exponential allows for elegant solutions of any system of differential equations. My
approach is similar to that given in the text on DEqns by Nagel, Saff and Snider ( the text for
math 334 ). However, I should mention that if you wish to understand generalized eigenvectors
and Jordan forms in the abstract then you should really engage in a serious study of modules. If
you build a vector space over a ring instead of a field then you get a module. Many of the same
theorems hold, if you are interested I would be happy to point you to some sources to begin reading.
I would be a good topic for an independent study to follow this course.

Finally, there is the case of complex eigenvalues and complex eigenvectors. These have use in the
real case. A general princple for linear systems is that if a complex system has a solution then
the corresponding real system will inherit two solutions from the real and imaginary parts of the
complex solution. Complex eigenvalues abound in applications. For example, rotation matrices
have complex eigenvalues. We’ll find that complex eigenvectors are useful and not much more
trouble than the real case. The diagonalization provided from complex eigenvectors provides a
factorization of the matrix into complex matrices. We examine how to convert such factorizations
in terms of rotations. (this is one of the reasons I really like the text by Lay, his treatment of
these matters on page 338-340 really helps us understand what complex e-vectors are doing for real
matrices, although, it seems he only treats the 2 x 2 case)).

7.1 why eigenvectors?

In this section I attempt to motivate why eigenvectors are natural to study for both mathematical
and physical reasons. In fact, you probably could write a book just on this question.

7.1.1 quantum mechanics

Physically measureable quantities are described by operators and states in quantum mechanicsﬂ
The operators are linear operators and the states are usually taken to be the eigenvectors with
respect to a physical quantity of interest. For example:

plp>=plp>  J2j>=jG+1)|i>  H|E>=E|E>

3you can skip this if you're not a physics major, but maybe you're interested despite the lack of direct relevance
to your major. Maybe your interested in an education not a degree. I believe this is possible so I write these words
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In the above the eigenvalues were p,j(j + 1) and E. Physically, p is the momentum, j(j + 1) is
the value of the square of the magnitude of the total angular momentum and E is the energy. The
exact mathematical formulation of the eigenstates of momentum, energy and angular momentum is
in general a difficult problem and well-beyond the scope of the mathematics we cover this semester.
You have to study Hilbert space which is an infinite-dimensional vector space with rather special
properties. In any event, if the physical system has nice boundary conditions then the quantum
mechanics gives mathematics which is within the reach of undergraduate linear algebra. For ex-
ample, one of the very interesting aspects of quantum mechanics is that we can only measure a
certain pairs of operators simultaneously. Such operators have eigenstates which are simultane-
ously eigenstates of both operators at once. The careful study of how to label states with respect
to the energy operator (called the Hamiltonian) and some other commuting symmetry operator
(like isospin or angular momentum etc...) gives rise to what we call Chemistry. In other words,
Chemistry is largely the tabulation of the specific interworkings of eigenstates as the correlate to
the energy, momentum and spin operators (this is a small part of what is known as representation
theory in modern mathematics). I may ask a question about simultaneous diagonalization. This is
a hard topic compared to most we study.

7.1.2 stochastic matrices

Definition 7.1.1.

Let P € R ™™ with P;; > 0 for all ¢, j. If the sum of the entries in any column of P is one
then we say P is a stochastic matrix.

Example 7.1.2. Stochastic Matrix: A medical researchmﬁ 1s studying the spread of a virus in
1000 lab. mice. During any given week it’s estimated that there is an 80% probability that a mouse
will overcome the virus, and during the same week there is an 10% likelyhood a healthy mouse will
become infected. Suppose 100 mice are infected to start, (a.) how many sick next week? (b.) how
many sick in 2 weeks ? (c.) after many many weeks what is the steady state solution?

I, = infected mice at beginning of week k p_ 0.2 0.1
Nyj, = noninfected mice at beginning of week k | 0.8 0.9

We can study the evolution of the system through successive weeks by multiply the state-vector
Xk = I, Ni] by the probability transition matriz P given above. Notice we are given that X, =
[100,900]. Calculate then,

x, [ 02 017][100] _[110]
27108 09 ][900 ] |89

After one week there are 110 infected mice Continuing to the next week,

X_'0.2 0.1 71[ 110 ] [ 111 ]
7108 0989 | | 889

4this example and most of the other applied examples in these notes are borrowed from my undergraduate linear
algebra course taught from Larson’s text by Dr. Terry Anderson of Appalachian State University
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After two weeks we have 111 mice infected. What happens as k — co? Generally we have X3 =
PXj_1. Note that as k gets large there is little difference between k and k — 1, in the limit they
both tend to infinity. We define the steady-state solution to be X™* = limy_ oo Xi. Taking the limit
of X = PXi_1 as k — oo we obtain the requirement X* = PX*. In other words, the steady state
solution is found from solving (P — I)X* = 0. For the ezample considered here we find,

(P—I)X*—[_()?ég _O(leH—o v = 8u X*—[Suu]

However, by conservation of mice, u + v = 1000 hence 9u = 1000 and u = 111.11 thus the steady
state can be shown to be X* = [111.11,888.88]

Example 7.1.3. Diagonal matrices are nice: Suppose that demand for doorknobs halves every
week while the demand for yo-yos it cut to 1/3 of the previous week’s demand every week due to
an amazingly bad advertising campaigﬂ. At the beginning there is demand for 2 doorknobs and 5
YOo-1YO0s.

Dy, = demand for doorknobs at beginning of week k p_ 1/2 0
Y. = demand for yo-yos at beginning of week k - 0 1/3

We can study the evolution of the system through successive weeks by multiply the state-vector
Xy = [Dg, Y] by the transition matriz P given above. Notice we are given that X, = [2,5]T.

Calculate then,
(12 0 2] [ 1
N HE

Notice that we can actually calculate the k-th state vector as follows:

k k
kv | 1/2 0 2] [27F o0 2] [ 27+
Xp = PXa = [ 0 1/3 50| o 3k 50 | 5379
Therefore, assuming this silly model holds for 100 weeks, we can calculate the 100-the step in the
process easily,

100 9—101
Xio0 = P X1 = [ 5(3-100) ]
Notice that for this example the analogue of X* is the zero vector since as k — oo we find X has

components which both go to zero.

For some systems we’ll find a special state we called the ”steady-state” for the system. If the system
was attracted to some particular final state as ¢t — oo then that state satisfied PX* = X*. We will
learn in this chapter to identify this makes X* is an eigenvector of P with eigenvalue 1.

Sinsert your own more interesting set of quantities that doubles/halves or triples during some regular interval of
time
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7.1.3 motion of points under linear transformations

Remark 7.1.4.

What follows here is just intended to show you how you might stumble into the concept of
an eigenvector even if you didn’t set out to find it. The calculations we study here are not
what we aim to ultimately disect in this chapter. This is purely a mathematical experiment
to show how eigenvectors arise naturally through repeated matrix multiplication on a given
point. Physically speaking the last two subsections were way more interesting.

I’ll focus on two dimensions to begin for the sake of illustration. Let’s take a matrix A and a point
z, and study what happens as we multiply by the matrix. We’ll denote z; = Az, and generally
Trr1 = Axg. It is customary to call x the ”k-th state of the system”. As we multiply the k-th
state by A we generate the k + 1-th stateﬁ

Example 7.1.5. Let A= [} %] and let z, = [}]. Calculate,
v1=[§ %]13] =[]
za = [§ O] [§] =[]
xr3 = [g —01] [198] = [%Z]
za=[3 2] [31] =[5

Each time we multiply by A we scale the vector by a factor of three. If you want to look at x, as
a point in the plane the matriz A pushes the point xy, to the point riy1 = 3xk. Its not hard to see
that x, = 3*x,. What if we took some other point, say vy, = (3] then what will A do?

yi=[3 %] 6] =[2]
Y2 = [% —01] [%] = [196]
Y3 = [g —01] [196] = [%(73]
Y4 = [% —01} [ig] = [18610]

Now, what happens for arbitrary k? Can you find a formula for yi ¢ This point is not as simple as
ZTo. The vector x, is apparently a special vector for this matriz. Next study, z, = [8],

za=[3%]05]=[2%]
=[] [%]=1]]
=3 0]19=[5%]
a= 3] [ %] =15

Let me illustrate what is happening with a picture. I have used color to track the motion of a
particular point. You can see that all points tend to get drawn into the line with direction vector
T, with the sole exception of the points along the y-axis which I have denoted via diamonds in the
picture below:

Sask Dr. Mavinga and he will show you how a recursively defined linear difference equation can be converted into
a matrix equation of the form xyx41 = Azy, this is much the same idea as saying that an n — th order ODE can be
converted into a system of n- first order ODEs.
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@

The directions [1,2] and [0, 1] are special, the following picture illustrates the motion of those points
under A:

= P,
. r'-’
¥
" 0 ¥ P i 1 W T o
Va1
s
i - Fed Points generated under A from [1,2]
‘oines generated under A from [-1,-2]
H|||r I’omls generated under A from [0,2]
»
" o

The line with direction vector [1,2] seems to attract almost all states to itself. On the other hand, if
you could imagine yourself a solution walking along the y-axis then if you took the slightest mis-step
to the Tight or left then before another dozen or so steps you’d find yourself stuck along the line in
the [1,2]-direction. There is a connection of the system xy11 = Axy and the system of differential
equations dz/dt = Bz if we have B = I + A. Perhaps we’ll have time to explore the questions
posed in this example from the viewpoint of the corresponding system of differential equations. In
this case the motion is very discontinuous. I think you can connect the dots here to get a rough
picture of what the corresponding system’s solutions look like. In the differential equations Chapter
we develop these ideas a bit further. For now we are simply trying to get a feeling for how one
might discover that there are certain special vector(s) associated with a given matriz. We call these
vectors the ”eigenvectors” of A.

The next matrix will generate rather different motions on points in the plane.
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V3

Example 7.1.6. Let A = ?
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. Consider the trajectory of z, = [1,0]7,

RF)
4]0
el

Past this point we just cycle back to the same points, clearly xp = xy1g for all k > 0. If we started
with a different initial point we would find this pattern again. The reason for this is that A is the
matriz which rotates vectors by 7/3 radians. The trajectories generated by this matrix are quite
different then the preceding example, there is no special direction in this case.

Although, generally this type of matrix generates elliptical orbits and then there are two special di-
rections. Namely the major and minor axis of the ellipitical orbits. Finally, this sort of matrix could
have a scaling factor built in so that the trajectories spiral in or out of the origin. I provide a picture
illustrating the various possibilities. The red dots in the picture below are generated from A as
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was given in the preceding example, the blue dots are generated from the matrix [coli (A4)|cola(A)]
whereas the green dots are obtained from the matrix [2col; (A)|cola(A)]. In each case I started with
the point (1,0) and studied the motion of the point under repeated multiplications of matrix:

Let’s summarize our findings so far: if we study the motion of a given point under successive
multiplications of a matrix it may be pushed towards one of several directions or it may go in a
circular/spiral-type motion.
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7.2 eigenvector foundations

The preceding section was motivational. We now begin the reaﬂ material. Given our experience on
coordinate change in the preceding chapter it should begin to be clear to you that the fundamental
objects of linear algebra are linear transformations. A matrix usually give us just one picture of
a more fundamental concept which is stated in terms of linear transformations and vector spaces.
In view of this wisdom we cast the definition of the eigenvalue and vector in terms of an abstract
linear transformation on a vector space.

Definition 7.2.1.

Let T': V — V be a linear transformation on a vector space V. If there exists v € V' such
that v # 0 such that T'(v) = Av for some constant A then we say v is an eigenvector of T'
with eigenvalue \.

Usually we work with real vector spaces so the scalar A is taken from R, however it is both interesting
and useful to consider the extension to C. We do so at the conclusion of this chapter. For now
let me just introduce a little langauge. If A € R then I say )\ is a real eigenvalue with real
eigenvector v. On the other hand, my typical notation is that if A = a+ i3 € C with 8 # 0 then
I say A is a complex eigenvalue with complex eigenvector v = a + ib.

Example 7.2.2. Let T(f) = Df where D is the derivative operator. This defines a linear trans-
formation on function space F. An eigenvector for T would be a function which is proportional to
its own derivative fucntion... in other words solve fli—zt’ = \y. Separation of variables yields y = ce™.

The eigenfunctions for T are simply exponential functions.

Example 7.2.3. Let T(A) = AT for A € R ™", To find an eigenvector for T we want a matriz
V € R ™" and a constant X such that T(V) = VT = AV. An obvious choice is A\ = 1 and choose
a symmetric matriz V so VT = V. Another slightly less obvious guess exists. Can you think of it?

Notice that there are infinitely many eigenvectors for a given eigenvalue in both of the examples
above. The number of eigenvalues for the function space example is infinite since any A € R will
do. On the other hand, the matrix example only had two eigenvalues. The distinction between
these examples is that function space is infinite dimensional whereas the matrix example is finite-
dimensional. For the most part we focus on less abstract eigenvector examples. The following
definition dovetails with our definition above if you think about L4 : R™ — R™. An eigenvector of
L 4 is an eigenvector of A if we accept the definition that follows:

Definition 7.2.4.

Let A € R™" If v € R" is nonzero and Av = \v for some A € C then we say v is an
eigenvector with eigenvalue A of the matrix A.

We identify that the eigenvectors of A pointed in the direction where trajectories were asymp-
totically attracted in the examples of the preceding section. Although, the case of the circular

I should mention that your text insists that e-vectors have real e-values. I make no such restriction. If we want
to insist the e-values are real I will say that explicitly.
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trajectories broke from that general pattern. We’ll discover those circular orbits correspond to the
complex case.

Our goal at this point is to find a clear and concise method to calculate eigenvalues and their corre-
sponding eigenvector(s). Fortunately, we soon find that guessing and solving differential equations
are not the usual method to calculate eigenvectors ( at least not in Math 321)

Proposition 7.2.5.

Let A € R ™™ then ) is an eigenvalue of A iff det(A— AI) = 0. We say P(\) = det(A— \I)
the characteristic polynomial and det(A — AI) = 0 is the characteristic equation.

Proof: Suppose A is an eigenvalue of A then there exists a nonzero vector v such that Av = A\v
which is equivalent to Av — Av = 0 which is precisely (A — AI)v = 0. Notice that (A — AI)0 =0
thus the matrix (A — A\I) is singular as the equation (A — AI)z = 0 has more than one solution.
Consequently det(A — \I) = 0.

Conversely, suppose det(A — AI) = 0. It follows that (A — AI) is singular. Clearly the system
(A — X)z = 0 is consistent as x = 0 is a solution hence we know there are infinitely many solu-
tions. In particular there exists at least one vector v # 0 such that (A — \I)v = 0 which means the
vector v satisfies Av = Av. Thus v is an eigenvector with eigenvalue X\ for A ﬂ O

Let’s collect the observations of the above proof for future reference.

Proposition 7.2.6.

The following are equivalent for A € R "*™ and A € C,
1. X is an eigenvalue of A
2. there exists v # 0 such that Av = \v
3. there exists v # 0 such that (A — \)v =0
4. X is a solution to det(A — AI) =0

5. (A — AI)v = 0 has infinitely many solutions.

7.2.1 characteristic equations

Example 7.2.7. Let A= [% 91]. Find the eigenvalues of A from the characteristic equation:

3—A 0

det(A—)\I)—det[ 8 1)

}—(3—/\)(—1—)\)—(/\+1)(/\—3)—0

81t is worth mentioning that the theorems on uniqueness of solution and singular matrices and determinant hold
for linear systems with complex coefficients and variables. We don’t need a separate argument for the complex case
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Hence the eigenvalues are A1 = —1 and Ao = 3. Notice this is precisely the factor of 8 we saw
scaling the vector in the first example of the preceding section.

1
?/g . Find the eigenvalues of A from the characteristic equation:

2

Example 7.2.8. Let A =

1
det(A — M) = det [ 2_@

s

Well how convenient is that? The determinant completed the square for us. We find: A = %:l:i
It would seem that elliptical orbits somehow arise from complex eigenvalues

Proposition proved that taking the determinant of a triagular matrix was easy. We just multi-
ply the diagonal entries together. This has interesting application in our discussion of eigenvalues.

Example 7.2.9. Given A below, find the eigenvalues. Use Proposition to calculate the de-
terminant,

2 3 4 2—A 3 4
A=]05 6| = det(A-A)=| 0 5-x 6 |=2-NOG-N(T-\
00 7 0 0 T-X\

Therefore, A1 =2, =5 and A3 = 7.

Remark 7.2.10. eigenwarning

Calculation of eigenvalues does not need to be difficult. However, I urge you to be careful
in solving the characteristic equation. More often than not I see students make a mistake
in calculating the eigenvalues. If you do that wrong then the eigenvector calculations will
often turn into inconsistent equations. This should be a clue that the eigenvalues were
wrong, but often I see what I like to call the ”principle of minimal calculation” take over
and students just adhoc set things to zero, hoping against all logic that I will somehow not
notice this. Don’t be this student. If the eigenvalues are correct, the eigenvector equations
are consistent and you will be able to find nonzero eigenvectors. And don’t forget, the
eigenvectors must be nonzero.

7.2.2 eigenvector examples

3 1

Example 7.2.11. Let A = [ 3

] find the e-values and e-vectors of A.

1

3—A
det(A—)J)—det[ 3 11

]:(3—)\)(1—)\)—3:)\2—4>\:)\(/\—4):0
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We find A\i = 0 and Ao = 4. Now find the e-vector with e-value \; = 0, let u; = [u,v]? denote the
e-vector we wish to find. Calculate,

131 ul|_ [3ut+v | |0
(A_Of)ul_[3 1][1}]_[3u+v]_[0]
Obuviously the equations above are redundant and we have infinitely many solutions of the form
u

—3u
often make a choice to select a particular e-vector. Most modern graphing calculators can calcu-
late e-vectors. It is customary for the e-vectors to be chosen to have length one. That is a useful
choice for certain applications as we will later discuss. If you use a calculator it would likely give

1
3u + v = 0 which means v = —3u so we can write, u; = [ } =u [ _3 ] In applications we

Uy = \/%T) [ _13 ] although the /10 would likely be approximated unless your calculator is smart.

Continuing we wish to find eigenvectors ug = [u,v]’ such that (A — 4I)ug = 0. Notice that u,v
are disposable variables in this context, I do not mean to connect the formulas from the A = 0 case
with the case considered now.

o= 3 4] [0] =[] [0)

Again the equations are redundant and we have infinitely many solutions of the form v = u. Hence,

1] . ‘
Uy = [ Z ] =u [ 1 ] is an eigenvector for any u € R such that u # 0.

Remark 7.2.12.

It was obvious the equations were redundant in the example above. However, we need not
rely on pure intuition. The problem of calculating all the e-vectors is precisely the same as
finding all the vectors in the null space of a matriz. We already have a method to do that
without ambiguity. We find the rref of the matriz and the general solution falls naturally
from that matriz. I don’t bother with the full-blown theory for simple examples because there
is no need. However, with 3 X 3 examples it may be advantageous to keep our earlier null
space theorems in mind.

0 0 —4
Example 7.2.13. Let A= | 2 4 2 find the e-values and e-vectors of A.
2 0 6

-2 0 —4
O=det(A—AXl)=det| 2 4—-X 2
2 0 6-2)\
=(4—=N)[-A6- ) +38]

= (4= N[N\ —6)+8]
=—-A=4)A -4\ -2)
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Thus we have a repeated e-value of \ = A\a = 4 and A3 = 2. Let’s find the eigenvector uz = [u, v, w]"

such that (A — 2I)us = 0, we find the general solution by row reduction

-2 —4 0 2
1 -1
0

0

jes}
|
)

u+2w=0
v—w=~0

)
<
w
|
g
—_

0 0 1
rref | 2 2 2 |0 | =10
2 0 410 0

()
—_

Next find the e-vectors with e-value 4. Let uy = [u,v,w] satisfy (A — 4I)u; = 0. Calculate,

-4 0 —410 1 0 10
rref| 2 0 2 |(0|=]00 00 = ut+w=0
2 0 210 0 0 0]0

Notice this case has two free variables, we can use v,w as parameters in the solution,

U —w 0 -1 0 -1
uy=1| v | = v =v|1|4+w 0 = |jluy=wv| 1 and ugs = w 0
w w 0 1 0 1

I have boxed two linearly independent eigenvectors uy,us. These vectors will be linearly independent
for any pair of nonzero constants v, w.

You might wonder if it is always the case that repeated e-values get multiple e-vectors. In the pre-
ceding example the e-value 4 had multiplicity two and there were likewise two linearly independent
e-vectors. The next example shows that is not the case.

11

Example 7.2.14. Let A = [ 01

] find the e-values and e-vectors of A.

1-A 1

det(A—)\I):det[ 0 1-)

]:(1_»(1—»:0

Hence we have a repeated e-value of Ay = 1. Find all e-vectors for Ay =1, let uy; = [u,v}T,

wem=[33)[2]-[2] = em0 = [oma[3]

We have only one e-vector for this system.

Incidentally, you might worry that we could have an e-value (in the sense of having a zero of the
characteristic equation) and yet have no e-vector. Don’t worry about that, we always get at least
one e-vector for each distinct e-value. See Proposition [7.2.6
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Example 7.2.15. Let A = find the e-values and e-vectors of A.

~ =~ =
co Ot N
O O W

1-—A 2 3
0 =det(A— \) = det 4 5-X 6
7 8 9—A

=(1=N[(G=X(9—A) —48] —2[4(9—X) —42] +3[32 - 7(5 — \)]
= -2\ 4 1502 + 18X\
= A\ — 151 — 18)

Therefore, using the quadratic equation to factor the ugly part,

154+ 3v33 15 —3v33
A =0, )\224_77 A3=—= ————
2 2
The e-vector for e-value zero is not too hard to calculate. Find ui = [u,v]T such that (A—0I)u; = 0.
This amounts to row reducing A itself:

-1 1
u—w=2~0
= = |y =w| —2

1
0
0 v+2w=0 1

o = O
o O O

1
rref | 4
7

S N

© o W

o oo
Il

2
0

The e-vectors corresponding e-values Ao and A3 are hard to calculate without numerical help. Let’s
discuss Texas Instrument calculator output. To my knowledge, TI-85 and higher will calculate both
e-vectors and e-values. For example, my ancient TI-89, displays the following if I define our matriz
A =mat2,

eigVl(mat2) = {16.11684397, —1.11684397, 1.385788954¢ — 13}

Calculators often need a little interpretation, the third entry is really zero in disquise. The e-vectors
will be displayed in the same order, they are given from the ”eigVe” command in my TI-89,

2319706872 7858302387  .4082482905
eigVc(mat2) = | 5253220933 .0867513393  —.8164965809
8186734994 —.6123275602  .4082482905

From this we deduce that eigenvectors for A1, Ao and A3 are

2319706872 7858302387 .4082482905
up = | .5253220933 Uy = .0867513393 ug = | —.8164965809
.8186734994 —.6123275602 .4082482905

Notice that 1/v/6 = 0.408248905 so you can see that uz above is simply the u = 1/v/6 case for
the family of e-vectors we calculated by hand already. The calculator chooses e-vectors so that the
vectors have length one.
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While we’re on the topic of calculators, perhaps it is worth revisiting the example where there was
only one e-vector. How will the calculator respond in that case? Can we trust the calculator?

11

Example 7.2.16. Recall Example|7.2.14] We let A = [ 0 1

] and found a repeated e-value of

A1 =1 and single e-vector u; = u [ ] . Hey now, it’s time for technology, let A = a,

0

‘ , 1. -1
eigVl(a) = {1,1} and eigVc(a) = [ 0 le—15 ]

Behold, the calculator has given us two alleged e-vectors. The first column is the genuine e-vector
we found previously. The second column is the result of machine error. The calculator was tricked
by round-off error into claiming that [—1,0.000000000000001] is a distinct e-vector for A. It is not.
Moral of story? When using calculator you must first master the theory or else you’ll stay mired
in ignorance as presribed by your robot masters.

Finally, T should mention that TI-calculators may or may not deal with complex e-vectors ade-
quately. There are doubtless many web resources for calculating e-vectors/values. I would wager
if you Googled it you’d find an online calculator that beats any calculator. Many of you have a
laptop with wireless so there is almost certainly a way to check your answers if you just take a
minute or two. I don’t mind you checking your answers. If I assign it in homework then I do want
you to work it out without technology. Otherwise, you could get a false confidence before the test.
Technology is to supplement not replace calculation.

Remark 7.2.17.

I would also remind you that there are oodles of examples beyond these lecture notes in
the homework solutions from previous year(s). If these notes do not have enough examples
on some topic then you should seek additional examples elsewhere, ask me, etc... Do not
suffer in silence, ask for help. Thanks.
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7.3 theory for eigenvalues and eigenvectors

In this subsection we collect a number of general results on eigenvalues and eigenvectors. To begin,
we prepare to argue a seemingly obvious proposition, namely that an n X n matrix will have n
eigenvalues. From the three examples in the earlier section that’s pretty obvious, however we
should avoid proof by example in as much is possible.

Theorem 7.3.1.

Fundamental Theorem of Algebra: if P(x) is an n-th order polynomial complex coefficients
then the equation P(x) = 0 has n-solutions where some of the solutions may be repeated.
Moreover, if P(z) is an n-th order polynomial with real coefficients then complex solutions
to P(x) = 0 come in conjugate pairs. It follows that any polynomial with real coefficients
can be factored into a unique product of repeated real and irreducible quadratic factors.

A proof of this theorem would take us far of topic hereﬂ I state it to remind you what the
possibilities are for the characteristic equation. Recall that the determinant is simply a product
and sum of the entries in the matrix. Notice that A — Al has n-copies of A and the determinant
formula never repeats the same entry twice in the same summand. It follows that solving the
characterictic equation for A € R "*™ boils down to factoring an n-th order polynomial in \.

Proposition 7.3.2.

If A€ R ™™ then A has n eigenvalues, however, some may be repeated and/or complex.

Proof: follows from definition of determinant and the Fundamental Theorem of Algebra H O

Notice that if P(\) = det(A — XI) then ); is an e-value of the square matrix A iff (A —A;) divideﬂ
the characteristic polynomial P(\).

Proposition 7.3.3.

The constant term in the characteristic polynomial P(\) = det(A — AI) is the determinant

of A.

Proof: Suppose the characteristic polynomial P of A has coefficients ¢;:

P(\) =det(A— ) = c, \" 4+ cp i A" 14 el A+ co.
Notice that if A =0 then A — A\I = A hence
P(0) = det(A) = c,0" + -+ -+ 10 + co.
Thus det(A) = ¢p. O

9there is a nice proof which can be given in our complex variables course

Oproperties of eigenvalues and the characteristic equation can be understood from studying the minimal and
characteristic polynomials. We take a less sophsiticated approach in this course

the term ”divides” is a technical term. If f(z) divides g(z) then there exists h(x) such that g(x) = h(z)f(z). In
other words, f(x) is a factor of g(z).
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Proposition 7.3.4.

‘ Zero is an eigenvalue of A iff A is a singular matrix. ‘

Proof: Let P(\) be the characteristic polynomial of A. If zero is an eigenvalue then A must factor
the characteristic polynomial. Moreover, the factor theorem tells us that P(0) = 0 since (A — 0)
factors P(\). Thus ¢p = 0 and we deduce using the previous proposition that det(A) = ¢y = 0.
Which shows that A is singular.

Conversely, assume A is singular then det(A) = 0. Again, using the previous proposition, det(A) =
¢p hence ¢y = 0. But, this means we can factor out a A in P(A) hence P(0) = 0 and we find zero is
an e-value of A. [.

Proposition 7.3.5.
If A€ R ™™ then A has n eigenvalues A1, Ag, ..., \, then det(A) = MAa--- Ay

Proof: If A € R ™" then A has n eigenvalues A1, Aa, ..., A, then the characteristic polynomial
factors over C:

det(A— M) =k(A=X)(A=X2) - (A= Ap)
Moreover, if you think about A — Al it is clear that the leading term obtains a coefficient of
(=1)™ hence k = (—1)". If ¢ is the constant term in the characteristic polynomial then algbera
reveals that ¢g = (=1)"(—=A1)(=A2) -+ (=An) = AA2...A,. Therefore, using Proposition [7.3.3]
det(A) == )\1)\2 c. /\n L.

Proposition 7.3.6.

If A € R ™™ has e-vector v with eigenvalue A then v is a e-vector of A¥ with e-value \*.

Proof: let A € R "™ have e-vector v with eigenvalue A. Consider,
ARy = A1 Ay = AF 1w = MAF2 A0 = N2AR2y = = W,
The - -+ is properly replaced by a formal induction argument. [J.

Proposition 7.3.7.

Let A be a upper or lower triangular matrix then the eigenvalues of A are the diagonal
entries of the matrix.

Proof: follows immediately from Proposition [4.3.3] since the diagonal entries of A — Al are of
the form A;; — A\ hence the characteristic equation has the form det(A — A\I) = (A11 — A)(Age —
A) -+ (Apn — A) which has solutions A = A;; for i =1,2,...,n. O

We saw how this is useful in Example The LU-factorization together with the proposition
above gives a calculationally superior method for calculation the determinant. In addition, once
you have the LU-factorization of A there are many other questions about A which are easier to
answer. See your text for more on this if you are interested.
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7.4 linear independendence of real eigenvectors

You might have noticed that e-vectors with distinct e-values are linearly independent. This is no
accident.

Proposition 7.4.1.

If A € R™™ has e-vector v; with e-value A\ and e-vector v9 with e-value Ay such that
A1 # A2 then {v1,v9} is linearly independent.

Proof: Let v, v9 have e-values A1, Ay respective and assume towards a contradction that ve = kvg
for some nonzero constant k. Multiply by the matrix A,

Avl = A(kvg) = /\11}1 = k)\zvg
But we can replace vy on the l.h.s. with kvs hence,
)\1]€U2 = k})\gvg = ]{3(/\1 — )\2)1)2 =0

Note, k # 0 and vo # 0 by assumption thus the equation above indicates Ay — Ao = 0 therefore
A1 = A9 which is a contradiction. Therefore there does not exist such a k£ and the vectors are
linearly independent. [J

Proposition 7.4.2.

If A € R ™" has e-vectors vy, vs,...,v; with e-values A1, Ag, ..., Ay such that A\; # A; for
all i # j then {v1,ve,...,vx} is linearly independent.

Proof: Let e-vectors vy, ve, ..., v, have e-values A1, Ao, ..., A\p with respect to A and assume towards
a contradction that there is some vector v; which is a nontrivial linear combination of the other
vectors:
vj 2011}1—|-CQ’U2—|—"'—|-C7\’Uj"i""-f—CkU]€
Multiply by A, .
Avj = c1Avy + coAvy + -+ - + cjAv; + - - + ¢ Avg,
Which yields,
)\j’Uj =i \v1 + Aoy + -+ C])\/]\U] + 4 ALY

But, we can replace v; on the Lh.s with the linear combination of the other vectors. Hence
Aj[clvl+0202+--~+C7\Uj+~~+ckvk] :cl)\lvl+62)\2v2+~~+cj/)\\jvj+---+ck)\kvk
Consequently,
c1(Aj — A)vi +ca(Aj — Xo)va + -+ - + cj()\j/—\)\j)vj + oA — M) =0

Since v; # 0 and ¢; are not all zero it follows at least one factor \; — A\; = 0 for ¢ # j but this is a
contradiction since we assumed the e-values were distinct. [

Notice the proof of the preceding two propositions was essentially identical. I provided the k& = 2
proof to help make the second proof more accessible.
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Definition 7.4.3.

Let A € R ™*™ then a basis {v1,v,...,v,} for R" is called an eigenbasis if each vector in
the basis is an e-vector for A. Notice we assume these are real vectors since they form a
basis for R"”.

0 0 —4
Example 7.4.4. We calculated in Example|7.2.15 the e-values and e-vectors of A= | 2 4 2
2 0 6
were A\ = Ao = 4 and A3 = 2 with e-vectors
0 -1 —2
uy = 1 Uy = 0 us = 1
0 1 1

Linear indpendence of us from ui,us is given from the fact the e-values of us and w1, us are distinct.
Then is is clear that uy is not a multiple of uo thus they are linearly independent. It follows that
{u1,uz,u3} form a linearly independent set of vectors in R?, therefore {uy,uz,u3} is an eigenbasis.

Definition 7.4.5.

Let A € R ™*™ then we call the set of all real e-vectors with real e-value A unioned with the
zero-vector the \-eigenspace and we denote this set by Wj.

Example 7.4.6. Again using Example we have two eigenspaces,
0 -1 -2

Wy =span{| 1 |, 0 |} Wy =span{| 1 |}
0 1 1

Proposition 7.4.7.

Eigenspaces are subspaces of R™. Moreoever, dim(W)) < m where m is multiplicity of the
A solution in the characteristic equation.

Proof: By definition zero is in the eigenspace W). Suppose z,y € W) note that A(z + cy) =
Az + cAy = Az + cdy = Mz + cy) hence x + cy € W), for all z,y € W) and ¢ € R therefore
Wy < R™. To prove dim(Wy) < m we simply need to show that dim(W)) > m yields a contra-
diction. This can be seen from showing that if there were more than m e-vectors with e-value A
then the chacteristic equation would likewise more than m solutions of A\. The question then is
why does each linearly independent e-vector give a factor in the characteristic equation? Answer this
question for bonus points. [
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Definition 7.4.8.

Let A be a real square matrix with real e-value A\. The dimension of W) is called the
geometric multiplicity of A\. The number of times the A\ solution is repeated in the
characteristic equation’s solution is called the algebraic multiplicity of .

We already know from the examples we’'ve considered thus far that there will not always be an
eigenbasis for a given matrix A. In general, here are the problems we’ll face:

1. we could have complex e-vectors (see Example [7.7.2])

2. we could have less e-vectors than needed for a basis (see Example [7.2.14])

We can say case 2 is caused from the geometric multiplicity being less than the algebraic multiplicity.
What can we do about this? If we want to adjoin vectors to make-up for the lack of e-vectors then
how should we find them in case 27

Definition 7.4.9.

A generalized eigenvector of order k with eigenvalue \ with respect to a matrix A €
R ™™ is a nonzero vector v such that

(A= ADFv =0

It’s useful to construct generalized e-vectors from a chain-condition if possible.

Proposition 7.4.10.

Suppose A € R ™™™ has e-value A and e-vector v; then if (A — AI)ve = vy has a solution
then vy is a generalized e-vector of order 2 which is linearly independent from wvy.

Proof: Suppose (A— A )vy = vy is consistent then multiply by (A— ) to find (A—\I)?ve = (A—
Al )vi. However, we assumed v was an e-vector hence (A— Al )v; = 0 and we find v9 is a generalized
e-vector of order 2. Suppose vy = kvy for some nonzero k then Avy = Akvi = kAvi = Avg hence
(A — A )vy = 0 but this contradicts the construction of vs as the solution to (A — Al)vy = vy.
Consequently, vo is linearly independent from v; by virtue of its construction. [.

Example 7.4.11. Let’s return to Example and look for a generalized e-vector of order 2.

11
RecallA—{O 1

u =1 for convenience). Let’s complete the chain: find vo = [u,v]T such that (A — Ius = uy,

[8 (1)][5]:[(1)] = wv=1, uis free

Any choice of u will do, in this case we can even set u =0 to find

tl

} and we found a repeated e-value of \1 =1 and single e-vector uy = [ (1) ] (fiz




7.4. LINEAR INDEPENDENDENCE OF REAL EIGENVECTORS 237

Clearly, {uy,us} forms a basis of R 2%, It is not an eigenbasis with respect to A, however it is
what is known as a Jordan basis for A.

Theorem 7.4.12.

Any matrix with real eigenvalues has a Jordan basis. We can always find enough generalized
e-vectors to form a basis for R with respect to A in the case that the e-values are all real.

Proof: not here, not now. This is a hard one. [J

Proposition 7.4.13.

Let A € R ™*™ and suppose A is an e-value of A with e-vector vy then if (A — A\l )ve = vy,
(A= X)vs =vg, ..., (A— A )vg = vi_1 are all consistent then {vy,va,..., v} is a linearly
independent set of vectors and v; is a generalized vector of order j for each j =1,2,... k.

Proof: worth a bonus points if you can do it. [

Usually we can find a chain of generalized e-vectors for each e-value and that will product a Jordan
basis. However, there is a trap that you will not likely get caught in for a while. It is not always
possible to use a single chain for each e-value. Sometimes it takes a couple chains for a single e-value.
That said, the chain condition is very nice in that it automatically insures linear independence down
the chain. This is important since the solution to (A — AI)*v = 0 and the solution to (A —AI)v =0
do not automatically provide a LI set. I do not attempt to describe the general algorithm to find
the Jordan basis for a given matrix, I merely wish to introduce you to the idea of the Jordan form
and perhaps convince you it’s interesting.

1100
010 0] .. 4
Example 7.4.14. Suppose A = 00 1 1 it is not hard to show that det(A—\I) = (A—1)* =
0 0 01
0. We have a quadruple e-value A1 = gy =A3 =X =1
01 00 1
oo o0 o0 | o
0=(M=Di=17 499 1| = =]
00 0O 0

Any nonzero choice of s1 or s3 gives us an e-vector. Let’s define two e-vectors which are clearly
linearly independent, i = [1,0,0,0]7 and iy = [0,0,1,0]7. We'll find a generalized e-vector to go
with each of these. There are two length two chains to find here. In particular,

0100 $1 1
(A—I)ﬁgz'ljl = 8 8 8 (]? ii - 8 = 82:1784207 81783 fT@e
0 00O 54 0
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I choose 51 = 0 and s3 = 1 since I want a new vector, define i3 = [0,0,1,0]7. Finally solving
(A — )ity = iy for iy = [s1,52,53,54)7 yields conditions sy = 1,85 = 0 and s1,s3 free. I choose
iy = [0,0,0,1]7. To summarize we have four linearly independent vectors which form two chains:

—

(A—I)(u)g:ﬁl, (A—I)ﬁl:o (A—I)ﬁ4:ﬁ2, (A—I)ﬁgzo

The matrix above was in an example of a matrix in Jordan form. When the matrix is in Jordan
form then the each elemement of then standard basis is an e-vector or generalized e-vector.

Example 7.4.15.

(2 1 0 0 0 0 0 07
0210 00O0O0
00 2 00O0O0O0
A 000 31 0O0O0
00003100
000 O0O0310
000 O0O0O03O0

(0000000 4]

Here we have the chain {ey, ez, es} with e-value A\; = 2, the chain {eq4.e5, eg, e7} with e-value Ay = 3

and finally a lone e-vector eg with e-value A3 = 4

7.5 diagonalization

If a matrix has n-linearly independent e-vectors then we’ll find that we can perform a similarity
transformation to transform the matrix into a diagonal form. Let me briefly summarize what is
required for us to have n-LI e-vectors. This is the natural extension of Proposition to the case
of repeated e-values.

Proposition 7.5.1. criteria for real diagonalizability

Suppose that A € R "*" has distinct eigenvalues A1, Ag,..., A\r € R such that the charac-
teristic polynomial factors as follows:

Pa(A) = £(A = A)™ (A — A)™ - (A — Ap)™.

We identify mq,mao, ..., my are the algebraic mulitplicities of A\i, Ao, ..., A\ respective
and my + mg + - -my = n. Furthermore, suppose we say that the j-th eigenspace Wy, =
{r € R | Az = \jx} has dim(W),) = n; for j = 1,2,... k. The values ny,na,...,n; are
called the geometric mulitplicities of Ai, A, ..., A\x respective. With all of the language
above in mind we can state that if m; = n; for all j = 1,2,...% then A is diagonalizable.

All the proposition above really says is that if there exists an eigenbasis for A then it is diagonaliz-
able. Simply take the union of the basis for each eigenspace and note the LI of this union follows
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immediately from Proposition and the fact they are baseﬂ Once we have an eigenbasis we
still need to prove diagonalizability follows. Since that is what is most interesting I'll restate it
once more. Note in the proposition below the e-values may be repeated.

Proposition 7.5.2.

Suppose that A € R ™*™ has e-values Aq, Ao, ..
V1,V2,. ..,V If we define V. = [v1|va]---|v,] then D = V1AV where D is a diagonal
matrix with the eigenvalues down the diagonal: D = [Ajej|Ages| - - [Anen].

., Ap, with linearly independent e-vectors

Proof: Notice that V' is invertible since we assume the e-vectors are linearly independent. More-
over, V"1V = I in terms of columns translates to V~![v1|va| - - - [v,] = [e1]e2| - - |en]. From which
we deduce that V_lvj = ¢; for all j. Also, since v; has e-value A\; we have Av; = A\jv;. Observe,

VAV =V Ay |vg| - - - |vy]
=V Av|Avg| - - - | Avy]
= VA1 | Aoz - - - [Anvn]
= Vw1 | Agva| - - - [ Apvy]

= MV o AV g - AV )

= [/\161‘)\262‘ L \)\nen]

Remark 7.5.3.

In general, it is always possible to take a matrix with real e-values and perform a similarity
transformation to a matrix in Jordan form. The similarity transformation is constructed in
basically the same way as before; we calculate a Jordan basis then transform by its matrix.
This is precisely what we just did in the diagonalizable case. Incidentally, a diagonal matrix
is also in Jordan form but obviously the converse is not true in general. Finally, if there
are complex e-values you can still perform a similarity transformation to a matrix with a
complex Jordan form. To complete the story of cannonical forms we should also study the
rational cannonical form and see how all of this ties back into the theory of polynomials
and modules.

3 1

Example 7.5.4. Revisit Example

7.2.11

where we learned A = [

3 1 } had e-values \1 = 0 and

Xo = 4 with e-vectors: u1 = [1,—3]" and us = [1,1]7. Let’s follow the advice of the proposition
above and diagonalize the matrizv. We need to construct U = [u1|uz] and calculate U™, which is

easy since this is a 2 X 2 case:

U:{l

1
-3 1

4

= U‘lzl[l

3

4

123ctually there is something to show here but I leave it to the reader for now
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Now multiply,
1[1 -1][3 1 11 1[1 —-1][0 4] 1[0 0O
—1 _ = I I
v AU_4[3 1“3 1“—3 1} 4[3 1“0 4} 4[0 16]

) . 00
Therefore, we find confirmation of the proposition, U ' AU = [ 0 4 ]
Notice there is one very unsettling aspect of diagonalization; we need to find the inverse of a matrix.
Generally this is not pleasant. Orthogonality will offer an insight to help us here. We’ll develop
additional tools to help with this topic in the next chapter.

Calculational inconvieniences aside, we have all the tools we need to diagonalize a matrix. What
then is the point? Why would we care if a matrix is diagonalized? One reason is that we can
calculate arbitrary powers of the matrix with a simple calculation. Note that: if A ~ D then
Ak ~ DF._ In particular: if D = P~1AP then A = PDP~! thus:

A¥ = AA... A= (PDP Y)Y (PDPY)...(PDP ') = PDFP 1

k—factors

Note, D* is easy to calculate. Try this formula out on the last example. Try calculating A?® directly
and then indirectly via this similarity transformation idea.

Beyond this there are applications of diagonalization too numerous to list. One reason I particularly
like the text by Lay is he adds much detail on possible applications that I do not go into here.
See sections 4.8, 4.9, 5.6, 5.7 for more on the applications of eigenvectors and diagonalization. My
chapter 9 does go considerably beyond Lay’s text on the problem of systems of ordinary differential
equations so you could also look there if you thirst for applications of eigenvectors.

7.5.1 linear differential equations and e-vectors: diagonalizable case

Any system of linear differential equations with constant coefficientd™| can be reformulated into a
single system of linear differential equations in normal form % = AZ + f where A € R ™" and

f : R — R" is a vector-valued function of a real variable which is usually called the inhomogeneous
term. To begin suppose f = 0 so the problem becomes the homogeneous system % = AZ. We wish
to find a vector-valued function Z(t) = (z1(¢t), z2(t), ..., x,(t) such that when we differentiate it we
obtain the same result as if we multiplied it by A. This is what it means to solve the differential
equation Ccll—f = AZ. Essentially, solving this DEqn is like performing n-integrations at once. For
each integration we get a constant, these constants are fixed by initial conditions if we have n of

them. In any event, the general solution has the form:

f(t) = lel(t) + CQfg(t) —+ -+ Cnfn(t)

13there are many other linear differential equations which are far more subtle than the ones we consider here,
however, this case is of central importance to a myriad of applications
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where {Z1(t),Z(t),...,Z(t)} is a LI set of solutions to % = AF meaning ddi;j = AZ; for each
j = 1,2,...,n. Therefore, if we can find these n-LI solutions then we’ve solved the problem.
It turns out that the solutions are particularly simple if the matrix is diagonalizable: suppose
{iy, s, . .., i, } is an eigenbasis with e-values Aj, Ag, ..., A,. Let #; = e%'i; and observe that

dZ; d y,. d 41 iy o P o -

U ng) = L)y — vy = A = AT, = Az,

We find that each eigenvector ; yields a solution #; = e’\jtﬁj. If there are n-LI e-vectors then we
obtain n-LI solutions.

Example 7.5.5. Consider for example, the system
' =x+y, Y =3r-y
We can write this as the matrix problem
1 [1 1 x
v 13 -1]ly
——  ——
di/dt A 7

It is easily calculated that A has eigenvalue \y = —2 with e-vector iy = (—1,3) and Ay = 2 with
e-vectors iy = (1,1). The general solution of di/dt = AZ is thus

-1 1 —cre” 2 4 et
= _ —2t t _ 1 2
() =cre [ 3 ] e [ 1 ] - [ 3cre”2 4 cpe?t

2t 2t

So, the scalar solutions are simply | z(t) = —cie™ 2" + coe® | and |y(t) = 3c1e™% + cae

Thus far I have simply told you how to solve the system d¥/dt = AZ with e-vectors, it is interesting
to see what this means geometrically. For the sake of simplicity we’ll continue to think about the
preceding example. In it’s given form the DEqn is coupled which means the equations for the
derivatives of the dependent variables z,y cannot be solved one at a time. We have to solve both
at once. In the next example I solve the same problem we just solved but this time using a change
of variables approach.

Example 7.5.6. Suppose we change variables using the diagonalization idea: introduce new vari-
ables T,y by P(Z,y) = (x,y) where P = [if1]iis]. Note (z,y) = P~!(x,y). We can diagonalize A by
the similarity transformation by P; D = P~YAP where Diag(D) = (—2,2). Note that A= PDP~!
hence dZ/dt = AT = PDP~Y%. Multiply both sides by P~:

dz d(P~ %

P poipppriy o WD pipoigy

dt dt
You might not recognize it but the equation above is decoupled. In particular, using the notation
(z,9) = P Y(x,y) we read from the matriz equation above that

da dy _

= —27, —
v dt

ar _ 27,
di y
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Separation of variables and a little algebra yields that T(t) = cre™? and §(t) = cae?. Finally, to

find the solution back in the original coordinate system we multiply P~1% = (c1e=2t, ce?!) by P to

isolate X,
#t) = -1 1 cre” 2t . —cre7 2 4 gt
- 31 2617 3crem % 4 et

coe
This is the same solution we found in the last example. Usually linear algebra texts present this
solution because it shows more interesting linear algebra, however, from a pragmatic viewpoint the
first method is clearly faster.

Finally, we can better appreciate the solutions we found if we plot the direction field (z',y’) =
(z+y, 3x—y) via the "pplane” tool in Matlab. I have clicked on the plot to show a few representative
trajectories (solutions):

X =Xy
Y = 3%y
!

!

TS - e e € — & L

bl
!
!
f
t
*
t
'
|
\

— =7 = —F —% — -~ —a 3
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—S > 2> >33 "3 s "= a3

s
W
o
=
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n
w
Fs

7.5.2 linear differential equations and e-vectors: non-diagonalizable case

Generally, there does not exist an eigenbasis for the matrix in dZ/dt = AZ. If the e-values are
all real then the remaining solutions are obtained from the matrix exponential. It turns out that
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X = exp(tA) is a solution matrix for d¥/dt = AZ thus each column in the matrix exponential
is a solution. However, direct computation of the matrix exponential is not usually tractable.
Instead, an indirect approach is used. One calculates generalized e-vectors which when multiplied
on exp(tA) yield very simple solutions. For example, if (A — 3[)u; = 0 and A — 31)dy = 4 and
(A — 3I)i3 = 1> is a chain of generalized e-vectors with e-value A = 3 we obtain solutions to
dZ/dt = AT of the form:

1
Z1(t) = ey, To(t) = iy + tidy), Z3(t) = 3 (i3 + tily + 51:261).

All these formulas stem from a simplification of ¥; = eth

u; which I call the the magic formula.
That said, if you’d like to understand what in the world this subsection really means then you
probably should read the DEqns chapter. There is one case left, if we have complex e-valued
then A is not real-diagonalizable and the solutions actually have the form Z(t) = Re(e*4d) or
Z(t) = Im(etAi) where 1 is either a complex e-vector or a generalized complex e-vector. Again, I
leave the details for the later chapter. My point here is mostly to alert you to the fact that there are
deep and interesting connections between diagonalization and the Jordan form and the solutions

to corresponding differential equations.

7.6 invariants of linear transformations

Let V be a finite dimensional vector space. If T': V' — V then both det(T) and T'r(T") are uniquely
specified by calculation of the determinant and trace with respect to any particular coordinate sys-
tem on V. There are a number of other interesting quantities associated with dimensions of various
subspaces of the linear transformation. Typically, the corresponding subspace in R™ depends on
the choice of coordinate but the dimension of the subspace is does not change when we perform a
similarity transformation.

Example 7.6.1. Consider the matrix

You can calculate the characteristic polynomial for B is Pg()\) = det(B — M) = (A — 4)?(A — 2)
thus we find e-values of A1 = 4 and Ao = 2. Its also easy to calculate two LI e-vectors for A\ = 4
namely (1,0,0) and (0,1,—1) and one e-vector (1,—2,1) with e-value Ao = 2. The e-spaces have
the form

W = span{(1,0,0),(0,1,-1)} WL = span{(1,-2,1)}

Clearly dimWfi =2 and dimWfi =1.
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Perhaps these seem a bit familar. Recall from Example that the matrix

00 —4
A=1|2 4 2
2 0 6

also had e-values Ay = 4 and Ao = 2. However, the e-spaces have the form
W)‘i = span{(0,1,0),(—1,0,1)} I/I/')\A2 = span{(—2,1,1)}

I constructed B by performing a similarity transformation by P = E1.9 so it is in fact true that
B ~ A. Therefore, we can take the following view of this example: the matriz A defines a linear
operator T : R™ — R"™ by T'(v) = Av. The e-values of T are A\; = 4 and Ay = 2 and the dimensions
of the corresponding e-spaces are 2 and 1 respective. If we calculate the e-spaces Wfi,Wﬁ for
[T = B with respect to a nonstandard basis B then the e-spaces will not be the same subspaces
of R? as Wﬁ,WfQ.

Similar patterns will emerge if we study an abstract linear operator T : V. — V. We choose a
basis 1 for V' then the e-spaces for [T, g, will be differ from those e-spaces of [Tg, 3,- The
e-spaces are all isomorphic to the corresponding abstract e-space which is in V. In particular,
Wy = span{v € V | T(v) = Av} maps down to Wf = {z € R" | [T)gpx = Az} and the precise
locations of this e-space depends on the choice of coordinates. An invariant is something we can
calculate for a linear operator which is indpendent of our choice of basis. Clearly the dimensions of
the e-spaces are invariants of a linear operator. In physics invariants are often something physically
interesting.

Remark 7.6.2.

If T:V — V is a linear transformation then the following are invariants:
1. nullity of T' = dim(Null([T5,3)),
2. rank of T' = dim(Col([T,3)),
3. characteristic polynomial of 7" is P(\) = det([T]s,g — AI),
4. eigenvalues of T are solutions of det([T]gz — AI) =0,
5. eigenspace dimension of T = dim(Null([T]gz — AI)),
6. trace(T) = trace([T]s,3)
7. det(T) = det([T)s,8)

Despite the apparent dependence on the basis § the objects above are uniquely defined. If
we use a basis v # [ in the definitions above then we will still obtain the same numbers
and polynomial.
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There are two interesting definitions that we could have presented in earlier chapters but I have
delayed until this juncture because I wanted to give e-vector examples to illustrate the definitions.
First, the concept of an invariant subspace of a linear transformation.

Definition 7.6.3.

Suppose T' : V — V is a linear transformation and V73 < V then we say that Vi is an
invariant subspace of T if T'(V7) C V.

Second the concept of a direct sum decomposition of a vector space into mostly non-overlapping
subspaces:

Definition 7.6.4.

Let V' be a vector space and Wy, Wy < V. If every v € V can be written as v = wy + wo
for a some pair of wy € Wy and we € W5 then we say that V' = W + W5 is the sum of Wy
and Wy. If V.= W + Wy and Wi N Wy = {0} then we say V is a direct sum of W} and
W5 and denote this by writing V' = W & Wa.

Think about eigenspaces. Suppose A € R "*" has all real e-values. If A\; # \;, then Wy,NWy, = {0}.
To see this, suppose otherwise. If the intersection was nontrivial then there would exist nonzero
v E WAj N Wy, such that Av = A\jv and Av = Ayv hence A\jv = Apv thus (A\; — Ap)v = 0 and since
v # 0 it follows A\; = A which contradicts A; # ;. Since eigenspaces are null spaces we already
have that they are subspaces. Put all of this together we have the following interesting proposition:

Proposition 7.6.5.

Suppose A € R "*™ is diagonalizable with distinct e-values A1, Ag, ..., A\x then we can factor
into a direct sum of e-spaces R" = Wy, @ W), @ --- @ W),. Moreover, each e-space is an
invariant subspace of L, : R™ — R™.

7.7 complex eigenvector examples

Before 1 begin the material concerning complex eigenvectors I suppose I owe the reader a little
background on matrices with complex number entries.

7.7.1 concerning matrices and vectors with complex entries

To begin, we denote the complex numbers by C. As a two-dimensional real vector space we can
decompose the complex numbers into the direct sum of the real and pure-imaginary numbers;
C = R@iR. In other words, any complex number z € R can be written as z = a + tb where
a,b € R. It is convenient to define

IfA=a+i3e€C fora,BeR then Re())=a, Jm(A)zﬁ\
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The projections onto the real or imaginary part of a complex number are actually linear transfor-
mations from C to R; Re : C — R and Im : C — R. Next, complex vectors are simply n-tuples of
complex numbers:

C"={(21,7,,2) | 2 €C }}

Definitions of scalar multiplication and vector addition follow the obvious rules: if z,w € C ™ and
c € C then
(z+w); =2z +w; (c2)j = czj

for each 7 = 1,2,...,n. The complex n-space is again naturally decomposed into the direct sum of
two n-dimensional real spaces; C » = R” @ iR". In particular, any complex n-vector can be written
uniquely as the sum of real vectors are known as the real and imaginary vector components:

Ifv=a+ibeC" for a,b € R" then Re(v)=a, Im(v)= b.‘

Recall z = = + iy € C has complex conjugate z* = x — iy. Let v € C™ we define the complex
conjugate of the vector v to be v* which is the vector of complex conjugates;

(v7); = (v5)"

for each j = 1,2,...,n. For example, [1 +4,2,3 —i]* = [1 —¢,2,3 +i]. It is easy to verify the
following properties for complex conjugation of numbers and vectors:

(v4+w)" =v" +w", (cv)* = ™o, vk = 0.

Complex matrices C "™*" can be added, subtracted, multiplied and scalar multiplied in precisely
the same ways as real matrices in R "*". However, we can also identify them as C "™*™ =R "™*" @
iR ™*™ via the real and imaginary part maps (Re(Z));; = Re(Z;;) and (Im(Z));; = Im(Z;j)
for all 4,j. There is an obvious isomorphism C ™*" & R 2™*27 which follows from stringing out
all the real and imaginary parts. Again, complex conjugation is also defined component-wise:
(X +14Y)*);; = Xy —iYj;. It’s easy to verify that

(Z+W) =Z"+W*,  (cZ) =cZ*, (ZW) = Z*W*

for appropriately sized complex matrices Z, W and ¢ € C. Conjugation gives us a natural operation
to characterize the reality of a variable. Let ¢ € C then c is real iff ¢* = ¢. Likewise, if v € C"
then we say that v is real iff v* = v. If Z € C ™*" then we say that 7 is real iff Z* = Z. In short,
an object is real if all its imaginary components are zero. Finally, while there is of course much
more to say we will stop here for now.
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7.7.2 complex eigenvectors

Proposition 7.7.1.

If A € R ™" has e-value A and e-vector v then \* is likewise an e-value with e-vector v*
for A.

Proof: We assume Av = \v for some A € C and v € C ™! with v # 0. We can write v = a + b
and A = a + i for some a,b € R™ and «, 8 € R. Take the complex conjugate of Av = Av to find
A*v* = A*0*. But, A € R ™" thus A* = A and we find Av* = X\*v*. Moreover, if v = a + ib and
v # 0 then we cannot have ¢ = 0 and b = 0. Thus v = a — ib # 0. Therefore, v* is an e-vector with
e-value \*. [J

This is a useful proposition. It means that once we calculate one complex e-vectors we almost
automatically get a second e-vector merely by taking the complex conjugate.

0 1
-1 0
that det(A—\I) = A\2+1 hence the eigevalues are A = +i. Finduy = [u,v]! such that (A—il)u; = 0

—3 1 U —tu+v —tu+v=0 . 1
= ) = ) = . = v=u = |ui=u| .
-1 — v —u — W —u—w=20 7

We find infinitely many complex eigenvectors, one for each nonzero complex constant w. In appli-

Example 7.7.2. Let A = [ } and find the e-values and e-vectors of the matriz. Observe

. . . . .10
cations, in may be convenient to set u =1 so we can write, u; = [ 0 ] +1 [ 1 ]

Let’s generalize the last example.

cosf sinf

Example 7.7.3. Let § € R and define A = [ —sinf® cosf

] and find the e-values and e-vectors

of the matriz. Observe

0 = det(A — \I) = det [ cosf = A sinf }

—sinf  cosf — A

= (cos® — \)? +sin® 0

= cos?f — 2\ cos @ + \? +sin” 6
=22 —2\cosf+ 1

= (A —cosf)* —cos?0 + 1

= (A —cosh)? +sin? 0

Thus A\ = cos 0 £ isin@ = e*. Find uy = [u,v]” such that (A —e®T)u; =0

0= —ising  sind }[u}:[o] = —jusinf +vsinfd =0

—sinf —isind
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If sinf # 0 then we divide by sin@ to obtain v = iu hence u1 = [u,iu)’ = u[l,i)T which is precisely
what we found in the preceding example. However, if sin@ = 0 we obtain no condition what-so-ever
on the matriz. That special case is not complex. Moreover, if sinf = 0 it follows cos =1 and in
fact A =1 in this case. The identity matriz has the repeated eigenvalue of A =1 and every vector
in R?*1 is an e-vector.

1 10
Example 7.7.4. Let A= | —1 1 0 | find the e-values and e-vectors of A.
0 0 3
1—A 1 0
0=det(A—\)= -1 1-x 0

0 0 3—A
=B-N[1-N*+1]
Hence \y = 3 and Ao = 1+ 4. We have a pair of complex e-values and one real e-value. Notice

that for any n X n matriz we must have at least one real e-value since all odd polynomials possess
at least one zero. Let’s begin with the real e-value. Find uy = [u,v,w]’ such that (A — 3I)u; = 0:

-2 1 0|0 1 0 0]0 0
rref| =1 =2 0|0 | =101 0]0 = |lupy=w| 0
0 0 010 00 0|0 1

Next find e-vector with Ay = 1 +i. We wish to find uz = [u,v,w]|’ such that (A — (14 )I)ug = 0:

-1 —i 0 . 0 _11_iT3 IR T; 0 0 0f0
0 0 —-1-—-7|0 Y 0 0 10
One more row-swap and a rescaling of row 1 and it’s clear that
- 1 0 0 1 4 010 vt i =0 ?
rref | —1 —i 0 0]l=1]00 1|0 w—a up=ov| 1
0 0 —-1—-14|0 00 0|0 N 0

I chose the free parameter to be v. Any choice of a nonzero complex constant v will yield an e-vector
with e-value Ao = 1+ 1. For future reference, it’s worth noting that if we choose v =1 then we find

0 1
U9 = 1 +i 0
0 0

We identify that Re(us) = e2 and Im(uz) = e;
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1 V3
Example 7.7.5. Let B = [ _01 é } and let C = %/3 2 Define A to be the block
T2 2
matrix
0 1 0 0
4 Blo -1 0| O 0
- [ 0 C]_ 0 o I ¥
3
o ol |

find the e-values and e-vectors of the matriz. Block matrices have nice properties: the blocks
behave like numbers. Of course there is something to prove here, and I have yet to discuss block
multiplication in these notes.

B -\l 0

det(A—)\I):det[ 0 C

} = det(B — X )det(C — \I)

Notice that both B and C' are rotation matrices. B is the rotation matriz with 0 = 7 /2 whereas C
is the rotation by 0 = 7/3. We already know the e-values and e-vectors for each of the blocks if we
ignore the other block. It would be nice if a block matriz allowed for analysis of each block one at
a time. This turns out to be true, I can tell you without further calculation that we have e-values
A = £i and Ay = % + z@ which have complex e-vectors

=e1 + 1e2 Uy = = e3 + 1e4

OO S
Sl = OO

1 invite the reader to check my results through explicit calculation. Technically, this is bad form as
I have yet to prove anything about block matrices. Perhaps this example gives you a sense of why
we should talk about the blocks at some point.

Finally, you might wonder are there matrices which have a repeated complex e-value. And if so are
there always as many complex e-vectors as there are complex e-values? The answer: sometimes.

B
Take for instance A = [T‘%} (where B is the same B as in the preceding example) this

matrix will have a repeated e-value of A = 47 and you’ll be able to calculate u; = e; 4+ ies and
ug = eg tieyq are linearly independent e-vectors for A. However, there are other matrices for which
only one complex e-vector is available despite a repeat of the e-value. Bonus point if you can give
me an example soon ( it’ll need to be at least a 4 x 4 matrix).

7.8 linear independendence of complex eigenvectors

The complex case faces essentially the same difficulties. Complex e-vectors give us pair of linearly
independent vectors with which we are welcome to form a basis. However, the complex case can
also fail to provide a sufficient number of complex e-vectors to fill out a basis. In such a case we
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can still look for generalized complex e-vectors. Each generalized complex e-vector will give us
a pair of linearly independent real vectors which are linearly independent from the pairs already
constructed from the complex e-vectors. Although many of the arguments transfer directly from
pervious sections there are a few features which are uniquely complex.

Proposition 7.8.1.

If A € R ™*" has complex e-value A = a+if3 such that 8 # 0 and e-vector v = a+ib € C ™*!
such that a,b € R™ then A\* = o — [ is a complex e-value with e-vector v* = a — ib and
{v,v*} is a linearly independent set of vectors over C.

Proof: Proposition showed that v*™ is an e-vector with e-value \* = a — i5. Notice that
A # A" since b # 0. Therefore, v and v* are e-vectors with distinct e-values. Note that Proposition
7.4.2| is equally valid for complex e-values and e-vectors. Hence, {v,v*} is linearly independent
since these are e-vectors with distinct e-values. [

Proposition 7.8.2.

If A € R ™*" has complex e-value A = a+if3 such that 3 # 0 and e-vector v = a+ib € C ™*!
such that a,b € R™ then a # 0 and b # 0.

Proof: Expand Av = A\v into the real components,
M = (a+if)(a+ib) = aa — Bb+i(Ba + ab)

and

Av = A(a + ib) = Aa +iAb
Equating real and imaginary components yeilds two real matrix equations,

Aa=oa—Bb and Ab= Ba+ ab

Suppose a = 0 towards a contradiction, note that 0 = —fgb but then b = 0 since 5 # 0 thus
v = 0+ 40 = 0 but this contradicts v being an e-vector. Likewise if b = 0 we find Sa = 0 which
implies ¢ = 0 and again v = 0 which contradicts v being an e-vector. Therefore, a,b £ 0. [J

Proposition 7.8.3.

IfAeR™™and A =a+if € C with o, € R and 5 # 0 is an e-value with e-vector
v=a+ib€ C ™! and a,b € R" then {a, b} is a linearly independent set of real vectors.

Proof: Add and subtract the equations v = a + b and v* = a — ib to deduce

a=1(v+uvx) and b= (v —vx)
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Let ¢, co € R then consider,

ca+eb=0 = c1[3(v+vx)]+ calg(v —v¥)] =0
= [c1 —icav+[c1 +icgJvt =0

But, {v,v*} is linearly independent hence ¢; — ica = 0 and ¢; + ic; = 0. Adding these equations
gives 2¢; = 0. Subtracting yields 2ico = 0. Thus ¢; = ¢o = 0 and we conclude {a, b} is linearly
independent. [J

Proposition 7.8.4.

If A € R™*" has complex e-value A = «a + i such that 5 # 0 and chain of generalized
e-vectors vy = ay + iby € C™*! of orders k = 1,2,...,m such that ag, b, € R then
{a1,b1,a2,ba,...am,by} is linearly independent.

Proof: will earn bonus points. It’s not that this is particularly hard, I'm just tired of typing at
the moment.[]

7.9 diagonalization in complex case

Given a matrix A € R "*" we restrict our attention to the case that there are enough e-vectors
both real and complex to complete a basis for R”. We have seen that each complex e-vector yields
two LI real vectors so if we have k-complex e-vectors we assume that there are another n — 2k-real
e-vectors to complex a basis for R™. This is not an e-basis, but it’s close. We seek to analyze how
this basis will transform a given matrix. These notes loosely follow Lay’s Text pages 339-341.

To begin let’s try an experiment using the e-vector and complex e-vectors for found in Example[7.7.4]
We'll perform a similarity transformation based on this complex basis: g = {(i, 1,0), (—¢,1,0),(0,0,1)}.
Notice that

i —1 0 1 - 1 0
Bl=1 10 = [p =53] i10
0 0 0 0 2
Then, we can calculate that
1 - 1 0 1 10 i —1 0 1+¢ 0 O
[5]*/1[5]:5 i 10 -1 10 1 1 0]|=] 0 1-i 0
0 0 2 0 0 3 0 01 0 0o 3

I would say that A is complex-diagonalizable in this case. However, usually we are interested in
obtaining factorizations in terms of real matrices so we should continue thinking.

a

b
hence we have two(one), typically complez, e-value X\ = a+ib. Denoting r = Va? + b? (the modulus

Example 7.9.1. Suppose C = [ _ab ] . We can calculate that det(A — X)) = (a — N2+ b2 =0
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of a+ib). We can work out that

il A e v e e i

Therefore, a 2 X 2 matriz with complez-evalue will factor into a dilation by the modulus of the
e-value |\| times a rotation by the arugment of the e-value. If we write X\ = rexp(if3) then we can
identify that r > 0 is the modulus and [ is an arugment (there is degeneracy here because angle are
multiply defined).

Continuing to think about the 2 x 2 case, note that our complex e-vector yields two real LI-
vectors and hence a basis for R2. Performing a similarity transformation by P = [Re(@)|Im(w)]
will uncover the rotation hiding inside the matrix. We’ll work this out in lecture for the example
above.

T’ll return to this discussion in the next chapter, there is more to say here.



Chapter 8

linear geometry

The concept of a geometry is very old. Philosophers in the nineteenth century failed miserably in
their analysis of geometry and the physical world. They became mired in the popular misconception
that mathematics must be physical. They argued that because 3 dimensional Eulcidean geometry
was the only geometry familar to everyday experience it must surely follow that a geometry which
differs from Euclidean geometry must be nonsensical. However, why should physical intuition factor
into the argument? We understand now that geometry is a mathematical construct, not a physical
one. There are many possible geometries. On the other hand, it would seem the geometry of space
and time probably takes just one form. We are tempted by this misconception every time we ask
"but what is this math really”. That question is usually wrong-headed. A better question is ”is
this math logically consistent” and if so what physical systems is it known to model.

The modern view of geometry is stated in the langauge of manifolds, fiber bundles,algebraic ge-
ometry and perhaps even more fantastic structures. There is currently great debate as to how we
should model the true intrinsic geometry of the universe. Branes, strings, quivers, noncommutative
geometry, twistors, ... this list is endless. However, at the base of all these things we must begin
by understanding what the geometry of a flat space entails.

Vector spaces are flat manifolds. They possess a global coordinate system once a basis is chosen.
Up to this point we have only cared about algebraic conditions of linear independence and span-
ning. There is more structure we can assume. We can ask what is the length of a vector? Or, given
two vectors we might want to know what is the angle bewtween those vectors? Or when are two
vectors orthogonal?

If we desire we can also insist that the basis consist of vectors which are orthogonal which means
”perpendicular” in a generalized sense. A geometry is a vector space plus an idea of orthogonality
and length. The concepts of orthogonality and length are encoded by an inner-product. Inner-
products are symmetric, positive definite, bilinear forms, they’re like a dot-product. Once we have
a particular geometry in mind then we often restrict the choice of bases to only those bases which
preserve the length of vectors.

253
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The mathematics of orthogonality is exhibited by the dot-products and vectors in calculus III.
However, it turns out the concept of an inner-product allows us to extend the idea or perpendicu-
lar to abstract vectors such as functions. This means we can even ask interesting questions such
as "how close is one function to another” or ”what is the closest function to a set of functions”.
Least-squares curve fitting is based on this geometry.

This chapter begins by defining dot-products and the norm (a.k.a. length) of a vector in R™. Then
we discuss orthogonality, the Gram Schmidt algorithm, orthogonal complements and finally the
application to the problem of least square analysis. The chapter concludes with a consideration of
the similar, but abstract, concept of an inner product space. We look at how least squares gener-
alizes to that context and we see how Fourier analysis naturally flows from our finite dimensional
discussions of orthogonality. E|

Let me digress from linear algebra for a little while. In physics it is customary to only allow coordi-
nates which fit the physics. In classical mechanics one often works with intertial frames which are
related by a rigid motion. Certain quantities are the same in all intertial frames, notably force. This
means Newtons laws have the same form in all intertial frames. The geometry of special relativity
is 4 dimensional. In special relativity, one considers coordinates which preserve Einstein’s three
axioms. Allowed coordinates are related to other coordinates by Lorentz transformations. These
Lorentz transformations include rotations and velocity boosts. These transformations are designed
to make the speed of a light ray invariant in all frames. For a linear algebraist the vector space is
the starting point and then coordinates are something we add on later. Physics, in contrast, tends
to start with coordinates and if the author is kind he might warn you which transformations are
allowed.

What coordinate transformations are allowed actually tells you what kind of physics you are dealing
with. This is an interesting and nearly universal feature of modern physics. The allowed transfor-
mations form what is known to physicsists as a ”group” ( however, strictly speaking these groups
do not always have the strict structure that mathematicians insist upon for a group). In special
relativity the group of interest is the Poincaire group. In quantum mechanics you use unitary
groups because unitary transformations preserve probabilities. In supersymmetric physics you use
the super Poincaire group because it is the group of transformations on superspace which preserves
supersymmetry. In general relativity you allow general coordinate transformations which are locally
lorentzian because all coordinate systems are physical provided they respect special relativity in a
certain approximation. In solid state physics there is something called the renormilzation group
which plays a central role in physical predictions of field-theoretic models. My point? Transfor-
mations of coordinates are important if you care about physics. We study the basic case of vector
spaces in this course. If you are interested in the more sophisticated topics just ask, I can show
you where to start reading.

lwe ignore analytical issues of convergence since we have only in mind a Fourier approximation, not the infinite
series
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8.1 Euclidean geometry of R”

The dot-product is a mapping from R™ x R™ to R. We take in a pair of vectors and output a real
number.

Definition 8.1.1.

Let z,y € R" we define z -y € R by

z-y=xTy =201 + Toyo + - Ty

Example 8.1.2. Let v = [1,2,3,4,5]" and w = [6,7,8,9,10]7
v-w=6+144+ 244 36 + 50 = 130

The dot-product can be used to define the length or norm of a vector and the angle between two
vectors.

Definition 8.1.3.

The length or norm of z € R" is a real number which is defined by ||z|| = z - z.

Furthermore, let x,y be nonzero vectors in R” we define the angle 6 between x and y by

cos ! [Hxﬁﬁ] R together with these defintions of length and angle forms a Euclidean
eometry.

s

Wom KB, Ky Xz €5

hxll = -x[_'.‘h'.,.z *+ H:' + )f;

Technically, before we make this definition we should make sure that the formulas given above even
make sense. I have not shown that x - x is nonnegative and how do we know that the inverse cosine
is well-defined? The first proposition below shows the norm of z is well-defined and establishes
several foundational properties of the dot-product.
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Proposition 8.1.4.

Suppose z,y,z € R™ and ¢ € R then
l.z-y=y-2
2.z (y+z2)=z-y+z-z
3. c(x-y) = (cx) y=x-(cy)

4. z-x>0andz-z2=0iff x =0

Proof: the proof of (1.) is easy, z -y = > | Xiyi = > iy Yi%i =y - . Likewise,

n

n n
(y+2)= Zﬁvz (y+2) z—Z(%‘%#-%%):Zl’z‘yi+zxiziZx‘y—FIE'Z
i=1 i=1

=1

proves (2.) and since
n
¢ miyi = Zcxlyz = Z cx)iyi = Z:m cy)i
i=1 i=1

we find c(z-y) = (cz)-y = = (cy). Continuting to (4.) notice that x-z = 212+ 222+ - - - +z,% thus
x - is the sum of squares and it must be nonnegative. Suppose = 0 then z-2 = 272 = 070 = 0.
Conversely, suppose x - x = 0. Suppose x # 0 then we find a contradiction since it would have a
nonzero component which implies x12 4+ 222 + - -+ + 2,2 # 0. This completes the proof of (4.). O

The formula cos™* [W] is harder to justify. The inequality that we need for it to be reasonable
is ‘m‘ < 1, otherwise we would not have a number in the dom(cos™!) = range(cos) = [-1,1].
An equivalent inequality is |z - y| < ||z|| ||y|| which is known as the Cauchy-Schwarz inequality.

Proposition 8.1.5.

If 2,y € R" then |z - y| < ||=]|||y]

Proof: I've looked in a few linear algebra texts and I must say the proof given in Spence, Insel and
Friedberg is probably the most efficient and clear. Other texts typically run up against a quadratic
inequality in some part of their proof (for example the linear algebra texts by Apostle, Larson&
Edwards, Anton & Rorres to name a few). That is somehow hidden in the proof that follows: let
x,y € R™ If either x = 0 or y = 0 then the inequality is clearly true. Suppose then that both z
and y are nonzero vectors. It follows that ||z||,||y|| # 0 and we can define vectors of unit-length;

i:W dy—‘?yj—u. Noticethat:%-izll";—”- ¢ = 1oi.x =22 =1 and likewise § - § = 1.

[l = [l=[[? T
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Consider,
0<[lz£g|]* = (2+7) (2 +7)
=2-2+£2(Z-9)+y-9y
—=242(39)
= —2< 423 9)
= +i-g<1
= [z2-9/<1
Therefore, noting that = = ||z|| and y = ||y||7,
-yl = Hlzll@ - llyllg [ = [l lyl[12 - g] < [[=] |ly]]-

The use of unit vectors is what distinguishes this proof from the others I've found. [J

Remark 8.1.6.

The dot-product is but one of many geometries for R™. We will explore generalizations of
the dot-product in a later section. However, in this section we will work exclusively with the
standard dot-product on R". Generally, unless explicitly indicated otherwise, we assume
Euclidean geometry for R™.

Just for fun here’s a picture of a circle in the hyperbolic geometry of special relativity, technically
it’s not a geometry since we have nonzero-vectors with zero length ( so-called null-vectors ). Per-
haps we will offer a course in special relativity some time and we could draw these pictures with
understanding in that course.
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Example 8.1.7. Let v = [1,2,3,4,5]" and w = [6,7,8,9,10]7 find the angle between these vectors
and calculate the unit vectors in the same directions as v and w. Recall that, v-w =64+ 14+ 24 +
36 + 50 = 130. Furthermore,

o]l = V12 + 22+ 32 + 42 452 = V1 +4+9+16 + 25 = V55

lw|] = /62 + 72 + 82 4+ 92 4+ 102 = /36 + 49 + 64 + 81 + 100 = /330

We find unit vectors via the standard trick, you just take the given vector and multiply it by the
reciprocal of its length. This is called normalizing the vector,

1,2,3,4,5]7 W= f[ 7,8,9,10]7

~ 1
U—ﬁ[

The angle is calculated from the definition of angle,

130
6 = cos™! () = 15.21°
v/55v/330

It’s good we have this definition, 5-dimensional protractors are very erpensive.

Proposition 8.1.8.

Let x,y € R™ and suppose ¢ € R then
L ||ex]| = || |||l

2. |z +yll < l=ll + Iyl

Proof: let x € R” and ¢ € R then calculate,

2

lez|* = (cz) - (cx) = Pz -z = |||

Since ||cz|| > 0 the squareroot yields ||cz|| = V/é||z|| and V¢ = || thus |Jcz|| = |¢|||z]|. Ttem (2.)
is called the triangle inequality for reasons that will be clear when we later discuss the distance
function. Let z,y € R"™,

|z +yll* =z +y)- (z+y) defn. of norm
=lz-(z+y) +y-(z+y) prop. of dot-product
=lz-z4+z-y+y-z+y-y prop. of dot-product
= | ||| 4+ 2z -y + ||y]|* | prop. of dot-product
<||z||® + 2|z - y| + ||yl|? triangle ineq. for R
< lz|)® + 2l|=|| |y]] + [|y|? Cauchy-Schwarz ineq.
< (||=]| + HyH)2 algebra

Notice that both ||z + y|| and ||z|| + ||y|| are nonnegative by (4.) of Proposition hence the
inequality above yields ||z + y|| < [|z|| + ||y||- O
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Definition 8.1.9.

’Tho distance between a € R" and b € R” is defined to be d(a,b) = ||b — al|.

If we draw a picture this definition is very natural. Here we are thinking of the points a, b as vectors
from the origin then b — a is the vector which points from a to b (this is algebraically clear since
a+ (b—a) =b). Then the distance between the points is the length of the vector that points from
one point to the other. If you plug in two dimensional vectors you should recognize the distance
formula from middle school math:

d((a1,a2), (b1,b2)) = /(b1 — a1)? + (b — a2)?

i

-

Proposition 8.1.10.

Let d : R™ x R®™ — R be the distance function then

1.d d(y,z)

L,y

[\)
S
[en)}

<

w
S

0

8

(z,y)
(2,y) >
(z,)
(z,y)

4. d

_l’_

z,y) +d(y, z) > d(z, 2)

Proof: I leave the proof of (1.), (2.) and (3.) to the reader. Item (4.) is also known as the
triangle inequality. Think of the points z,y, z as being the vertices of a triangle, this inequality
says the sum of the lengths of two sides cannot be smaller than the length of the remaining side.
Let z,y,z € R™ and note by the triangle inequality for || - ||,

d(z,2) = ||z = 2|l = [l =y +y -zl < |lz =yl +[ly — || = d(y, 2) + d(z,y). T

We study the 2 and 3 dimensional case in some depth in calculus III. I would recommend you take
that course, even if it’s not ”"on your sheet”.
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8.2 orthogonality in R"

Two vectors are orthogonal if the vectors point in mutually exclusive directions. We saw in calculus
III the dot-product allowed us to pick apart vectors into pieces. The same is true in n-dimensions:
we can take a vector an disassemble it into component vectors which are orthogonal.

Definition 8.2.1.

‘Lct v, w € R then we say v and w are orthogonal iff v - w = 0.

Example 8.2.2. Let v = [1,2,3]7 describe the set of all vectors which are orthogonal to v. Let
r=z,vy, z]T be an arbitrary vector and consider the orthogonality condition:

0=v-r=1[1,23][z,y 2" =x+2y+32=0.

If you’ve studied 3 dimensional Cartesian geometry you should recognize this as the equation of a
plane through the origin with normal vector < 1,2,3 >.

Proposition 8.2.3. Pythagorean Theorem in n-dimensions

If 2,y € R"™ are orthogonal vectors then ||z]|? + ||y]|? = ||z + y]||*.

Proof: Calculuate ||z + y||?> from the dot-product,

lz+ylP=(@@+y) - (e+y)=z-z+z-y+y-z+y-y=|z[P+|y* O

Proposition 8.2.4.

’The zero vector is orthogonal to all other vectors in R™.

Proof: let x € R™ note 2(0) = 0 thus 0 -z = 2(0) - x = 2(0 - ) which implies 0 -z = 0. O

Definition 8.2.5.

A set S of vectors in R™ is orthogonal iff every pair of vectors in the set is orthogonal. If
S is orthogonal and all vectors in S have length one then we say S is orthonormal.

Example 8.2.6. Let u=[1,1,0], v =[1,—1,0] and w = [0,0,1]. We calculate
v-v=0, v-w, v-w=0

thus S = {u,v,w} is an orthogonal set. However, it is not orthonormal since ||u|| = /2. It is easy
to create an orthonormal set, we just normalize the vectors; T = {u,v,w} meaning,

T:{%[l,l,o], %[1,—1,0], [0,0,1]}
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Proposition 8.2.7. Fxtended Pythagorean Theorem in n-dimensions

If 1,9, ...z are orthogonal then

el + llzal? + - + |2kl ® = lor + 22+ - + 2]

Proof: we can prove the second statement by applying the Pythagorean Theorem for two vectors
repeatedly, starting with

o1 + (w2 + -+ ap) [P = |21 + ||lzo + - - + ]
but then we can apply the Pythagorean Theorem to the rightmost term
|22+ (23 + -+ a2p)[1? = [[o2l® + (|2 + -+ ]

Continuing in this fashion until we obtain the Pythagorean Theorem for k-orthogonal vectors. [J

X3
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%Y = ~fr?+ x5 Wl =g fe e 6,5+ %5

I have illustrated the proof above in the case of three dimensions and k-dimensions, however my
k-dimensional diagram takes a little imagination. Another thing to think about: given v = vie; +
vgeg + - - + vpey if €; are orthonormal then ||v||? = v? 4+ v3 + - - - + v2. Therefore, if we use a basis
which is orthonormal then we obtain the standard formula for length of a vector with respect to
the coordinates. If we were to use a basis of vectors which were not orthogonal or normalizes then
the formula for the length of a vector in terms of the coordinates could look quite different.

Example 8.2.8. Use the basis {v1 = [1,1]7, vy = [2,0]T} for R 2*1. Notice that {vi,va} is not
orthogonal or normal. Given z,y € R we wish to find a,b € R such that r = [z,y]" = avy + bug,
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x| |10
y| |01

Thus a =y and b = %($ —vy). Let’s check my answer,

this amounts to the matrixz calculation:

1 2
rreflvy|va|r] = rref { 1 0

%(fﬂy— y) ]

avi +bvy = y[L 1" + 5 (2 —9)[2,0]" = [y + 2 —y,y + 0] = [a,y]".
Furthermore, solving for x,y in terms of a,b yields x = 2b+ a and y = a. Therefore, ||[z,y]T||> =
22 +y? is modified to

[lavi + bv2\|2 = (20 +a)>+a® # chlHQ + Hbngg.

If we use a basis which is not orthonormal then we should take care not to assume formulas given
for the standard basis equally well apply. However, if we trade the standard basis for a new basis
which s orthogonal then we have less to worry about. The Pythagorean Theorem only applies in
the orthogonal case. For two normalized, but possibly non-orthogonal, vectors we can replace the
Pythagorean Theorem with a generalization of the Law of Cosines in R™.

||avy + bug||? = a? + b + 2abcos f

where vy - vg = cosB. (I leave the proof to the reader )

Proposition 8.2.9.

If S = {vy,vg,...,ux} C R™ is an orthogonal set of nonzero vectors then S is linearly
independent.
Proof: suppose ¢y, ca,...,cr € R such that

civ1 + covg + - - v =0
Take the dot-product of both sides with respect to v; € 9,
c1v1 - v+ v v+ epupcv; =005 =0

Notice all terms in the sum above vanish by orthogonality except for one term and we are left with
c;v; - v; = 0. However, v; # 0 thus v; - v; # 0 and it follows we can divide by the nonzero scalar
v; - v; leaving ¢; = 0. But j was arbitrary hence ¢; = ca = --- = ¢, = 0 and hence S is linearly
independent. [J

The converse of the proposition above is false. Given a linearly indepdent set of vectors it is not
necessarily true that set is also orthogonal. However, we can modify any linearly independent set
of vectors to obtain a linearly indepedent set. The procedure for this modification is known as the
Gram-Schmidt orthogonalization. It is based on a generalization of the idea the vector projection
from calculus III. Let me remind you: we found the projection operator to be a useful construction
in calculus III. The projection operation allowed us to select the vector component of one vector
that pointed in the direction of another given vector. We used this to find the distance from a
point to a plane.
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Definition 8.2.10.

Let A #0, B be vectors then we define

Projz(B) = (B-A)A
where A = Hz}‘HA Moreover, the length of Proj ~(§) is called the component of B in the

A-direction and is denoted C’ompA( 3) = |\ProgA(§)||. Finally, the orthogonal comple-
ment is defined by Orth z(B B) =B — ijA(B).

Example 8.2.11. Suppose A=< 2,2,1 > and B < 4,6 > notice that we can also express the

projection opertation by PT‘O]A(B) —(B-AA=—1_(B- A)A thus

Projz(B)=4(<2,4,6>-<2,21>)<2,21>=48340 <22 1>5=c442>

The length of the projection vector gives C’ompg(é) =16+ 16 +4 = 6. One application of this
algebra is to calculate the distance from the plane 2x + 2y + z = 0 to the point (2,4,6). The
?distance” from a plane to a point is defined to be the shortest distance. It’s geometrically clear
that the shortest path from the plane is found along the normal to the plane. If you draw a picture
its not hard to see that (2,4,6) — Projg(é) =< 2,4,6 > — < 4,4,2 >= (—2,0,4) 1is the closest
point to (2,4,6) that lies on the plane 2x + 2y + z = 0. Moreover the distance from the plane to the
point is just 6.
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Example 8.2.12. We studied A=< 2,2,1 > and B =< 2,4,6 > in the preceding example. We
found that notice that Proj 7(B) =< 4,4,2 >. The projection of B onto A is the part of B which

points in the direction of A. It stands to reason that if we subtract away the projection then we will
be left with the part of B which does not point in the direction of A, it should be orthogonal.

Orth z(B) = B — Proj z(B) =< 2,4,6 > — < 4,4,2 >=< —2,0,4 >
Let’s verify Orthg(é) is indeed orthogonal to A,
Orthz(B) - A=< -2,0,4>-<2,2,1>= —4+4=0.
Notice that the projection operator has given us the following orthogonal decomposition of B:
<2,4,6 >= B = Proj 7(B) + Orth 3(B) =< 4,4,2 > + < —2,0,4 > .

If ff, B are any two nonzero vectors it is probably clear that we can perform the decomposition
outlined in the example above. It would not be hard to show that if S = {4, B} is linearly
indepedendent then S" = {ff, Orth A(E)} is an orthogonal set, moreover they have the same span.
This is a partial answer to the converse of Proposition [8:2.9] But, what if we had three vectors
instead of two? How would we orthogonalize a set of three linearly independent vectors?

Remark 8.2.13.

I hope you can forgive me for reverting to calculus III notation in the last page or two. It
should be clear enough to the reader that the orthogonalization and projection operations
can be implemented on either rows or columns. I return to our usual custom of thinking pri-
marily about column vectors at this point. We’ve already seen the definition from Calculus
III, now we turn to the n-dimensional case in matrix notation.
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Definition 8.2.14.

Suppose a # 0 € R", define the projection of b onto a to be the mapping Proj, :
R™ — R™ such that Proj,(b) = a%( Tb)a. Moreover, we define Orth, : R* — R" by
Orthqa(b) = b — Proja(b) = b— —1—(a’b)a for all b € R"™.

Proposition 8.2.15.

If a # 0 € R” then Proj, and Orth, are linear transformations.
1. Orthy(b) -a =0 for all b € R™,
2. Orthg(b) - Proja(y) = 0 for all b,y € R”,

3. the projection is idempotent; Proj, c Proj, = Proj,.

I leave the proof of linearity as an exercise. Begin with (1.): let a # 0 € R™ and let b € R,
a- Orthg(b) = a” (b — ——(a’b)a)
=alb— ﬁ(aTb)a)
=alb— ﬁ(aTb)aTa

=a’b—a’b=0.

1
aT
a’(

notice I used the fact that a’b, a’a were scalars to commute the a” to the end of the expression.
Notice that (2.) follows since Proj,(y) = ka for some constant k. Next, let b € R™ and consider:

(Projq e Proj,)(b) = Projq(Proj.(b))
= Proja(1=(a"b)a)

= a%(aT[a% (a”b)a))a

since the above holds for all b € R™ we find Proj,° Proj, = Proj,. This can also be denoted
Proj? = Proj,. O

Proposition 8.2.16.

If S = {a,b,c} be a linearly independent set of vectors in R™ then S’ = {a/,¥/,'} is an
orthogonal set of vectors in R" if we define a’, V', ¢ as follows:

a =a, b =O0rthy®),  =Orthy(Orthy(c)).
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Proof: to prove S’ orthogonal we must show that o’ - = 0,a’ - ¢ =0 and V' - ¢ = 0. We already
proved @’ - b’ = 0 in the Proposition [8.2.15] Likewise, a’' - ¢ = 0 since Orth,/(x) is orthogonal to a’
for any z. Consider:

V- =V - Orthy (Orthy(c))
= b, . [ O’I“thb/ (C) — PTOja/(O’I“thb/ (C)) ]
= b Orthy(c) — Orthy(b) - Proj,(Orthy(c))
=0

Where we again used (1.) and (2.) of Proposition in the critical last step. The logic of
the formulas is very natural. To construct b’ we simply remove the part of b which points in the
direction of a’. Then to construct ¢’ we first remove the part of ¢ in the ¥" direction and then the
part in the a’ direction. This means no part of ¢’ will point in the a’ or &’ directions. In principle,
one might worry we would subtract away so much that nothing is left, but the linear independence
of the vectors insures that is not possible. If it were that would imply a linear dependence of the
original set of vectors. [

For convenience let me work out the formulas we just discovered in terms of an explicit formula with
dot-products. We can also perform the same process for a set of 4 or 5 or more vectors. I'll state the
process for arbitrary order, you’ll forgive me if I skip the proof this time. There is a careful proof
on page 379 of Spence, Insel and Friedberg. The connection between my Orth operator approach
and the formulas in the proposition that follows is just algebra:

vl = Orth, (Orthy (vs))
= Orthy (v3) — Projy (Orth, (vs))
= v3 — Projy, (v3) — Projy, (vs — Projy (vs))
= v3 — Projy, (v3) — Projy, (v3) — Proj, (Proj,, (vs))

/

’U3 U2 / U3 Ul ’

_v3_vl U/U2_U/ 7 Y1
2 2 1 1

The last term vanished because v} - v = 0 and the projections are just scalar multiples of those
vectors.
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Proposition 8.2.17. The Gram-Schmidt Process

If S = {v1,v2,...,v;} is a linearly independent set of vectors in R™ then S" = {v],v),..., v} }
is an orthogonal set of vectors in R™ if we define v, as follows:
U/l =1
/
(I
! 1,/
'UQ = '1)2 - 7 7 V1
@ °
/ /
r U3V U3 -V
U3 =U3— 5 V2= 7 U1
Ty ° 0y 1'%
! ! /
vt = Uk - U1 v Uk * Up_o v vk"vlvl
k — o / k-1 7 7 / k=2 " O Yl
Uk—1 " Vg—1 Vk—2 " Vg—2 C

Example 8.2.18. Suppose v = [1,0,0,0]7,v5 = [3,1,0,0]7,v3 = [3,2,0,3]7. Let’s use the Gram-
Schmidt Process to orthogonalize these vectors: let v] = vy = [1,0,0,0]T and calculate:

V9 - U1

vh = vy — v1 = [3,1,0,07 —3[1,0,0,0]7 = [0,1,0,0]7.

V1 - U1

Next,
/ !
U3 . U2 / B ’U3 : Ul /

v = v3 — T Rl 3,2,0,3]7 —2[0,1,0,0] — 3[1,0,0,0]T = [0,0,0,3]"

We find the orthogonal set of vectors {e1,e2,es}. It just so happens this is also an orthonormal set
of vectors.

Proposition 8.2.19. Normalization

If 8" = {v},vh,...,v.} is an orthogonal subset of R™ then S” = {v{,v4,...,v/} is an
orthonormal set if we define v = v} = ﬁv; foreachi=1,2,... k.
i

Example 8.2.20. Suppose v1 = [1,1,1]T, vy = [1,2,3]7,v3 = [0,0,3]" find an orthonormal set
of vectors that spans span{vi,ve,v3}. We can use Gram-Schmidt followed by a normalization, let
v] = [1,1,1]7 then calculate

1+243

vé:[17273]T_< 3

>[1, 1,17 =11,2,3]7 —[2,2,2]F =[-1,0,1].

as a quick check on my arthimetic note vi - v =0 (good). Next,

o= 0,037 — (0(—1) +0(0) + 3(1)> Lo - (0(1) + 0(31) + 3(1)) LT

2
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= v =1[0,0,3]" +[3,0,-3]" —[1,1,1]" = [, —1,4]"

again it’s good to check that v - v = 0 and v} - v5 = 0 as we desire. Finally, note that ||v}|| =

V3, ||vh]| = V2 and ||vh|| = \/3/2 hence

o= LU, o= B0, =314

are orthonormal vectors.

Definition 8.2.21.

A basis for a subspace W of R" is an orthogonal basis for W iff it is an orthogonal set of
vectors which is a basis for W. Likewise, an orthonormal basis for W is a basis which is
orthonormal.

Proposition 8.2.22. Existence of Orthonormal Basis

If W < RR"™ then there exists an orthonormal basis of W

Proof: since W is a subspace it has a basis. Apply Gram-Schmidt to that basis then normalize
the vectors to obtain an orthnormal basis. []

Example 8.2.23. Let W = span{[1,0,0,0]7,[3,1,0,0]7,[3,2,0,3]7}. Find an orthonormal basis
for W < R 4*1. Recall from Example we applied Gram-Schmidt and found the orthonormal
set of vectors {e1,ea,eq}. That is an orthonormal basis for W.

Example 8.2.24. In Ezample we found {v{, vi, v§} is an orthonormal set of vectors.
Since orthogonality implies linear independence it follows that this set is in fact a basis for R3*1,
It is an orthonormal basis. Of course there are other bases which are orthogonal. For example,
the standard basis is orthonormal.

Example 8.2.25. Let us define S = {v1,v2,v3,v4} C R ! as follows:

V1 = ’1}3:

=
4
I
|
— =
w N OO
W O NN W

It is easy to verify that S defined below is a linearly independent set vectors basis for span(S) <
R L. Let’s see how to find an orthonormal basis for span(S). The procedure is simple: apply the
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Gram-Schmidt algorithm then normalize the vectors.

1
v = 0
1= Y1 = 1
1
1 1 0
r_ (Y2 LR, Ly 3]0 _ 11
'U2 — '1)2 /U:,L : /Ull ’Ul 1 3 1 — 0
1 1 0
0 0 1 -5
o e vg - Uh o (B, o Of1| 5j0]_1 0
5 vl -vh ) 2 v vh )t 2 110 311 3 1
3 0 1 4
3 -5 0 2 9
V4V v3-V) v3-v} 2 1 0 2 0 1 0
vy = s — (vjl 11?) 5 — (vaz) 5 (U?vi)vi 1o 14 11 ol o] 1| 97
3 4 0 2 18
Then normalize to obtain the orthonormal basis for Span(S) below:
1 0 -5 9
5= 110 1 1 0 1 0
V3|0 Va2 1|7 ovia | —27
1 0 4 18
Proposition 8.2.26. Coordinates with respect to an Orthonormal Basis
If W < R"™ has an orthonormal basis {vy,vs,...,v;} and if w = Zle w;v; then w; = w - v;

forall t =1,2,...,k. In other words, each vector w € W may be expressed as

’w:(w'vl)vl+(w'v2)vg+--'+(w---vk)vk‘

Proof: Let w = wyvy + wavs + - - - + wyvi and take the dot-product with vy,
w - vj = (w11 + wavg + - -+ + wivg) - vj = wi(vr - v;) +walva - vj) + -+ + we(vg - V)

Orthonormality of the basis is compactly expressed by the Kronecker Delta; v; - v; = d;; this is zero
if i # j and it is 1 if they are equal. The whole sum collapses except for the j-th term which yields:
w - v; = w;. But, j was arbitrary hence the proposition follows. [l.
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The proposition above reveals the real reason we like to work with orthonormal coordinates. It’s
easy to figure out the coordinates, we simply take dot- products _This technique was employed with
great sucess in (you guessed it) Calculus III. The standard {i, 7, k:} is an orthonormal basis and one
of the first things we discuss is that if ¥ =< A, B,C > then A =7 - i\B=7- j and C = - k.

Example 8.2.27. For the record, the standard basis of R™ is an orthonormal basis and
v=(v-e1)e1 + (v-ez)ea+ -+ (v-en)en
for any vector v in R™.

Example 8.2.28. Let v = [1,2,3,4]. Find the coordinates of v with respect to the orthonormal
basis B found in Example|8.2.25,

9
6 = {flvaaf37f4} = {

Sl
w
=

5
1 0 1 0
/a2 | 1| v —27}
4 18

O O = O

Let us denote the coordinates vector [v]g = [w1, w2, w3, wa] we know we can calculate these by taking
the dot-products with the vectors in the orthonormal basis 3:

1
wi=v-f1 = %[1,2,3,4][1,0,1,1]7’ =

Sl

wo =v- fo=[1,2,3,4]0,1,0,0]T =

1 14
w3 =v- f3 = E[1’2’3’4J[_5’0’1’4]T =5
wi=v- fy = 5=[1,2,3,4]9,0,-27,18]" = -9 = 0
Therefore, [v]g = [%,2, \}%,0]. Now, let’s check our answer. What should this mean if it is
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correct? We should be able verify v = wy f1 + wafo + wsfs + wafs:

1 0 )
8 1 0 1 14 1 0
w1f1+w2f2+w3f3+w4f4:%ﬁ 1 +2 0 +\/E\/E 1
1 0 4
1 0 -5
R e T
3|1 0 3 1
1 0 4
[ 8/3 - 5/3
_ 2
= | 8/3+1/3
| 8/3+4/3
[ 1
|2
13
| 4

Well, that’s a relief.

8.3 orthogonal complements and projections

Upto now we have discussed projections with respect to one vector at a time, however we can just
as well discuss the projection onto some subspace of R". We need a few definitions to clarify and
motivate the projection.

Definition 8.3.1.

Suppose W1, Wy C R™ then we say W is orthogonal to Ws iff wy - we = 0 for all w; € W)
and wo € W5. We denote orthogonality by writing Wy L Ws.

Example 8.3.2. Let W1 = span{ei,e2} and Wo = span{es} then Wi, Wy < R™. Let w; =
aeq + bes € W1 and wy = ceg € Wy calculate,

wy - we = (aey + beg) - (ceg) = acey - e3 + beeg - e3 =0
Hence Wi L Wy. Geometrically, we have shown the xy-plane is orthogonal to the z-axis.

We notice that orthogonality relative to the basis will naturally extend to the span of the basis
since the dot-product has nice linearity properties.
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Proposition 8.3.3.

Suppose Wi, Wy < R™ the subspace W is orthogonal to the subspace Wa iff w; - v; =0
for all 4, j relative to a pair of bases {w;} for Wy and {v;} for Ws.

Proof: Suppose {w;}]_, is a basis for W; <R" and {vj}j-:l for Wo < R"™. If Wy L W5 then clearly
{w;};_; is orthogonal to {v;}i_;. Conversely, suppose {w;}i_; is orthogonal to {v;};_; then let
z e Wy and y € Wa:

T S T S

x-y:<inwi>o<2ijj):Zinyj(wi-vj):O. O

i=1 i=1 i=1 j=1
Given a subspace W which lives in R™ we might wonder what is the largest subspace which is
orthogonal to W? In R 3X! it is clear that the zy-plane is the largest subspace which is orthogonal
to the z-axis, however, if the xy-plane was viewed as a subset of R X! we could actually find a
volume which was orthogonal to the z-axis (in particular span{ei, e, es} L span{es}).

Definition 8.3.4.

Let W C R™ then W+ is defined as follows:

Wt ={veR"v-w=0 for all we W}

It is clear that W' is the largest subset in R™ which is orthogonal to W. Better than just that,
it’s the largest subspace orthogonal to W.

Proposition 8.3.5.

Let S C R™ then S+ < R™.

Proof: Let z,y € S* and let ¢ € R. Furthermore, suppose s € S and note
(x+ecy)-s=x-s+c(y-s)=0+¢(0)=0.

Thus an aribtrary linear combination of elements of S are again in S+ which is nonempty as
0 € S+ hence by the subspace test S+ < R™. Tt is interesting that S need not be a subspace for
this argument to hold. [J

Example 8.3.6. Find the orthogonal complement to W = span{vy = [1,1,0,0]7,v2 = [0,1,0,2]"}.
Let’s treat this as a matriz problem. We wish to describe a typical vector in W+. Towards that

goal, let r = [x,y,z,w]" € W then the conditions that v must satisfy are vy - r = v{r =0 and
vy -7 =vlr =0. But this is equivalent to the single matriz equation below:
T 2w 0 2
[1100} Y :[0] I —2w . 0 L w -2
01 0 2 z 0 z 1 0
w w 0 1
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Thus, W+ = span{[0,0,1,0]",[2, —2,0,1]}.

If you study the preceding example it becomes clear that finding the orthogonal complement of a
set of vectors is equivalent to calculating the null space of a particular matrix. We have considerable
experience in such calculations so this is a welcome observation.

Proposition 8.3.7.

If S = {v1,v2,...,vx} CR™ and A = [v1|va] - - - |vg] then S+ = Null(AT)

Proof: Denote A = [v1|va|---|vx] € R ™** and = = [x1, 29,...,25]7. Observe that:

x € Null(AT) & ATz =0

& [rowi (AT)z, rows (AT )z, - rowy(AT)2] = 0
& [(coly(A) 'z, (coly(A)) Tz, -, (colp(A)Tx] =0
S [vp-xyvg-x,- v x] =0

Swvjrx=0forj=12...k
srest

Therefore, Null(AT) = S+. O

Given the correspondence above we should be interested in statements which can be made about
the row and column space of a matrix. It turns out there are two simple statements to be made in
general:

Proposition 8.3.8.

Let A € R ™*™ then
1. Null(AT) L Col(A).
2. Null(A) L Row(A).

Proof: Let S = {coli(A), cola(A),...,col,(A)} and use Proposition:@to deduce S+ = Null(AT).
Therefore, each column of A is orthogonal to all vectors in Null(AT), in particular each column is
orthgonal to the basis for Null(AT). Since the pivot columns are a basis for Col(A) we can use
Propositionm to conclude Null(AT) L Col(A).

To prove of (2.) apply (1.) to B = AT to deduce Null(BT) L Col(B). Hence, Null((AT)T) L
Col(AT) and we find Null(A) L Col(AT). But, Col(AT) = Row(A) thus Null(A) L Row(A). O

The proof above makes ample use of previous work. I encourage the reader to try to prove this
proposition from scratch. I don’t think it’s that hard and you might learn something. Just take an
arbitrary element of each subspace and argue why the dot-product is zero.
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Proposition 8.3.9.
Let W, Wy < R", if Wy L Ws then W1 N Wy = {O}

Proof: let z € Wy N W5 then 2z € W; and 2 € Wy and since Wy L Ws it follows z - z = 0 hence
z =0 and W3 N W, C {0}. The reverse inclusion {0} C W; N Ws is clearly true since 0 is in every
subspace. Therefore, W7 N Wy = {0} O

We defined the direct sum of two subspaces in the eigenvector chapter where we learned that the
eigenspaces of a A decompose at least part of R™ into a direct sum of invariant subspaces of L 4. If
A was diagonalizable then the direct sum of the e-spaces covered all of R™. Just a reminder, now
let’s see how the direct sum is also of importance here:

Proposition 8.3.10.

Let W < R"™ then
LR"=WeaW-.
2. dim(W) + dim(W+) = n,
3. (WhHt=w,

Proof: Let W < R" and choose an orthonormal basis § = {vi,ve,... v} for S. Let z € R and

define
k

Projw(z) = Z(z -0 )U; and Orthw(z) = z — Projw(2).
i=1
Observe that z = Projw(z) + Orthy (z) and clearly Projy (z) € S. We now seek to argue that
Orthy (z) € S*. Let v; € B8 then

vj - Orthy (2) = v; - (z — Projw(2))
i

=z —v;- (;(z : vi)vi>
= vz zk:(z -0i) (v - v;)
zzl

=Vj-2— Z(Z . Ui)éij

i=1
=Vj-2 =205

Therefore, R* = W @ W+. To prove (2.) notice we know by Proposition that W+ < R”
and consequently there exists an orthonormal basis I' = {wy,ws,...,w;} for W+. Furthermore,
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by Proposition we find B NT = () since 0 is not in either basis. We argue that 3 UT is
a basis for R™. Observe that § UT clearly spans R" since z = Projw(z) + Orthy (z) for each
z € R™ and Projw(z) € span(B) while Orthy (z) € span(I'). Furthermore, I argue that 5 U T
is an orthonormal set. By construction 8 and I' are orthonormal, so all we need prove is that
the dot-product of vectors from § and I' is zero, but that is immediate from the construction of
I". We learned in Proposition that orthogonality for set of nonzero vectors implies linearly
independence. Hence, S U T is a linearly independent spanning set for R™. By the dimension
theorem we deduce that there must be n-vectors in S U I' since it must have the same number of
vectors as any other basis for R™ ( the standard basis obviously has n-vectors). Therefore,

dim(W) + dim(W+) = n.

in particular, we count dim(W=) = n — k in my current notation. Now turn to ponder the proof
of (3.). Let z € (W)L and expand z in the basis UT to gain further insight, z = z1v1 + 29v2 +
23U F Zep1W1 F ZpgoWa + - ZpwWy_g. Since z € (W)L then z-w, =0 for all w, € W+, in
particular z - w; = 0 for all j = 1,2,...,n — k. But, this implies 241 = 242 = --- = 2, = 0 since
Proposition [8.2.26 showed the coordinates w.r.t. an orthonormal basis are given by dot-products.
Therefore, z € span() = W and we have shown (W)t C W. In invite the reader to prove the
reverse inclusion to complete this proof. [J

Two items I defined for the purposes of the proof above have application far beyond the proof.
Let’s state them again for future reference. I give two equivalent definitions, technically we should
prove that the second basis dependent statement follows from the first basis-independent statement.
Primary definitions are as a point of mathematical elegance stated in a coordinate free langauge in
as much as possible, however the second statement is far more useful.

Definition 8.3.11.

Let W < R"if 2z € R” and 2 = w + w for some u € W and w € W+ then we
define v = Projw(z) and w = Orthy(z). Equivalently, choose an orthonormal basis
B ={v1,va,...v;} for W then if z € R"” we define

k

Projw(z) = Z(z - ;) and Orthw (z) = z — Projw (2).
i=1

Example 8.3.12. Let W = span{ei+ea, ez} and x = [1,2,3]7 calculate Projw (x). To begin I note
that the given spanning set is orthogonal and hence linear indpendent. We need only orthonormalize
to obtain an orthonormal basis B for W

B={vi,m}  with v = %[1, 1,07, vy =[0,0,1]7

Calculate, v1 - ¢ = % and vo - x = 3. Thus,

Projw ([1, 2,3]T) = (v1-x)v1 + (v2 - T)vg = %01 + 3vg = [%, %, 3]T
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Then it’s easy to calculate the orthogonal part,

OT‘thw([l,2,3]T) = [17273]T - [%7 ’3]T = [_%7 %’O]T

[\G][VV]

As a check on the calculation note that Projw (x)+ Orthw (z) = x and Projw (x) - Orthy (z) = 0.
Example 8.3.13. Let W = span{u, uz,u3} <R **1 where

2 0 -1
1 —2 2
ulp = 9 U9 = 1 us = 0
0 1 —1

calculate Projy ([0, 6,0, 6] E| Notice that the given spanning set appears to be linearly independent
but it is not orthogonal. Apply Gram-Schmidt to fix it:

vy =uy = [2,1,2,07

vy = ug — Lyy —uy = [0,-2,1,1]"
v3 = ug — Wy — W2y — yz 4 Juy = [-1,2,0, 1] + 0, -, 3, 2]
We calculate,
V3 = [_17 2— %) %) -1 +% ]T = [_17 %7 %7 _% ]T = %[_672757_1]T
The normalized basis follows easily,
=32,1,2,0"  wp=£00,-21,1"  vh= (6,25 -1]"

Calculate dot-products in preparation for the projection calculation,

vl -z = $[2,1,2,0][0,6,0,6]" =

vy x = 5£[0,-2,1,1][0,6,0,6]" = =(~12+6) = —v/6
vg-x:\/%[—6,2,5,—1][0,6,0,6] zﬁ(u—(s):%

Now we calculate the projection of x = [0,6,0,6]7 onto W with ease:

4
37
26

Projw(x) = (z - v))v} + (z - vh)vh + (z - vh)v}
= (2)3[2,1,2,0]" (\@%[0,—2,1,1]T+ (&)L [=6,2,5,~1]
= (5.5 507 + 0.2 -1 T [ £ £ T
=[5

94 26 —36 ]T
337 33 33» 33

and,

Orthue() = (80, B, 0. B 1"

Zthis problem is inspired from Anton & Rorres’ §6.4 homework problem 3 part d.
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8.4 the closest vector problem

Suppose we are given a subspace and a vector not in the subspace, which vector in the subspace is
closest to the external vector ? Naturally the projection answers this question. The projection of
the external vector onto the subspace will be closest. Let me be a bit more precise:

Proposition 8.4.1. Closest vector inequality.

If S <R™ and b € R” such that b ¢ S then for all u € S with u # Projs(b),
b — Projs(b)]] < b — wul.

This means Projg(b) is the closest vector to b in S.

Proof: Noice that b —u = b — Projs(b) + Projs(b) — u. Furthermore note that b — Projg(b) =
Orthg(b) € S+ whereas Projs(b) —u € S hence these are orthogonal vectors and we can apply the
Pythagorean Theorem,

16— ull* = []b— Projs(b)|[* + [|Projs(b) — ull*

Notice that u # Projg(b) implies Projs(b) — u # 0 hence ||Projs(b) — u|[?> > 0. It follows that
|[b— Projs(b)|[?> < ||b—ul|>. And as the || - || is nonnegative]] we can take the squareroot to obtain
b= Projs(b)|] <o —ul|. O

Remark 8.4.2.

In calculus III I show at least three distinct methods to find the point off a plane which
is closest to the plane. We can minimize the distance function via the 2nd derivative test
for two variables, or use Lagrange Multipliers or use the geometric solution which invokes
the projection operator. It’s nice that we have an explicit proof that the geometric solution
is valid. We had argued on the basis of geometric intuition that Orthg(b) is the shortest
vector from the plane S to the point b off the planeﬁ Now we have proof. Better yet, our
proof equally well applies to subspaces of R™. In fact, this discussion extends to the context
of inner product spaces.

Example 8.4.3. Consider R 2% let S = span{[1,1]}. Find the point on the line S closest to the
point [4,0]T.
P’I“Ojs([4, O]T) = %([1’ 1] ) [47 0])[17 1]T = [Q’Q]T

Thus, [2,2]7 € S is the closest point to [4,0]T. Geometrically, this is something you should have
been able to derive for a few years now. The points (2,2) and (4,0) are on the perpendicular bisector
of y = x (the set S is nothing more than the line y = x making the usual identification of points
and vectors)

3notice a®> < b* need not imply @ < b in general. For example, (5)% < (=7)% yet 5 ¢ —7. Generally, a*> < b?

together with the added condition a,b > 0 implies a < b.
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Example 8.4.4. In Example we found that W = span{uy,uz,u3} <R 1 where

2 0 -1
1 —2 2
uyp = 9 U9 = 1 us = 0
0 1 -1

has Projw ([0,6,0,6]7) = [23, 22, 28 =38 1T We can calculate that

2 0 —-1]0 1 0 0]0
rref 1 -2 2|6 _ 01 0|0
2 1 0]0 00 1]0
0 1 —-1|6 0 0 01

This means that [0,6,0,6]T ¢ W. However, we learned in Proposition that Projw ([0,6,0,6]7)
is the vector in W which is closest to [0,6,0,6]7. Notice that we can deduce that the orthogonal basis
from Example unioned with Orthy ([0,6,0,6]7) will form an orthogonal basis for R 4*1.

Example 8.4.5. Example shows that W = spanf{e; + ez, ez} and x = [1,2,3]7 yields
Projw(z) = [2,3,3]T. Again we can argue that x ¢ Coller + ezles] = W but Projw (z) is in fact

2702
in W. Moreover, Projw (x) is the closest vector to x which is in W. In this case, the geometry is
that Orthw (z) = [—3, 3,0]7 is the precisely the normal vector to the plane W.

The examples above are somewhat special in that the subspaces considered have only one dimension
less than the total vector space. This means that the orthogonal projection of any vector outside
the subspace will return the same vector modulo a nonzero constant. In other words, the orthogonal
complement is selecting the normal vector to our subspace. In general if we had a subspace which
was two or more dimensions smaller than the total vector space then there would be more variety in
the output of the orthogonal projection with respect to the subspace. For example, if we consider
a plane inside R**! then there is more than just one direction which is orthogonal to the plane,
the orthogonal projection would itself fill out a plane in R**1.
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8.5 inconsistent equations

We’ve spent considerable time solving systems of equations which were consistent. What if a system
of equations Az = b is inconsistent? What if anything can we say? Let A € R ™*" then we found

in Proposition |5.6.3|| Az = b is consistent iff b € Col(A). ‘ In other words, the system has a solution

iff there is some linear combination of the columns of A such that we obtain b. Here the columns
of A and b are both m-dimensional vectors. If rank(A) = dim(Col(A)) = m then the system is
consistent no matter which choice for b is made. However, if rank(A) < m then there are some
vectors in R ™*! which are not in the column space of A and if b ¢ Col(A) then there will be no
r € R such that Az = b. We can picture it as follows: the Col(A) is a subspace of R ™*! and
b € R ™*! is a vector pointing out of the subspace. The shadow of b onto the subspace Col(A) is

given by Projcoia)(b)-

Notice that Projcea)(b) € Col(A) thus the system Az = Projcea)(b) has a solution for any
b € R ™! In fact, we can argue that = which solves Az = Projcoiay(b) is the solution which
comes closest to solving Az = b. Closest in the sense that || Az — b||? is minimized. We call such x
the least squares solution to Az = b (which is kind-of funny terminology since x is not actually a
solution, perhaps we should really call it the "least squares approzimation”).

Proposition 8.5.1.

If Az = b is inconsistent then the solution of Au = Proj.ya)(b) minimizes |[Az — b||?.

Proof: We can break-up the vector b into a vector Projcol(A)(b) € Col(A) and Orthwl(A)(b) €
Col(A)* where
b= PTOjCol(A) (b) + OTthCol(A) (b)

Since Az = b is inconsistent it follows that b ¢ C'ol(A) thus Orthoea)(b) # 0. Observe that:

|[Az = b||* = ||[Az — Projcea)(b) — Orthegay (b))
= ||[Az — Projceay(0)|* + [|Orthoea)(b)|?
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Therefore, the solution of Az = Projce(4)(b) minimizes || Az —b||* since any other vector will make
|Az — Projoeay(®)[[* > 0. O

Admittably, there could be more than one solution of Az = Projca)(b), however it is usually the
case that this system has a unique solution. Especially for expermentally determined data sets.

We already have a technique to calculate projections and of course we can solve systems but it is
exceedingly tedious to use the proposition above from scratch. Fortunately there is no need:

Proposition 8.5.2.

If Az = b is inconsistent then the solution(s) of Au = Projcea)(b) are solutions of the

so-called normal equations AT Au = ATb.

Proof: Observe that,

Au = Projcoa)(b) b— Au=b— Projcea)(b) = Orthcoa)(b)
b— Au € Col(A)*

b— Au € Null(AT)

AT(b— Au) =0

o ATAu= ATy,

=
=
=
=

where we used Proposition in the third step. [

The proposition below follows immediately from the preceding proposition.

Proposition 8.5.3.

If det(AT A) # 0 then there is a unique solution of Au = Projc,(a)(b).

8.6 least squares analysis

In experimental studies we often have some model with coefficients which appear linearly. We
perform an experiment, collect data, then our goal is to find coefficients which make the model fit
the collected data. Usually the data will be inconsistent with the model, however we’ll be able to
use the idea of the last section to find the so-called best-fit curve. I'll begin with a simple linear
model. This linear example contains all the essential features of the least-squares analysis.

8.6.1 linear least squares problem

Problem: find values of ¢;, ¢y such that y = ¢cix + ¢o most closely models a given
data set: {(z1,v1),(z2,%2),---, (T, Uk)}
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Solution: Plug the data into the model and see what equations result:
Y1 =c1x1 +C2, Y2 =C1T2 +C2, ... Yp = C1Tf + C2

arrange these as a matrix equation,

(1 xp 1
Y2 xg 1
= [ ‘1 ] =y=Mv
: : €2
Yk zp 1
where ¥ = [y1, 2, ..., yk|T,v = [c1, c2]T and M is defined in the obvious way. The system i = M¥

will be inconsistent due to the fact that error in the data collection wilFl make the results bounce
above and below the true solution. We can solve the normal equations M7 = MT M4 to find
c1, co which give the best-fit curveﬁ

Example 8.6.1. Find the best fit line through the points (0,2),(1,1),(2,4),(3,3). Our model is
y = c1 + cox. Assemble M and § as in the discussion preceding this example:

2 0 1 0 1
L |1 B roo o1 2311 1| [146
=1y M=12 1 - MM_{llll]Ql__64}
3 3 1 3 1
[ 2
01 2 3 1 18
. T, _ —
and we calculate: My—[1 11 1} 4 _[10}
| 3
The normal equationd’| are MTMv = MTy. Note that (MTM)™' = & [ —46 If ] thus the

solution of the normal equations is simply,

4 6718
= T —1asT ~ 1
7= (MM) My:QO[ES 14“10]:[

1 oout Lo

_|a

= o
Thus, ’y = 0.6z + 1.6‘ 18 the best-fit line. This solution minimizes the vertical distances squared
between the data and the model.

It’s really nice that the order of the normal equations is only as large as the number of coefficients
in the model. If the order depended on the size of the data set this could be much less fun for

Salmost always

Snotice that if ; are not all the same then it is possible to show det(MT M) # 0 and then the solution to the
normal equations is unique

"notice my choice to solve this system of 2 equations and 2 unknowns is just a choice, You can solve it a dozen
different ways, you do it the way which works best for you.
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real-world examples. Let me set-up the linear least squares problem for 3-coefficients and data from
R3, the set-up for more coefficients and higher-dimensional data is similar. We already proved this
in general in the last section, the proposition simply applies mathematics we already derived. I
state it for your convenience.

Proposition 8.6.2.

Given data {i,75,...,7,} C R, with 7 = [zg, Yk, 2&]7, the best-fit of the linear model
2 = c12 + cay + ¢3 is obtained by solving the normal equations M M© = M7TZ where

z1 H 1 21
a o Y2 1 22
Z=1 ¢ M = . L =
3 . . .
Tn Yn 1 Zn

Example 8.6.3. Find the plane which is closest to the points (0,0,0),(1,2,3),(4,0,1),(0,3,0),(1,1,1).
An arbitmrgﬁ plane has the form z = c1x + coy + c3. Work on the normal equations,

0 01 0 0 0 1
1 2 1 3 01 4 01 1 21 18 3 6
M=1]4 0 1 Z=11 = M'M=]|0 0 1 4 0 1|=|3 14 6
0 3 1 0 11111 0 3 1 6 6 5
111 1 1 11
0
01 401 3 8
also, MT2=10 2 0 3 1 1|=17
11111 0 )
1
We solve MTM©v = MTZ by row operations, after some calculation we find:
1 0 1/(89/279 c1 = 89/279
rref[MTM|MTZ) =10 1 1| 32/93 =y =232/93
0 0 1] 19/93 c3 =19/93

Therefore, z = %x + %y + % is the plane which is "closest” to the given points. Technically, I'm
not certain that is is the absolute closest. We used the vertical distance squared as a measure of
distance from the point. Distance from a point to the plane is measured along the normal direction,
so there is no garauntee this is really the absolute "best” fit. For the purposes of this course we
will ignore this subtle and annoying point. When I say "best-fit” I mean the least squares fit of the

model.

8technically, the general form for a plane is az + by + cz = d, if ¢ = 0 for the best solution then our model misses
it. In such a case we could let x or y play the role that z plays in our set-up.
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8.6.2 nonlinear least squares

Problem: find values of ¢, ¢y such that y = ¢ fi(x)z + cafo(x) + - - - + ¢ frn(x) most
closely models a given data set: {(z1,11),(2,92),-.., (K, yx)}. We assume the
coefficients c;, o appear linearly on (possibly nonlinear) functions fi, fa,... fn.

Solution: Plug the data into the model and see what equations result:

y1 = c1fi(w1) + cafo(wr) + - + cnfulx1),
Y2 = c1f1(w2) + cafo(wa) + - + cnfulw2),

Yr = c1fi(zr) + cafo(wg) + - + cnfulrr)

arrange these as a matrix equation,

Y1 filz)  folzn) - fulz) 1
Y2 filzr) felzr) - falzr) C2 . .
.= . : . . : =y =Mv
Yk filze)  folzr) - folzr) Cn
where 7 = [y1,%2,...,yk]T,v = [c1,¢2,...,cn]T and M is defined in the obvious way. The system

i = M7 will be inconsistent due to the fact that error in the data collection wilﬂ make the results
bounce above and below the true solution. We can solve the normal equations M7¢ = MT M# to
find c1,co, ..., c, which give the best-fit curvﬂ

Remark 8.6.4.

Nonlinear least squares includes the linear case as a subcase, take f1(z) = z and fa(z) =1
and we return to the linear least squares examples. We will use data sets from R? in this
subsection. These techniques do extend to data sets with more variables as I demonstrated
in the simple case of a plane.

Example 8.6.5. Find the best-fit parabola through the data (0,0),(1,3),(4,4),(3,6),(2,2). Our
model has the form y = c1x? + cow + c3. Identify that fi(x) = 22, fo(z) = 2 and f3(z) = 1 thus we
should study the normal equations: MT MG = M7 where:

f1(0)  f2(0)  £5(0) 0 01 0
fi(1) f2(1) f3(1) 111 3
M= | fi(4) f2(4) f3(4) | =] 16 4 1 and Y= |4
f13) f23)  f3(3) 9 3 1 6
f1(2) f2(2)  f3(2) 4 21 2

9almost always
Ynotice that if fj(x;) are not all the same then it is possible to show det(M”T M) # 0 and then the solution to the
normal equations is unique
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Hence, calculate

0 0 1
01 16 9 4 1 1 1
MIM=]01 4 3 2 16 4 1| =
11 1 11 9 31
4 21
and,
0
01 16 9 4 3
My = 1 4 3 2 4
11 1 11 6
2
After a few row operations we can deduce,
1 0 1|-5/14
rref[MTM|MT5 =0 1 1[177/70 | =
0 0 1] 3/35

We find the best-fit parabola is

..}

&

Yes..., but what’s this for?

CHAPTER 8. LINEAR GEOMETRY

354 100 30
100 30 10
30 10 5
129

=] 41
15

¢1 = —5/14 = —0.357
¢y = 177/70 2 2.529
c3 = 3/35 = 0.086

y = —0.357z + 2.529x + 0.086

*
L
LY
-
L J
The greem curer iz the best fit parabala and
the red dors ave the gaven dara serues
X
[ + 1]
| 2 3 | 3
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Example 8.6.6. Suppose you land on a mysterious planet. You find that if you throw a ball it’s
height above the ground y at time t is measured at timest = 0,1,2,3,4 seconds to be y =0,2,3,6,4
meters respective. Assume that Newton’s Law of gravity holds and determine the gravitational
acceleration from the data. We already did the math in the last example. Newton’s law approximated
for heights nmear the surface of the planet simply says y’' = —g which integrates twice to yield
y(t) = —gt?/2+vot +yo where v, is the initial velocity in the vertical direction. We find the best-fit
parabola through the data set {(0,0), (1,3), (4,4),(3,6),(2,2)} by the math in the last example,

y(t) = —0.357t* + 2.529 + 0.086

we deduce that g = 2(0.357)m/s* = 0.714m/s?. Apparently the planet is smaller than Earth’s moon
(which has gmoon ~ %9.8771/52 = 1.63m/s>.

Remark 8.6.7.

If T know for certain that the ball is at y = 0 at t = 0 would it be equally reasonable to
assume ¥, in our model? If we do it simplifies the math. The normal equations would only
be order 2 in that case.

Example 8.6.8. Find the best-fit parabola that passes through the origin and the points
(1,3),(4,4),(3,6),(2,2). To begin we should state our model: since the parabola goes through the
origin we know the y-intercept is zero hence y = c12? + cax. Identify fi(x) = 2% and fa(z) = z.
As usual set-up the M and 7,

fi(1)  f2(1) 1 3
fi(4)  fa(4) 16 4 . 4
M: — d =
hB) f(3) 9 3 I e
f12) f2(2) 4 2 2
Calculate,
11
v [1 16 9 4]|16 4| [354 100 o1 L[ 300 —100
MM_[1432] 9 3 _[100 30}j(MM) T 620 | —100 354
4 2
and,
3
v [116 9 474 [129
M y_{l 4 32|16 |4
2

We solve MT M© = M1y by multiplying both sides by (MT M)~ which yeilds,

30 —100 129
—100 354 41

[ —23/62 1 = —23/62 = —0.371

1
- T —1 T_’_
7= (M M) M"y [ - [ 807/310 ] 7 o= 807/310 = 2.603

"~ 620

Thus the best-fit parabola through the origin is |y = —0.371z? + 2.603x
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Sometimes an application may not allow for direct implementation of the least squares method,
however a rewrite of the equations makes the unknown coefficients appear linearly in the model.

Example 8.6.9. Newton’s Law of Cooling states that an object changes temperature T' at a rate
proportional to the difference between T and the room-temperature. Suppose room temperature is
known to be 70° then dT'/dt = —k(T — 70) = —kT + 70k. Calculus reveals solutions have the form
T(t) = coe ¥ + 70. Notice this is very intuitive since T(t) — 70 for t >> 0. Suppose we measure
the temperature at successive times and we wish to find the best model for the temperature at time
t. In particular we measure: T(0) = 100, T'(1) = 90, T'(2) = 85, T'(3) = 83, T'(4) = 82. One
unknown coefficient is k and the other is c¢i. Clearly k does not appear linearly. We can remedy
this by working out the model for the natural log of T — 70. Properties of logarithms will give us a
model with linearly appearing unknowns:

In(T(t) — 70) = In(coe ™) = In(cp) + In(e ™) = In(co) — kt

Let ¢y = In(cp), ca = —k then identify fi(t) = 1 while f2(t) =t and y = In(T'(t) — 70. Our model is
y=cifi(t)+ Cgfg( ) and the data can be generated from the given data for T(t):

1 =0y = In(T(0) — 70) = In(100 — 70) = In(30)
ty =1:yo = In(T(1) — 90) = In(90 — 70) = In(20)
t3 =2:y3=1In(T(2) — 85) =In(85 — 70) = In(15)
ty =3:ys=In(T(2) —83) =In(83 — 70) = In(13)
ts =4 :ys =In(T(2) — 82) = In(82 — 70) = In(12)
Our data for (t,y) is (0,In30), (1,In20), (2,1In 15), (3,1n 13), (4,10 12). We should solve normal equa-

tions MTM© = M4 where

£1(0)  f2(0) 10 In 30
Si(1) f2(1) 11 In 20
M=| fi(2) f2) |=]1 2 and  §= | Inlb
f1(3) f2(3) 13 In13
fi(4)  fo(4) 1 4 In12
5 10 14.15

10 30

Tar _
We can calculate M M = [ 26.05

} and M7y = [ } . Solve MTM© = MTy by multipli-

cation by inverse of MT M :

g*:(MTM)—lMTg:[ 3.284 ] N c1 = 3.284

—0.2263 co = —0.2263 °

Therefore, y(t) = In(T'(t) — 70) = 3.284 — 0.2263 we identify that k = 0.2263 and In(cp) = 3.284
which yields co = €328 = 26.68. We find the best-fit temperature function is

T(t) = 26.68¢ 02263 4 70,
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Now we could give good estimates for the temperature T(t) for other times. If Newton’s Law of
cooling is an accurate model and our data was collected carefully then we ought to be able to make
accurate predictions with our model.

Remark 8.6.10.

The accurate analysis of data is more involved than my silly examples reveal here. Each
experimental fact comes with an error which must be accounted for. A real experimentalist
never gives just a number as the answer. Rather, one must give a number and an uncertainty
or error. There are ways of accounting for the error of various data. Our approach here
takes all data as equally valid. There are weighted best-fits which minimize a weighted least
squares. Technically, this takes us into the realm of math of inner-product spaces. Finite
dimensional inner-product spaces also allows for least-norm analysis. The same philosophy
guides the analysis: the square of the norm measures the sum of the squares of the errors in
the data. The collected data usually does not precisely fit the model, thus the equations are
inconsistent. However, we project the data onto the plane representative of model solutions
and this gives us the best model for our data. Generally we would like to minimize y?,
this is the notation for the sum of the squares of the error often used in applications. In
statistics finding the best-fit line is called doing ”linear regression”.




288 CHAPTER 8. LINEAR GEOMETRY

8.7 orthogonal matrices and the QR factorization

In principle the material in this section could be covered before previous sections. I include it here
in part to help the students avoid double printing in Fall 2010. Probably I will move this material
early in the chapter in future versions. Moreover, it is entirely likely I lecture on aspects of this
section before I cover least squares.

Suppose we have an orthogonal basis 8 = {v1,va,...,v,} for R". Let’s investigate the properties
of the matrix of this basis. Note that ||v;|| # 0 for each j since § is linearly independent set of
vectors. Moreover, if we denote ||v;|| = [; then we can compactly summarize orthogonality of /3

with the following relation:
V5 -V = l?(gjk

As a matrix equation we recognize that [vj]Tvk is also the jk — th component of the product of
[3]T and [B]. Let me expand on this in matrix notation:

vi v?vl U?;Q e v?vn 12 (; 0
18]7[8] = U:g torlog] -+ - [on] = ngm UQ:'UQ UQ:vn _ 02 - 0
o o e o ole ] 00 e 2
This means that [5]7 is almost the inverse of [3]. Observe if we had l; =1for j=1,2,...,n then

[B]T = [B]~'. In other words, if we use an orthonormal basis then the inverse of the basis matrix
is obtained by transposition. In fact, matrices with this property have a name:

Definition 8.7.1.

Let A € R ™% then we say that A is an orthogonal matrix iff ATA = I. The set of all
orthogonal n x n matrices is denoted O(n).

The discussion preceding the definition provides a proof for the following proposition:

Proposition 8.7.2. matrix of an orthonormal basis is an orthogonal matrix

‘If 3 is an orthonormal basis then [8]7[3] = I or equivalently [3]7 = [3]~!.

So far we have considered only bases for all of R™ but we can also find similar results for a subspace

W < R™. Suppose dim(W) < n. If g is an orthonormal basis for W then it is still true that

[B1718] = ILiim(w) however since [] is not a square matrix it does not make sense to say that
-1

181" = (8]

Proposition 8.7.3. QR factorization of a full-rank matrix

. The @ R-factorization of a matrix is tied to this discussion.

If A e R ™" is a matrix with linearly independent columns then there exists a matrix @) €
R ™*™ whose columns form an orthonormal basis for Col(A) and square matrix R € R ™*"
which is upper triangular and has R;; > 0 for i =1,2,... n.
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Proof: begin by performing the Gram-Schmidt procedure on the columns of A. Next, normalize
that orthogonal basis to obtain an orthonormal basis 8 = {ui,ug,...,u,} for Col(A). Note that
since each column in A is in C'ol(A) it follows that some linear combination of the vectors in £ will
produce that column;

COlj(A) = leul + RQjUQ + -+ anun = [uﬂuzl cee \un} [le, jo, S ,an]T

for some constants Ryj, Roj,---,R,; € R. Let R be the matrix formed from the coefficients of
the linear combinations that link columns of A and the orthonormal basis; in particular define R
such that colj(R) = (Rij, Raj, -+, Rp;). It follows that if we denote [] = @ we have for each
7 =1,2,... n the relation

col;(A) = Qcol;(R)

Hence,
A = [coli(A)|cola(A)] - - |col,(A)] = [Qcoli(R)|Qcola(R)| - - - |Qcoly, (R)]

and we find by the concatenation proposition
A = Q[coly(R)|cola(R)| - - - |coln,(R)] = QR

where R € R ™" as we wished. It remains to show that R is upper triangular with positive
diagonal entries. Recall how Gram-Schmidt is accomplished (I'll do normalization along side the
orthogonalization for the purposes of this argument). We began by defining u; = mcoll(/l)

hence coli(A) = ||col1(A)||u1 and we identify that coli(R) = (||col1(A)]],0,...,0). The next step
in the algorithm is to define uy by calculating vy (since we normalized uj - u; =1 )

vy = cola(A) — (cola(A) - up)ug

and normalizing (I define /5 in the last equality below)

1 1
= U =7
[[cola(A) — (cola(A) -ur)m]] >~ I

u2 V2

In other words, lous = v9 = cola(A) — (cola(A) - uq)uy hence
coly(A) = laug — (cola(A) - uy)ug
From which we can read the second column of R as
coly(R) = (—(col2(A) - u1),12,0,...,0).

Continuing in this fashion, if we define [; to be the length of the orthogonalization of col;(A) with
respect to the preceding {ui,us,...,uj_1} orthonormal vectors then a calculation similar to the
one just performed will reveal that

colj(R) = (%,...,%,1;,0,...,0)
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and  are possibly nonzero components in rows 1 through j — 1 of the column vector and [; is the
j-th component which is necessarily posititive since it is the length of some nonzero vector. Put all
of this together and we find that R is upper triangular with positive diagonal entrieﬂ U

Very well, we now know that a ) R-factorization exists for a matrix with LI columns. This leaves
us with two natural questions:

1. how do we calculate the factorization of a given matrix A ?

2. what is the use of the QR factorization 7

We will answer (1.) with an example or two and I will merely scratch the surface for question (2.).
If you took a serious numerical linear algebra course then it is likely you would delve deeper.

Example 8.7.4. [ make use of Erxample 8.2.25 to illustrate how to find the QR-factorization
of a matrixz. Basically once you find the Gram-Schmidt then it is as simple as multiplying the
orthonormalized column vectors and the matriz since A = QR implies R = QT A.

Hgee Lay pg. 405-406 if you don’t like my proof
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Finally, returning to (2.). One nice use of the QR-factorization is to simplify calculation of the
normal equations. We sought to solve AT Au = ATb. Suppose that A = QR to obtain:

(QR)T(QR)u = (QR)"p = RTQTQRu=R'Q"> = |Ru=Q"b|

This problem is easily solved by back-substitution since R is upper-triangular. I may ask you a
homework to examine this in more detail for a specific example.
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8.8 orthogonal transformations and geometry

If we begin with an orthogonal subset of R™ and we preform a linear transformation then will the
image of the set still be orthogonal? We would like to characterize linear transformations which
maintain orthogonality. These transformations should take an orthogonal basis to a new basis
which is still orthogonal.

Definition 8.8.1.

If T : R™ — R™ is a linear transformation such that T'(x)-T(y) = x -y for all 2,y € R™ then
we say that T is an orthogonal transformation

Example 8.8.2. Let {e1, ez} be the standard basis for R 21 and let R(0) = [ cosf  —sin }

sinf  cos#d
a rotation of the coordinates by angle 6 in the clockwise direction,

' | | cosf —sind x| | xcosf+ysind
y | | sinf cosf y | | —xsind+ycosh
As a check on my sign conventions, consider rotating [1,0]7 by R(m/2), we obtain [z',y']T = [0,1].

See the picture for how to derive these transformations from trigonometry. Intuitively, a rotation
should not change the length of a vector, let’s check the math: let v,w € R 2X1,

R(9)v - R(O)w = [R(A)v]T R(O)w

= vTR(O)TR(O)w
Now calculate R(6)T R(0),
T | cosf sinf cosf —sinf | [ cos?f+ sin? 6 0 _
R(6)" 7(6) = { —sinf cos@ ] [ sinf cosf | 0 sin? 6 +cos?0 | 4

Therefore, R(O)v - R(0) = v'ITw = vTw = v-w for all v,w € R **' and we find L) is an
orthogonal transformation.

This shows the matrix of a rotation Lg satisfies RT R = I. Is this always true or was this just a spe-
cial formula for rotations? Or is this just a two-dimensional thing? What if we look at orthhogonal
transformations on R™ what general condition is there on the matrix of the transformation?

Definition 8.8.3.

Let A € R ™" then we say that A is an orthogonal matrix iff AT A = I. Moreover, we
say A is a reflection matrix if A is orthogonal and det(A) = —1 whereas we say A is
a rotation matrix if A is orthogonal with det(A) = 1. The set of all orthogonal n x n
matrices is denoted O(n) and the set of all n x n rotation matrices is denoted SO(n).




8.8. ORTHOGONAL TRANSFORMATIONS AND GEOMETRY 293

Proposition 8.8.4. matrix of an orthogonal transformation is orthogonal

If A is the matrix of an orthogonal transformation on R” then AT A = I and either A is a
rotation matrix or A is a reflection matrix.

Proof: Suppose L(x) = Az and L is an orthogonal transformation on R™. Notice that
L(e;) - L(ej) = [Ae;]" Aej = el [AT Ale;

and
r
(2
hence el [ATA — Ile; = 0 for all 4,5 thus ATA — I = 0 by Example [3.7.11| and we find ATA = I.
Following a homework you did earlier in the course,

e -ej=e ej:eiTIej

det(ATA) = det(I) < det(A)det(A) =1 < det(A)=+1

Thus A € SO(n) or A is a reflection matrix. [

The proposition below is immediate from the definitions of length, angle and linear transformation.

Proposition 8.8.5. orthogonal transformations preserve lengths and angles

If v,w € R™ and L is an orthogonal transformation such that v" = L(v) and v’ = L(w)
then the angle between v/ and w’ is the same as the angle between v and w, in addition the
length of v’ is the same as v.

Remark 8.8.6.

Reflections, unlike rotations, will spoil the "handedness” of a coordinate system. If we take
a right-handed coordinate system and perform a reflection we will obtain a new coordinate
system which is left-handed. If you'd like to know more just ask me sometime.

If orthogonal transformations preserve the geometry of R” you might wonder if there are other
non-linear transformations which also preserve distance and angle. The answer is yes, but we need
to be careful to distinguish between the length of a vector and the distance bewtween points. It
turns out that the translation defined below will preserve the distance, but not the norm or length
of a vector.

Definition 8.8.7.

Fix b € R™ then a translation by b is the mapping Ty(x) = x + b for all x € R™. ‘

This is known as an affine transformation, it is not linear since 7(0) = b # 0 in general. ( if
b = 0 then the translation is both affine and linear). Anyhow, affine transformations should be
familar to you: y = max + b is an affine transformation on R.
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Proposition 8.8.8. translations preserve geometry

Suppose Tj : R™ — R"™ is a translation then

1. If Z(xyz) denotes the angle formed by line segments zy, yz which have endpoints z, y
and y, z respectively then Z(Ty(z)Ty(y)Tp(2)) = £(zyz)

2. The distance from z to y is the equal to the distance from Tj(x) to Tp(y).

Proof: I'll begin with (2.) since it’s easy:
d(Ty(2), To(y)) = ITe(y) = To(@)| = lly + b = (z + O)[| = |ly — 2| = d(z,y).

Next, the angle Z(zyz) is the angle between = — y and z — y. Likewise the angle ZT}(x)T(y) Ty (2)
is the angle between Ty(z) — Tp(y) and Tp(z) — Tp(y). But, these are the same vectors since
Ty(x) —Th(y) =z+b—(y+b)=x—yand Tp(z) —Tp(y) =2+ b—(y+b) =2z —y. O

Definition 8.8.9.

Suppose T'(x) = Ax + b where A € SO(n) and b € R” for all x € R™ then we say T is a
rigid motion.

In high-school geometry you studied the concept of congruence. To objects were congruent if they
had the same size and shape. From the viewpoint of analytic geometry we can say two objects are
congruent iff one is the image of the other with respect to some rigid motion. We leave further
discussion of such matters to the modern geometry course where you study these concepts in depth.

Remark 8.8.10.

In Chapter 6 of my Mathematical Models in Physics notes I describe how Euclidean geometry
is implicit and foundational in classical Newtonian Mechanics. The concept of a rigid motion
is used to define what is meant by an intertial frame. 1 have these notes posted on my
website, ask if your interested. Chapter 7 of the same notes describes how Special Relativity
has hyperbolic geometry as its core. The dot-product is replaced with a Minkowski-product
which yields all manner of curious results like time-dilation, length contraction, and the
constant speed of light. If your interested in hearing a lecture or two on the geometry of
Special Relativity please ask and I'll try to find a time and a place.
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8.9 eigenvectors and orthogonality
We can apply the Gram-Schmidt process to orthogonalize the set of e-vectors. If the resulting set
of orthogonal vectors is still an eigenbasis then we can prove the matrix formed from e-vectors is

an orthogonal matrix.

Proposition 8.9.1.

If A€ R ™" has e-values A1, Ao, ..., \, with orthonormal e-vectors vi,vs, ..., v, and if we
define V = [v1|va|---|vn] then V™! = VT and D = VT AV where D is a diagonal matrix
with the eigenvalues down the diagonal: D = [Aje1|Aaea] - - [Anen].

Proof: Orthonormality implies v} v; = §;;. Observe that

T T T T

h ViUl ViU2 -+ ViU 1 0 - 0
- v2T vle vlTvg . vlTvn 0o 1 - 0
ViV = [vifva] -+ |on] = | . : o=
T T T T
Uy VU1 U, U2 o U, Up o0 --- 1

Thus V! = V7. The proposition follows from Proposition O

This is great news. We now have hope of finding the diagonalization of a matrix without going
to the trouble of inverting the e-vector matrix. Notice that there is no gaurantee that we can
find n-orthonormal e-vectors. Even in the case we have n-linearly independent e-vectors it could
happen that when we do the Gram-Schmidt process the resulting vectors are not e-vectors. That
said, there is one important, and common, type of example where we are in fact gauranteed the
existence of an orthonormal eigenbases for A.

Theorem 8.9.2.

A matrix A € R "*" is symmetric iff there exists an orthonormal eigenbasis for A. ‘

Proof: TI'll prove the reverse implication in these notes. Your text has a complete proof of the
forward implication in Appendix C, it’s very neat, but we don’t have that much time. Assume
there exists and orthonormal eigenbasis {v,va,...,v,} for A. Let V = [v1|ve|---|v,] and use
Proposition VT AV = D where D is a diagonal matrix with the e-values down the diagonal.
Clearly DT = D. Transposing the equation yields (VT AV)T = D. Use the socks-shoes property for
transpose to see (VIAV)T = VIAT (V)T = VT ATV, We find that VT ATV = VT AV. Multiply
on the left by V and on the right by V7 and we find AT = A thus A is symmetric. 0.

This theorem is a useful bit of trivia to know. But, be careful not to overstate the result. This
theorem does not state that all diagonalizable matrices are symmetric.
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0 0 —4
Example 8.9.3. In Example|7.2.15 we found the e-values and e-vectors of A = | 2 4 2
2 0 6
were A1 = Ao = 4 and A3 = 2 with e-vectors
[0 -1 -2
uyp = 1 ug = 0 uz = 1
0 1 1

We argued in Example that {u1,us,us} is an eigenbasis. In view of the Theorem above we
know there is no way to perform the Gram-Schmidt process and get and orthonormal set of e-vectors
for A. We could orthonormalize the basis, but it would not result in a set of e-vectors. We can
be certain of this since A is not symmetric. I invite you to try Gram-Schmidt and see how the
process spoils the e-values. The principle calculational observation is simply that when you add
e-vectors with different e-values there is no reason to expect the sum is again an e-vector. There is
an exception to my last observation, what is it?

000
Example 8.9.4. Let A= | 0 1 2 |. Observe that det(A — X) = —A(A+ 1)(A — 3) thus Ay =
0 2 1
0,\2 = —1,A\3 = 3. We can calculate orthonormal e-vectors of vi = [1,0,0]7, vy = %[O, 1,-17
and v = %[0, 1,1)T. I invite the reader to check the validity of the following equation:
10 0 0oo0o0][1 0 0 0 0 0
1 -1 1 1
0 ? ? 01 2 0 ?% ? =0 -1 O
0 N 0 21 I 0 N 0 0 3
Its really neat that to find the inverse of a matriz of orthonormal e-vectors we need only take the
1 0 0 1 0 O 1 0 0
transpose; note | 0 % \_7% 0 % % =010
1 1 101
0% B0 % & 001l
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8.10 conic sections and quadric surfaces

Some of you have taken calculus IIT others have not, but most of you still have much to learn about
level curves and surfaces. Let me give two examples to get us started:

2?4yt =4 level curve; generally has form f(z,y) = k

2+ 4yt + 22 =1 level surface; generally has form F(z,y,z2) =k

Alternatively, some special surfaces can be written as a graph. The top half of the ellipsoid
F(x,y,2) = 2® + 4y* + 2° = 1 is the graph(f) where f(z,y) = /1 — 22 — 4y? and graph(f) =
{z,y, f(x,y) |(z,y) € dom(f)}. Of course there is a great variety of examples to offer here and I
only intend to touch on a few standard examples in this section. Our goal is to see what linear
algebra has to say about conic sections and quadric surfaces.

8.10.1 quadratic forms and their matrix

Definition 8.10.1.

Generally, a quadratic form @ is a function @ : R” — R whose formula can be written
Q(%) = 2T AZ for all & € R™ where A € R ™*" such that AT = A. In particular, if ¥ = (x, %)

andAz[Z i} then

Q(X) = #T AZ = ax® + bay + byx + cy® = ax® + 2bxy + 2.
The n = 3 case is similar,denote A = [A;;] and & = (,y, 2) so that
Q(F) = FT AT = Apa® + 24102y + 241372 + Agoy® + 2403y + Azz2’.
Generally, if [4;;] € R ™™ and & = [z;]T then the associated quadratic form is

n
Q@) =TTAT =) Ayjmiz; =Y Aua? + Y 2A;m3;.
i=1

i.j i<j

In case you wondering, yes you could write a given quadratic form with a different matrix which
is not symmetric, but we will find it convenient to insist that our matrix is symmetric since that
choice is always possible for a given quadratic form.

Also, you may recall (from the future) I said a bilinear form was a mapping from V x V' — R
which is linear in each slot. For example, an inner-product as defined in Definition [8.13.1] is a
symmetric, positive definite bilinear form. When we discussed < z,y > we allowed x # y, in



298 CHAPTER 8. LINEAR GEOMETRY

contrast a quadratic form is more like < x,z >. Of course the dot-product is also an inner product
and we can write a given quadratic form in terms of a dot-product:

A7 =7 (AZ) = (A%) -2 =3l ATx
Some texts actually use the middle equality above to define a symmetric matrix.

Example 8.10.2.

2 1 x
2 2 _
2x+2xy+2y—[x y][lz][y}

Example 8.10.3.

2x2+2:1;y+3:z:z—2y2—22:[a: Y z] 1 -2 0 Y

Proposition 8.10.4.

The values of a quadratic form on R"™ — {0} is completely determined by it’s values on
the (n — 1)-sphere S,,_1 = {Z € R" | ||Z]| = 1}. In particular, Q(Z) = ||7]|*Q(Z) where

—

Z.
Proof: Let Q(%¥) = #7 AZ. Notice that we can write any nonzero vector as the product of its
magnitude ||z|| and its direction & = ﬁ 7

-

T =

BN

Q) = QUIFE) = (I713)T All& = 17157 Az = |lal PQ(#).

Therefore Q(Z) is simply proportional to Q(#) with proportionality constant ||Z][?. [

The proposition above is very interesting. It says that if we know how () works on unit-vectors then
we can extrapolate its action on the remainder of R™. If f : S — R then we could say f(S) > 0
iff f(s) > 0 for all s € S. Likewise, f(S) < 0 iff f(s) < 0 for all s € S. The proposition below
follows from the proposition above since ||Z||? ranges over all nonzero positive real numbers in the
equations above.

Proposition 8.10.5.

If @ is a quadratic form on R™ and we denote R} = R™ — {0}

1.(negative definite) Q(RY) < 0 iff Q(S,—1) <0

2.(positive definite) Q(RY) > 0 iff Q(Sp—1) >0

3.(non-definite) Q(RY) =R — {0} iff Q(S,—1) has both positive and negative values.

Before I get too carried away with the theory let’s look at a couple examples.
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Example 8.10.6. Consider the quadric form Q(xz,y) = x +y%. You can check for yourself that
z = Q(z,y) is a cone and Q has positive outputs for all inputs except (0,0). Notice that Q(v) = ||v||?
so it is clear that Q(S1) = 1. We find agreement with the preceding proposition. Next, think about
the application of Q(x,y) to level curves; x® + y*> = k is simply a circle of radius Vk or just the
origin. Here’s a graph of z = Q(z,y):

hu circles are at 2=12 and3.

]

Notice that Q(0,0) = 0 is the absolute minimum for Q. Finally, let’s take a moment to write

Q(x,y) = [z,v] [ é (1) ] [ Z ] in this case the matriz is diagonal and we note that the e-values are
A =X =1.

Example 8.10.7. Consider the quadric form Q(z,y) = 2% — 2y%. You can check for yourself
that z = Q(x,y) is a hyperboloid and Q has non-definite outputs since sometimes the x> term
dominates whereas other points have —2y* as the dominent term. Notice that Q(1,0) = 1 whereas
Q(0,1) = —2 hence we find Q(S1) contains both positive and negative values and consequently we
find agreement with the preceding proposition. Next, think about the application of Q(z,y) to level
curves; 2 — 2y* = k yields either hyperbolas which open vertically (k > 0) or horizontally (k < 0)
or a pair of lines y = £5 in the k = 0 case. Here’s a graph of z = Q(x,y):

The origin is a saddle point. Finally, let’s take a moment to write Q(z,y) = [z, y] [ (1] _02 ] [ f; ]

in this case the matriz is diagonal and we note that the e-values are A\1 = 1 and Ao = —2.
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Example 8.10.8. Consider the quadric form Q(x,y) = 3x2. You can check for yourself that
z = Q(z,y) is parabola-shaped trough along the y-axis. In this case Q has positive outputs for all
inputs except (0,y), we would call this form positive semi-definite. A short calculation reveals
that Q(S1) = [0, 3] thus we again find agreement with the preceding proposition (case 3). Next, think
about the application of Q(x,y) to level curves; 3z% = k is a pair of vertical lines: x = +/k/3 or
Just the y-axis. Here’s a graph of z = Q(z,y):

Finally, let’s take a moment to write Q(x,y) = [x,y] [ g 8 ] [ Zj ] in this case the matriz is

diagonal and we note that the e-values are A\ = 3 and Ay = 0.

Example 8.10.9. Consider the quadric form Q(x,vy,z) = x% + 2y + 32%. Think about the appli-
cation of Q(x,vy,2) to level surfaces; x> + 2y? + 32% = k is an ellipsoid. I can’t graph a function of
three variables, however, we can look at level surfaces of the function. I use Mathematica to plot
several below:

1
Finally, let’s take a moment to write Q(x,y, z) = [z,vy, 2] l 0 ] [ 5 ] in this case the matriz
0
Ao d

1s diagonal and we note that the e-values are A\1 = 1 and Az = 3.
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The examples given thus far are the simplest cases. We don’t really need linear algebra to un-
derstand them. In contrast, e-vectors and e-values will prove a useful tool to unravel the later
examples.

Proposition 8.10.10.

If @Q is a quadratic form on R™ with matrix A and e-values A1, Ao, ..., A, with orthonormal
e-vectors vy, vs, ..., v, then

Q(vi) = A\i°
for i =1,2,...,n. Moreover, if P = [v1|va]| - - - |v,] then

Q@) = (PTR)TPTAPPTZ = My 4+ Xag + - + M\t

where we defined 7 = PTZ.

Let me restate the proposition above in simple terms: we can transform a given quadratic form to
a diagonal form by finding orthonormalized e-vectors and performing the appropriate coordinate
transformation. Since P is formed from orthonormal e-vectors we know that P will be either a
rotation or reflection. This proposition says we can remove ”cross-terms” by transforming the
quadratic forms with an appropriate rotation.

Example 8.10.11. Consider the quadric form Q(z,y) = 222 + 2zy + 2y?. It’s not immediately
obvious (to me) what the level curves Q(z,y) = k look like. We’ll make use of the preceding

T

proposition to understand those graphs. Notice Q(z,y) = [z, y] [ 21 ] [ y ] Denote the matrix

1 2
of the form by A and calculate the e-values/vectors:

=(A=22-1=XA2-4r+3=(A-1)(A-3)=0

2—-A 1
det(A—)\I):det[ 1 2_)\}

Therefore, the e-values are \y =1 and Ay = 3.

aor=[ ][] = wenl ]

I just solved u 4+ v =0 to give v = —u choose u = 1 then normalize to get the vector above. Next,

= S]] (0] = m=la]

I just solved u —v = 0 to give v = u choose uw = 1 then normalize to get the vector above. Let

P = [ii1|t2] and introduce new coordinates i = [Z,9]" defined by ¥ = PTZ. Note these can be
inverted by multiplication by P to give & = Py. Observe that

1 = T Uy

Y I

(—z+y

2|1 -1 1

N | DO | =
N[0~
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The proposition preceding this example shows that substitution of the formulas above into Q) yielﬂ:
Q(z,7) = 7 + 37
It is clear that in the barred coordinate system the level curve Q(x,y) =k is an ellipse. If we draw

the barred coordinate system superposed over the xy-coordinate system then you’ll see that the graph
of Q(z,y) = 22 + 2xy + 2y*> = k is an ellipse rotated by 45 degrees. Or, if you like, we can plot

z=Qz,y):

Example 8.10.12. Consider the quadric form Q(z,y) = z2+2zxy+y?. It’s not immediately obvious
(to me) what the level curves Q(z,y) = k look like. We’ll make use of the preceding proposition to

understand those graphs. Notice Q(z,y) = [z, y] [ i 1 ] [ ;j ] Denote the matriz of the form by

A and calculate the e-values/vectors:
1-x 1 }

Lo [FO-DT =N 2 =0 -2) =0

det(A — \I) = det [

Therefore, the e-values are A\ = 0 and Ay = 2.

o[ 1][2]-[3] - a- [ 4

I just solved u+ v = 0 to give v = —u choose u = 1 then normalize to get the vector above. Next,

=4[] (0] = m=la]

1 just solved w —v = 0 to give v = u choose u = 1 then normalize to get the vector above. Let
P = [iy|i2] and introduce new coordinates § = [Z,g]|T defined by f = PTZ. Note these can be
inverted by multiplication by P to give T = Py. Observe that

1 11 x =1
P=-
2[—1 1]:’ Y ;

—
Kl
_|_
S
Kl
|
DO =10 | =
8
|
<
~—

technically Q(z,7) is Q(z(Z, 7), y(Z,7))
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The proposition preceding this example shows that substitution of the formulas above into Q) yield:

Q(:E g) = 2g2

It is clear that in the barred coordinate system the level curve Q(x,y) = k is a pair of paralell
lines. If we draw the barred coordinate system superposed over the xy-coordinate system then you’ll
see that the graph of Q(x,y) = x? + 2xy + y?> = k is a line with slope —1. Indeed, with a little
algebraic insight we could have anticipated this result since Q(z,y) = (x+y)? so Q(x,y) = k implies
z 4y =Vk thus y = Vk — z. Here’s a plot which again verifies what we’ve already found:

Example 8.10.13. Consider the quadric form Q(x,y) = 4zy. It’s not immediately obvious (to
me) what the level curves Q(x,y) = k look like. We’ll make use of the preceding proposition to

understand those graphs. Notice Q(z,y) = [z, Y] 8 ; ] [ ";j ] Denote the matriz of the form by

A and calculate the e-values/vectors:

det(A — \I) :det[ _2A _QA =X —4=A+2)(A-2)=0
Therefore, the e-values are A1 = —2 and Ao = 2.
L 12 2 ul| [0 L1 1
acana=| 23] [V]=[o] = m-Gl A
1 just solved u 4+ v =0 to give v = —u choose u = 1 then normalize to get the vector above. Next,

= S]] [0] = m=lh]

I just solved u —v = 0 to give v = u choose uw = 1 then normalize to get the vector above. Let
P = [iy|i2] and introduce new coordinates § = [,y]T defined by f = PTZ. Note these can be
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inverted by multiplication by P to give ¥ = Piy. Observe that

17 11 =3z +7)

P=— = * or
20 -1 1 y =s3(-7+7)

(z+y)

QK
|

=%@—w
2

The proposition preceding this example shows that substitution of the formulas above into Q yield:
Q(z,7) = —22° + 25

It is clear that in the barred coordinate system the level curve Q(x,y) = k is a hyperbola. If we
draw the barred coordinate system superposed over the xy-coordinate system then you’ll see that
the graph of Q(x,y) = 4xy = k is a hyperbola rotated by 45 degrees. The graph z = 4zy is thus a
hyperbolic paraboloid:

The fascinating thing about the mathematics here is that if you don’t want to graph z = Q(z,y),
but you do want to know the general shape then you can determine which type of quadraic surface
you’re dealing with by simply calculating the eigenvalues of the form.

Remark 8.10.14.

I made the preceding triple of examples all involved the same rotation. This is purely for my
lecturing convenience. In practice the rotation could be by all sorts of angles. In addition,
you might notice that a different ordering of the e-values would result in a redefinition of
the barred coordinates. [F]

We ought to do at least one 3-dimensional example.

Example 8.10.15. Consider the quadric form Q defined below:

6 -2 0 T
Qz,y,2) =|z,y,2] | =2 6 0 y
0 05 2
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Denote the matriz of the form by A and calculate the e-values/vectors:

6-\ -2 0
det(A—X[)=det| -2 6-X 0
0 0 5-2)\
=[(A=6)" =452

= (5= N[\ =122+ 32](5 - \)
=A=4)A-8)(5-N)

Therefore, the e-values are A\ =4, Ao = 8 and A3 = 5. After some calculation we find the following
orthonormal e-vectors for A:

Y FY Y BN R T
ulzi 2 = —= —_ 3 =
V2 0 V2 0 1

Let P = [ily|ia|d3] and introduce new coordinates § = [%,7,2|" defined by i = PTZ. Note these
can be inverted by multiplication by P to give & = Py. Observe that

1 11 0 x = %(:E—{—gj) r = %(x—y)
P:\7 -1 1 0 = y = 5(=x+y) or y = 3(x+y)
21 00 2 ;o= : = 2

The proposition preceding this example shows that substitution of the formulas above into Q yield:
Q(%,7, 2) = 47° + 87> + 57°

It is clear that in the barred coordinate system the level surface Q(x,y,z) = k is an ellipsoid. If we
draw the barred coordinate system superposed over the xyz-coordinate system then you’ll see that
the graph of Q(x,y, z) =k is an ellipsoid rotated by 45 degrees around the z — axis. Plotted below
are a few representative ellipsoids:
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Remark 8.10.16.

If you would like to read more about conic sections or quadric surfaces and their connection
to e-values/vectors I reccommend sections 9.6 and 9.7 of Anton’s text. I have yet to add
examples on how to include translations in the analysis. It’s not much more trouble but
I decided it would just be an unecessary complication this semester. Also, section 7.1,7.2
and 7.3 in Lay’s text show a bit more about how to use this math to solve concrete applied
problems. You might also take a look in Strang’s text, his discussion of tests for positive-
definite matrices is much more complete than I will give here.

8.10.2 summary of quadratic form analysis

There is a connection between the shape of level curves Q(z1, z2, ..., x,) = k and the graph z,,+1 =
flx1,29,...,2,) of f. I'll discuss n = 2 but these comments equally well apply to w = f(z,y, z) or
higher dimensional examples. Consider a critical point (a,b) for f(x,y) then the Taylor expansion
about (a,b) has the form

fla+h,b+ k)= f(a,b) + Q(h,k)

where Q(h, k) = $h? fuz(a,b) + hk fry(a,b) + 3h2 fu (a,b) = [h, K][Q](h, k). Since [Q]T = [Q] we can
find orthonormal e-vectors 1, @Ws for [Q] with e-values A; and Ay respective. Using U = [u|i2] we
can introduce rotated coordinates (h, k) = U(h, k). These will give

Q(h, k) = M h% + \k?

Clearly if Ay > 0 and A2 > 0 then f(a,b) yields the local minimum whereas if A\; < 0 and Ay < 0
then f(a,b) yields the local maximum. Edwards discusses these matters on pgs. 148-153. In short,
supposing f =~ f(p) + @, if all the e-values of @) are positive then f has a local minimum of f(p)
at p whereas if all the e-values of @) are negative then f reaches a local maximum of f(p) at p.
Otherwise @@ has both positive and negative e-values and we say @ is non-definite and the function
has a saddle point. If all the e-values of () are positive then @ is said to be positive-definite
whereas if all the e-values of ) are negative then () is said to be negative-definite. Edwards
gives a few nice tests for ascertaining if a matrix is positive definite without explicit computation
of e-values. Finally, if one of the e-values is zero then the graph will be like a trough.

Remark 8.10.17. summary of the summary.

In short, the behaviour of a quadratic form Q(z) = 27 Az is governed by it’s spectrum
{A1, A2, ..., Ag}. Moreover, the form can be written as Q(y) = A\1y3 + Xay3 + -+ - + Apyi by
choosing the coordinate system which is built from the orthonormal eigenbasis of col(A).
In this coordinate system questions of optimization become trivial (see section 7.3 of Lay
for applied problems)
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8.11 Taylor series for functions of two or more variables

It turns out that linear algebra and e-vectors can give us great insight into locating local extrema
for a function of several variables. To summarize, we can calculate the multivariate Taylor series
and we’ll find that the quadratic terms correspond to a quadratic form. In fact, each quadratic
form has a symmetric matrix representative. We know that symmetric matrices are diagonalizable
hence the e-values of a symmetric matrix will be real. Moreover, the eigenvalues tell you what the
min/max value of the function is at a critical point (usually). This is the n-dimensional general-
ization of the 2nd-derivative test from calculus. I'll only study the n = 2 and n = 3 case in this
course. If you'd like to see these claims explained in more depth feel free to join us in math 331 in
the 2011 + 2k — 1 for k € N spring semester.

Our goal here is to find an analogue for Taylor’s Theorem for function from R™ to R. Recall
that if g : U C R — R is smooth at a € R then we can compute as many derivatives as we wish,
moreover we can generate the Taylor’s series for g centered at a:

. / Ly, 2 1, 3 _ = g(n)(a) n
g(a+h) = g(a) +¢'(a)h + 5¢"(@)h* + 9" (a)h +~~—nz:;)n!h

The equation above assumes that g is analytic at a. In other words, the function actually matches
it’s Taylor series near a. This concept can be made rigorous by discussing the remainder. If one
can show the remainder goes to zero then that proves the function is analytic. (read p117-127 of
Edwards for more on these concepts, I did cover some of that in class this semester, Theorem 6.3
is particularly interesting).

8.11.1 deriving the two-dimensional Taylor formula

The idea is fairly simple: create a function on R with which we can apply the ordinary Taylor series
result. Much like our discussion of directional derivatives we compose a function of two variables
with linear path in the domain. Let f : U C R? — R be smooth with smooth partial derivatives
of all orders. Furthermore, let (a,b) € U and construct a line through (a,b) with direction vector
(h1, h2) as usual:

¢(t) = (a, b) + t(hl, hg) = (a + thl, b+ thg)

for t € R. Note ¢(0) = (a,b) and ¢'(t) = (h1,h2) = ¢/(0). Construct g = fo¢ : R — R and
differentiate, note we use the chain rule for functions of several variables in what follows:

gt) = (f=0)(t) = f(6(t)¢'(t)
=V f(¢(t)) - (h1,h2)
= hlfx(a +thi,b+ thg) + thy(a +thi,b+ thg)



308 CHAPTER 8. LINEAR GEOMETRY

Note ¢'(0) = h1 fz(a,b) +ha fy(a,b). Differentiate again (I omit (¢(t)) dependence in the last steps),

g"(t) = hify(a+thy, b+ thy) + haf,(a + thy, b+ thy)
=h Vo)) - (h1, h2) + haV fy((2)) - (ha, h2)
= 1 foa + hihafys + hahi foy + h3 fyy
= 3 fur + 2hahafuy + D5 fyy

Thus, making explicit the point dependence, g”(0) = h? frz(a,b) + 2h1ha foy(a, b) + h3 fyy(a,b). We
may construct the Taylor series for g up to quadratic terms:

90+ 1) = g(0) + tg(0) + %g"(o) .
2
= f(a,b) + t[h1 fz(a,b) + hafy(a,b)] + %[h%fm(a, b) + 21 ha fuy(a, b) + h3 fyy(a,b)] + - -

Note that g(t) = f(a + thi,b+ the) hence g(1) = f(a + h1,b+ ha) and consequently,

f(a‘+ h17b+ h?) = f(av b) + hlfx(av b) + h2fy(a7b)+

1
+ 5 h%fmr(% b) + 2h1h2fxy<aa b) + h%fyy(aa b) + -

2nd

Omitting point dependence on the derivatives,

fla+hi,b+ ha) = f(a,b) + hifz(a,b) + hafy(a,b) + %[h%fm + 2h1ha foy + h%fyy] +oe-

Sometimes we’d rather have an expansion about (x,y). To obtain that formula simply substitute
x —a = hy and y — b = he. Note that the point (a,b) is fixed in this discussion so the derivatives
are not modified in this substitution,

f(x,y) = f(a,b) + (z — a) fz(a,b) + (y — b) fy(a, b)+

1
+ 5| (@ = a) faala, b) + 22 = a)(y = b) fay(a,b) + (y = 1) fyy(a, b)| + -+
At this point we ought to recognize the first three terms give the tangent plane to z = f(z,y) at
(a,b, f(a,b)). The higher order terms are nonlinear corrections to the linearization, these quadratic
terms form a quadratic form. If we computed third, fourth or higher order terms we’d find that,
using a = a1 and b = a9 as well as x = x1 and y = z9,

n

f(:x’y)zzzzz L0 /e, a) (Tiy — aiy ) (@i, —aiy) - (@i, — ai,,)

n! Oz, Ox;, - - - Ox;
n=0i1=049=0  ip=0 12 tn

The multivariate Taylor formula for a function of j-variables for j > 2 is very similar. Rather than
even state the formula I will show a few examples in the subsection that follows.
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8.11.2 examples
Example 8.11.1. Suppose f(z,y) = exp(—z? — y?> + 2y — 1) expand f about the point (0,1):

f(z,y) = exp(—zH)exp(—y? + 2y — 1) = exp(—x?)exp(—(y — 1)?)
expanding,
flay)=0-a?+-)1-(y-1°+)=1-a?—(y-1)*+--
Recenter about the point (0,1) by setting x = h and y =1+ k so
fhal+k)=1—-n%—k*+-..

If (h, k) is near (0,0) then the dominant terms are simply those weve written above hence the graph
is like that of a quadraic surface with a pair of negative e-values. It follows that f(0,1) is a local
mazimum. In fact, it happens to be a global maximum for this function.

Example 8.11.2. Suppose f(z,y) =4 — (x —1)? + (y — 2)? + Aexp(—(z — 1)* — (y — 2)*) + 2B(z —
1)(y —2) for some constants A, B. Analyze what values for A, B will make (1,2) a local mazimum,

minimum or neither. Expanding about (1,2) we set x =1+ h and y = 2+ k in order to see clearly
the local behaviour of f at (1,2),

fA+h2+k) =4—h?—k*>+ Aexp(—h? — k?) + 2Bhk

=4—h?>—KkK*+A(1 - h%?— k%) +2Bhk---
=4+ A—(A+1)h?+2Bhk — (A+1)k? + -

There is no nonzero linear term in the expansion at (1,2) which indicates that f(1,2) = 4+ A
may be a local extremum. In this case the quadratic terms are nontrivial which means the graph of
this function is well-approzimated by a quadraic surface near (1,2). The quadratic form Q(h,k) =
—(A+1)h? + 2Bhk — (A + 1)k* has matriz

Q) = [ Y iy ]

The characteristic equation for @) is

—(A+1) =) B

det([Q]—)\I):det[ B (A 1)2 -

]:(A+A+1)2—B2:0

We find solutions \y = —A—1+ B and A\a = —A — 1 — B. The possibilities break down as follows:
1. if A1, A2 > 0 then f(1,2) is local minimum.
2. if A, A2 < 0 then f(1,2) is local mazimum.

3. if just one of A1, Ag is zero then f is constant along one direction and min/max along another
so technically it is a local extremum.
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4. if MA2 < 0 then f(1,2) is not a local etremum, however it is a saddle point.
In particular, the following choices for A, B will match the choices above

1. Let A= -3 and B=13s0 A1 =3 and Ay = 1;

2. Let A=3 and B=1 so A\ = -3 and A = —5

8. Let A=-3 and B=-2s0)X1 =0 and Ay =4

4. Let A=1and B=3 so Ay =1 and \oa = —5

Here are the graphs of the cases above, note the analysis for case 3 is more subtle for Taylor
approximations as opposed to simple quadraic surfaces. In this erample, case 3 was also a local
minimum. In contrast, in Example [8.10.19 the graph was like a trough. The behaviour of f away
from the critical point includes higher order terms whose influence turns the trough into a local
MInIMuUm.

Example 8.11.3. Suppose f(x,y) = sin(z)cos(y) to find the Taylor series centered at (0,0) we
can simply multiply the one-dimensional result sin(z) = = — %1:3 + %:ES + -+ and cos(y) = 1 —
%y2 + ﬁy‘i + -+ as follows:

fay) =(@=gai+ g +-) 1
:m—imy2+ﬁxy4—gx — BTyt

:x+...

The origin (0,0) is a critical point since f;(0,0) = 0 and fy(0,0) = 0, however, this particular
critical point escapes the analysis via the quadratic form term since Q = 0 in the Taylor series
for this function at (0,0). This is analogous to the inconclusive case of the 2nd derivative test in
calculus II1.

Example 8.11.4. Suppose f(z,y,z) = xyz. Calculate the multivariate Taylor expansion about the
point (1,2,3). I'll actually calculate this one via differentiation, I have used tricks and/or calculus
11 results to shortcut any differentiation in the previous examples. Calculate first derivatives

fz=yz fy:xz [z =y,
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and second derivatives,
fmx:o fxy:z fxz:y

fyx:Z fyyzo fyz:-T
foz =y fzy:x fzz =0,
and the nonzero third derivatives,
f:L‘yz = fyzx = fzmy = fzy:r = fyxz = f:czy =1
It follows,

fla+hb+kc+1)=
= f(a,b,c) + fz(a,b,c)h + fy(a,b,c)k + f.(a,b,c)l +
$( foahh + foyhk + fozhl + fyakh + fyykk + fykl+ faolh + foplk + fo00) + -

Of course certain terms can be combined since fry = fyz etc... for smooth functions (we assume
smooth in this section, moreover the given function here is clearly smooth). In total,

1 1
f(1+h,2+k:,3+l):6+6h+3k+2l+5(3hk+2hl+3kh+kl+2lh+lk)+§(6)hkl

Of course, we could also obtain this from simple algebra:

FA+h2+k3+10) =1+h)(2+k)(3+1) =6+ 6h + 3k + I + 3hk + 2hl + kI + hkl.

Remark 8.11.5.

One very interesting application of the orthogonal complement theorem is to the method of

Lagrange multipliers. The problem is to maximize an objective function f(z1,za,...,xy)
with respect to a set of constraint functions g (z1,z2,...,z,) = 0, g2(x1,22,...,2,) = 0
and gx(z1,22,...,2,) = 0. One can argue that extreme values for f must satisfy

Vf = )qul + )\2ng qFoce gk )\ngk

for a particular set of Lagrange multipliers Ay, A2, ..., Ax. The crucial step in the analysis
relies on the orthogonal decomposition theorem. It is the fact that forces the gradient of
the objective function to reside in the span of the gradients of the constraints. See my
Advanced Calculus 2010 notes Chapter 8, or consult many advanced calculus texts.
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8.12 intertia tensor, an application of quadratic forms

We can use quadratic forms to elegantly state a number of interesting quantities in classical me-
chanics. For example, the translational kinetic energy of a mass m with velocity v is

m m/2 0 0 v
Tirans (U) = EUTU = [1)17 V2, U3] 0 m/2 0 v2
0 0 m/2 U3

On the other hand, the rotational kinetic energy of an object with moment of intertia I and angular
velocity w with respect to a particular axis of rotation is

1
Trot(v) = §wTw.

In addition you might recall that the force F' applied at radial arm r gave rise to a torque of
7 = r X F which made the angular momentum L = Iw have the time-rate of change 7 = %. In
the first semester of physics this is primarily all we discuss. We are usually careful to limit the
discussion to rotations which happen to occur with respect to a particular axis. But, what about
other rotations? What about rotations with respect to less natural axes of rotation? How should
we describe the rotational physics of a rigid body which spins around some axis which doesn’t
happen to line up with one of the nice examples you find in an introductory physics text?

The answer is found in extending the idea of the moment of intertia to what is called the inertia
tensor I;; (in this section I is not the identity). To begin I'll provide a calculation which motivates
the definition for the inertia tensor.

Consider a rigid mass with density p = dm/dV which is a function of position r = (z1, z2, x3).
Suppose the body rotates with angular velocity w about some axis through the origin, however
it is otherwise not in motion. This means all of the energy is rotational. Suppose that dm is at
r then we define v = (¥, @9, #3) = dr/dt. In this context, the velocity v of dm is also given by
the cross-product with the angular velocity; v = w x r. Using the einstein repeated summation
notation the k-th component of the cross-product is nicely expressed via the Levi-Civita symbol;
(W X 1)k = €pimwiTm. Therefore, vy = €xymwiTy,. The infinitesimal kinetic energy due to this little
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bit of rotating mass dm is hence

d
dl = vakvk

dm

= — (€pmwiTm ) (epijwir;)
2

dm
= — €klmEkijWIWi Tm T

2

dm
= 7(5li5mj — 01 0mi ) WIWi Tm X

dm
= 7(5li5mjwlwi:cmxj — 5lj5miwlwiazma}j)

dm
= w17(51z‘5mj$mxj — 01 0miTm T )wi

dm
=w; [2(5l¢\|7“\|2 - xlxi)] wj.

Integrating over the mass, if we add up all the little bits of kinetic energy we obtain the total kinetic
energy for this rotating body: we replace dm with p(r)dV and the integration is over the volume
of the body,

T = /wl B((s“HrH? - xm)] wip(r)dV

However, the body is rigid so the angular velocity is the same for each dm and we can pull the
components of the angular velocity out of the integrationlE to give:

1

7= g | [l = zynptr)av |

~~

Iy,

This integral defines the intertia tensor Ij; for the rotating body. Given the inertia tensor Ij; the
kinetic energy is simply the value of the quadratic form below:

1 I L I3 w1
T(w) = §WTW = [wi,w2,w3] | To1 Iag Io3 wo
I3y I3p I33 ws

The matrix above is not generally diagonal, however you can prove it is symmetric (easy). There-
fore, we can find an orthonormal eigenbasis 8 = {u1,us,us} and if P = [5] then it follows by
orthonormality of the basis that [I]5 3 = PT[I]P is diagonal. The eigenvalues of the inertia tensor (
the matrix [/};]) are called the principle moments of inertia and the eigenbasis 8 = {u1, ua, us}
define the principle axes of the body.

147 also relabled the indices to have nicer final formula, nothing profound here
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The study of the rotational dynamics flows from analyzing the equations:

dL;
dt

LZ‘ = Iijw]‘ and T; =

If the initial angular velocity is in the direction of a principle axis u; then the motion is basically
described in the same way as in the introductory physics course provided that the torque is also
in the direction of u;. The moment of intertia is simply the first principle moment of inertia and
L = M\w. However, if the torque is not in the direction of a princple axis or the initial angular ve-
locity is not along a principle axis then the motion is more complicated since the rotational motion
is connected to more than one axis of rotation. Think about a spinning top which is spinning in
place. There is wobbling and other more complicated motions that are covered by the mathematics
described here.

Example 8.12.1. The intertia tensor for a cube with one corner at the origin is found to be

5 1 —-3/8 —3/8
I=-Ms*| -3/8 1 —3/8

—-3/8 —3/8 1
Introduce m = M /8 to remove the fractions,
9 8§ -3 -3
I= §M52 -3 8 -3
-3 -3 8

You can calculate that the e-values are A\ = 2 and Ao = 11 = A3 with principle axis in the directions

1 1 1
uy = —(1,1,1), ug = —(-1,1,0), us = —(—1,0,1).
1 \/g( ) 2 \/§< ) 3 \/i( )
The choice of ug,uz is not unique. We could just as well choose any other orthonormal basis for
span{ug,uz} = Wiy.

Finally, a word of warning, for a particular body there may be so much symmetry that no particular
eigenbasis is specified. There may be many choices of an orthonormal eigenbasis for the system.
Consider a sphere. Any orthonormal basis will give a set of principle axes. Or, for a right circular
cylinder the axis of the cylinder is clearly a principle axis however the other two directions are
arbitrarily chosen from the plane which is the orthogonal complement of the axis. I think it’s fair
to say that if a body has a unique (up to ordering) set of principle axes then the shape has to
be somewhat ugly. Symmetry is beauty but it implies ambiguity for the choice of certain princple
axes.
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8.13 inner products

We follow Chapter 6 of Anton & Rorres’ Elementary Linear Algebra, this material is also § 7.5
of Spence, Insel & Friedberg’s Elementary Linear Algebra, a Matriz Approach. The definition of
an inner product is based on the idea of the dot product. Proposition [8.1.4] summarized the most
important properties. We take these as the definition for an inner product. If you examine proofs in
§[8-I]you’ll notice most of what I argued was based on using these 4 simple facts for the dot-product.

WARNING: the next couple pages is dense. It’s a reiteration of the main
theoretical accomplishments of this chapter in the context of inner product
spaces. If you need to see examples first then skip ahead as needed.

Definition 8.13.1.

Let V' be a vector space over R. If there is a function < , >: V x V — R such that for all
x,y,2 €V and c € R,

1. <z,y>=<y,x > (symmetric),

2. <z+y,z>=<x,2>+<yY,z>,

3. <cr,y>= c<x,y>,

4. <z,z>> 0and < z,z >=0iff z =0,

then we say < , > is an inner product on V. In this case we say V with < > is
an inner product space. Items (1.), (2.) and (3.) together allow us to call < , > a
real-valued symmetric-bilinear-form on V. We may find it useful to use the notation
g(z,y) =< x,y > for some later arguments, one should keep in mind the notation < , > is
not the only choice.

Technically, items (2.) and (3.) give us ”linearity in the first slot”. To obtain bilinearity we need
to have linearity in the second slot as well. This means < z,y + 2z >=< z,y > + < z,z > and
< z,cy >=c < x,y > for all z,y,z € V and ¢ € R. Fortunately, the symmetry property will
transfer the linearity to the second slot. I leave that as an exercise for the reader.

Example 8.13.2. Obuiously R™ together with the dot-product forms an inner product space. More-
over, the dot-product is an inner product.

Once we have an inner product for a vector space then we also have natural definitions for the
length of a vector and the distance between two points.

Definition 8.13.3.

Let V be an inner product vector space with inner product < , >. The norm or length
of a vector is defined by ||z|| = /< z,z > for each x € V. Likewise the distance between
a,b € V is defined by d(a,b) = /< b—a,b—a > = ||b — a|| for all a,b € V. We say these
are the length and distance functions induced by < , >. Likewise the angle between two
nonzero vectors is defined implicitly by < v, w >= ||v||||w]|| cos(8).
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As before the definition above is only logical if certain properties hold for the inner product, norm
and distance function. Happily we find all the same general properties for the inner product and
its induced norm and distance function.

Proposition 8.13.4.

If V' is an inner product space with induced norm || - || and z,y € V then | < z,y > | <
2|l lyl]-

Proof: since ||z|| = /< z,z > the proof we gave for the case of the dot-product equally well ap-
plies here. You’ll notice in retrospect I only used those 4 properties which we take as the defining
axioms for the inner product. [J

In fact, all the propositions from §8.1| apply equally well to an arbitrary finite-dimensional inner
product space. The proof of the proposition below is similar to those I gave in

Proposition 8.13.5. Properties for induced norm and distance function on an inner product space.

If V' is an inner product space with inner product <, > and norm ||z|| = \/z, = and distance
function d(z,y) = ||y — z|| then for all z,y,z € V and c € R

v.) d(x,y) >0

vi.) d(z,y) =0 =y

vii.) d(z,y) = d(y, )

viii.) d(z, z) < d(x,y) + d(y, 2)

i) [|z]| = 0

ii.) ||z]| =0 2 =0
iti.) ||ez]| = lef||«||

i) ||z +yll < [l2[] + [yl

Py

(
(
(
(

An norm is simply an operation which satisfies (i.) — (iv.). If we are given a vector space with a
norm then that is called a normed linear space. If in addition all Cauchy sequences converge in the
space it is said to be a complete normed linear space. A Banach Space is defined to be a complete
normed linear space. A distance function is simply an operation which satisfies (v.) — (viii.). A
set with a distance function is called a metric space. I'll let you ponder all these things in some
other course, I mention them here merely for breadth. These topics are more interesting infinite-
dimensional case.

What is truly interesting is that the orthogonal complement theorems and closest vector theory
transfer over to the case of an inner product space.

Definition 8.13.6.

Let V be an inner product space with inner product <, >. Let x,y € V then we say z is
orthogonal to y iff < z,y >= 0. A set S is said to be orthogonal iff every pair of vectors
in S is orthogonal. If W < V then the orthogonal complement of W is defined to be
Wt={veV|v-w=0vYweW}.
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Proposition 8.13.7. Orthogonality results for inner product space.

If V is an inner product space with inner product < , > and norm ||z|| = \/z,z then for
all z,y,z€Vand W <V,

(i) <zy>=0 = [lz+yl*= ||=[]> + Iyl

(73.) if S C V is orthogonal = S is linearly independent
(i45.) SCV = St <V

(iv.) WHnW = {0}

(v)V=Waoewt

Definition 8.13.8.

Let V' be an inner product space with inner product < , >. A basis of < , >-orthogonal
vectors is an orthogonal basis. Likewise, if every vector in an orthogonal basis has length
one then we call it an orthonormal basis.

Every finite dimensional inner product space permits a choice of an orthonormal basis. Examine
my proof in the case of the dot-product. You'll find I made all arguments on the basis of the axioms
for an inner-product. The Gram-Schmidt process works equally well for inner product spaces, we
just need to exchange dot-products for inner-products as appropriate.

Proposition 8.13.9. Orthonormal coordinates and projection results.

If V' is an inner product space with inner product < , > and 8 = {vy,v2,...,vx} is a
orthonormal basis for a subspace W then

(1.) w =< w,v1 > v+ < w,vy > vy + -+ < w, v > vy for each w € W,

(13.) Projw(z) =< z,v1 > vi+ < z,v9 > v+ -+ < x,vx > v € W for each z € V,
(4ii.) Orthy (z) = = — Projw (x) € Wfor each z € V,

(iv.) x = Projw(z) + Orthy (x) and < Projw(z), Orthy (x) >= 0 for each z € V,
(v.) ||z — Projw(x)|| < ||z — y|| for all y ¢ W.

Notice that we can use the Gram-Schmidt idea to implement the least squares analysis in the
context of an inner-product space. However, we cannot multiply abstract vectors by matrices so
the short-cut normal equations may not make sense in this context. We have to implement the
closest vector idea without the help of those normal equations. I'll demonstrate this idea in the
Fourier analysis section.

8.13.1 examples of inner-products

The dot-product is just one of many inner products. We examine an assortment of other inner-
products for various finite dimensional vector spaces.
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Example 8.13.10. Let V = R 2% and define < v,w >= viw; + 3vows for all v = [vy,vo]T,w =
[wy,ws])T € V. Let u,v,w €V and c € R,

1. symmetric property,

< v,w >= viwi + Jvgwy = wiv1 + 3wovs =< w,v >

2. additive property:

<u+v,w> = (u+v)wy + 3(u+ v)ws
= (w1 +v1)wy + 3(ug + v2)ws
= ujwy + viwi + Jugwa + 3vaws
=< u,w >+ <v,w >

3. homogeneous property:
< cv,w > = cuiwi + 3cvows
= c(viwi + 3vaws)
=c<v,w >

4. positive definite property:
<v,u> =0v?+303>0and <v,v>=0 & v=0.
Notice e; = [1,0]7 is an orthonormalized vector with respect to < , > but ex = [0,1]7 not unit-

length. Instead, < ez, eq >= 3 thus ||e2|| = V/3 so the unit-vector in the ea-direction is u = %[0, 17

and with respect to < , > we have an orthonormal basis {e1,u}.
Example 8.13.11. Let V =R "™*™ we define the Frobenious inner-product as follows:
m n
< A,B>= Z Z AZ‘jBij.
i=1 j=1

It is clear that < A, A >> 0 since it is the sum of squares and it is also clear that < A, A >= 0 iff
A =0. Symmetry follows from the calculation

m n m n
<A, B>= ZZAUB” = ZZB”A” =< B,A >
i=1 j=1 i=1 j=1

where we can commute B;; and A;; for each pair i,j since the components are just real numbers.
Linearity and homogeneity follow from:

<M+ B,C >= Z Z()\A + B)Z-]Cij = Z Z()\A” + Bl-j)Cij

i=1 j=1 i=1 j=1

:)\izn:AijCij—i-izn:BijCij =A<AC>+<B,C>

i=1 j=1 i=1 j=1
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Therefore. the Frobenius inner-product is in fact an inner product. The Frobenious norm of a

matriz is induced as usual:
1]l = V<A A>

as a consequence of the theory in this chapter we already know a few interesting properties form
the matriz-norm, in particular || < A, B > || < ||A||||B||. The particular case of square matrices
allows further comments. If A, B € R "*™ then notice

<AB>=> AiB; =Y > Aij(BT)ji =trace(ABT) = ||A|| = trace(AAT)
2,] % J

We find an interesting identity for any square matriz [trace(ABT)| < \/trace(AAT)trace(BBT).

Example 8.13.12. Let C[a,b] denote the set of functions which are continuous on [a,b]. This is
an infinite dimensional vector space. We can define an inner-product via the definite integral of
the product of two functions: let f,g € Cla,b] define

b
<fig>= [ f@glis

We can prove this is an inner-product. I'll just show additivity,
b
<f+gh>= [ (@) + g@)@hiz)ds

b b
_ / F(@)h(z)da +/ g(@)h(x)dz =< f.h > + < g,h > .

I leave the proof of the other properties to the reader.

Example 8.13.13. Consider the inner-product < f,g >= fil f(@)g(x)dx for f,g € C[—1,1]. Let’s
calculate the length squared of the standard basis:
311

1 1 xd
<1,1>:/ 1-1dz =2, <:1:,x>:/ xQd:UZE
-1 -1

2
4 3

1

1 25
< x?, 2% >= / zrde = = =
_1 51,

Notice that the standard basis of Py are not all < , >-orthogonal:

2
5

1 1 1
2
<1,x>:/ xdxr =0 <1l,2° >=<uzx >:/ xQdm:§ <z z? >:/ 23dx =0
-1 -1 1

We can use the Gram-Schmidt process on {1,z, 2%} to find an orthonormal basis for Py on [—1,1].
Let, ui(xz) =1 and
<z,1>
Tt ¢
, <2tx>  <2%l>

ug(x) = x

ug(x) =z

1
<ac,:c>x <1L1> 3
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We have an orthogonal set of functions {uy,us,us} we already calculated the length of uy and us

so we can immediately normalize those by dividing by their lengths; vi(z) = % and vy(x) = %x

We need to calculate the length of us so we can normalize it as well:

1 1
2 1)\2 4 2,21 2 42 8
<U3,U3>:/ (x—g)dac:/ (' —32°+§)de=2—5+3=1

-1 -1

Thus vs(z) = 4/ % (:132 — %) has length one. Therefore, {\%, \/gx, w/% (:n2 — :1,))} is an orthonormal

basis for Py restricted to [—1,1]. Other intervals would not have the same basis. This construction
depends both on our choice of inner-product and the interval considered. Incidentally, these are
the first three Legendre Polynomials. These arise naturally as solutions to certain differential
equations. The theory of orthogonal polynomials is full of such calculations. Orthogonal poly-
nomials are quite useful as approximating functions. If we offered a second course in differential
equations we could see the full function of such objects.

Example 8.13.14. Clearly f(z) = e* ¢ P,. What is the least-squares approzimation of f¢ Use
the projection onto Py: Proj p,(f) =< f,v1 > vi+ < f,v2 > va+ < f,v3 > v3. We calculate,

-

1
< four >= / Letdr = L (el —e7!) = 1.661
L V2

1
< fivg >= /_1 \/g:ce:‘dx = \/g(:cé‘ —eM = \/g[—(—e_l —e 1] =v6et = 0.901

1
< fyv3 >= / VE (2 - Detda = 2 — M ~0.0402
-1
Thus,

Proj p,(f)(x) = 1.661v1(z) 4+ 0.901v2(z) + 0.0402v3(x)
= 1.03 4 1.103z + 0.0172?

This is closest a quadratic can come to approrimating the exponential function on the interval
[—1,1]. What’s the giant theoretical leap we made in this example? We wouldn’t face the same leap
if we tried to approzimate f(x) = x* with Py. What’s the difference? Where does e® live?

Example 8.13.15. Consider C|—m, | with inner product < f,g >= [T f(x)g(x)dz. The set of
sine and cosine functions {1, cos(x),sin(zx), cos(2z),sin(2x), ..., cos(kx),sin(kz)} is an orthogonal

set of functions.
s

< cos(mzx), cos(nx) >= / cos(mx) cos(nx)dx = Tomn
< sin(maz), sin(nz) >= / sin(mz) sin(nx)dz = Ty,

—T
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< sin(mx), cos(nx) >= / sin(max) cos(nx)dx =0

—T

Thus we find the following is a set of orthonormal functions

Birig = {%, ﬁ cos(z), —=sin(z), %r cos(2x), %r sin(2x), ..., cos(kx), sin(kz)}

1
v

§-
S

s

8.13.2 Fourier analysis

The idea of Fourier analysis is based on the least-squares approximation and the last example of
the preceding section. We wish to represent a function with a sum of sines and cosines, this is called
a Fourier sum. Much like a power series, the more terms we use to approximate the function the
closer the approximating sum of functions gets to the real function. In the limit the approximation
can become exact, the Fourier sum goes to a Fourier series. I do not wish to confront the analytical
issues pertaining to the convergence of Fourier series. As a practical matter, it’s difficult to calculate
infinitely many terms so in practice we just keep the first say 10 or 20 terms and it will come very
close to the real function. The advantage of a Fourier sum over a polynomial is that sums of
trigonometric functions have natural periodicities. If we approximate the function over the interval
[—7, 7] we will also find our approximation repeats itself outside the interval. This is desireable if
one wishes to model a wave-form of some sort. Enough talk. Time for an example. ( there also an
example in your text on pages 540-542 of Spence, Insel and Friedberg)

1 0<t
Example 8.13.16. Suppose f(t) = . < t<7(; and f(t + 2nmw) = f(t) for alln € Z.
— —rT<t<

This is called a square wave for the obvious reason (draw its graph). Find the first few terms in
a Fourier sum to represent the function. We’ll want to use the projection: it’s convenient to bring
the normalizing constants out so we can focus on the integrals without too much clutter. |E|

Projw (f)(t) = % <f,1> —i—% < f,cost>cost+% < f,sint > sint+
—1—%<f,cos2t>cos2t+%<f,sin2t>sin2t+---

Where W = span(Birig). The square wave is constant on (0, 7] and [—m,0) and the value at zero is
not defined ( you can give it a particular value but that will not change the integrals that calculate
the Fourier coefficients). Calculate,

< f,1>= Wﬂﬂﬁzo

—T

™

< f,cost >:/ cos(t)f(t)dt =0

—T

151 fact, various texts put these little normalization factors in different places so when you look up results on
Fourier series beware conventional discrepancies
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Notice that f(t) and cos(t)f(t) are odd functions so we can conclude the integrals above are zero
without further calculation. On the other hand, sin(—t)f(—t) = (—sint)(—f(t)) = sintf(t) thus
sin(t) f(t) is an even function, thus:

< f,sint >= / sin(t) f(t)dt = 2/ sin(t) f(t)dt = 2/ sin(t)dt = 4
- 0 0
Notice that f(t)cos(kt) is odd for all k € N thus < f,cos(kt) >= 0. Whereas, f(t)sin(kt) is even
for all k € N thus

< f,sinkt > :/

—Tr

T

sin(kt) f(t)dt = 2 /0 " sin(kt) f(2)dt

0, k even

1 — cos(km)| =
[ (k)] {;, k odd

El )

= 2/ sin(kt)dt =
0

Putting it all together we find (the ~ indicates the functions are nearly the same except for a finite
subset of points),

4 1 1 -
f(t) ~ 7T<sint+ gsin3t+ +§ sin 5t + - ) = ;(Zn—l)ﬂsmmn — 1)t
’ Ve ¥ e s Y,
F | ;
ir -mi2 J =1 ﬂ
M a .__.-1\ \ -

I have graphed the Fourier sums up the sum with 11 terms.

Remark 8.13.17.

The treatment of Fourier sums and series is by no means complete in these notes. There is
much more to say and do. Our goal here is simply to connect Fourier analysis with the more
general story of orthogonality. In the math 334 course we use Fourier series to construct
solutions to partial differential equations. Those calculations are foundational to describe
interesting physical examples such as the electric and magnetic fields in a waveguide, the
vibrations of a drum, the flow of heat through some solid, even the vibrations of a string
instrument.




Chapter 9

systems of differential equations

9.1 calculus of matrices
A more apt title would be ”calculus of matrix-valued functions of a real variable”.

Definition 9.1.1.

A matrix-valued function of a real variable is a function from I C R to R ™*™. Suppose
A: T CR — R™"is such that A;; : I C R — R is differentiable for each i, j then we
define

dd — [254]

which can also be denoted (A');; = Aj;. We likewise define [ Adt = [[ Aj;dt] for A with
integrable components. Definite integrals and higher derivatives are also defined component-

wise.

2t 3t
43 5t
definition above. calculate; to differentiate a matrix we differentiate each component one at a time:

0[S ] =[]

Example 9.1.2. Suppose A(t) = I’ll calculate a few items just to illustrate the

P
At = [ 12¢% 20753]

Integrate by integrating each component:

2 3 2 t2‘2 t3|2
| ttta e _ 0 ol [ 4 8
/A(t)dt_{t‘lJrc;», t5+C4] /(]A(t)dt_ 12 a2 _[16 32]
o £,

Proposition 9.1.3.

323
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Suppose A, B are matrix-valued functions of a real variable, f is a function of a real variable,
c is a constant, and C' is a constant matrix then

1. (AB) = A’B + AB’ (product rule for matrices)
2. (AC)Y =A'C
3. (CA) =cCcA
FAY = ['A+ A’

cA) = cA’

SN

(
(
(
- (
- (
6. (

A+B)=A+ B

where each of the functions is evaluated at the same time ¢ and I assume that the functions
and matrices are differentiable at that value of ¢t and of course the matrices A, B, C are such
that the multiplications are well-defined.

Proof: Suppose A(t) € R ™*" and B(t) € R "*P consider,

(AB);; = di((AB)”) defn. derivative of matrix
= di(zk A Bj) defn. of matrix multiplication
=> dt(AszkJ) linearity of derivative
=>4 [dA“‘ Byj + A dg;"] ordinary product rules
=251 dA“‘ Bk] +> 1 Aik dgt algebra
= (A'B ) + (AB')i; defn. of matrix multiplication
= (A'B + AB');; defn. matrix addition
this proves (1.) as i,j were arbitrary in the calculation above. The proof of (2.) and (3.) follow
quickly from (1.) since C' constant means C’ = 0. Proof of (4.) is similar to (1.):

(fA),; = L((fA)y) defn. derivative of matrix
%( fAij) defn. of scalar multiplication

— % A+ f d’;;j ordinary product rule
— (%A + f%)ij defn. matrix addition
— (% A+ f %)ij defn. scalar multiplication.

The proof of (5.) follows from taking f(¢) = ¢ which has f’ = 0. I leave the proof of (6.) as an
exercise for the reader. [J.

To summarize: the calculus of matrices is the same as the calculus of functions with the small
qualifier that we must respect the rules of matrix algebra. The noncommutativity of matrix mul-
tiplication is the main distinguishing feature.
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Since we’re discussing this type of differentiation perhaps it would be worthwhile for me to insert
a comment about complex functions here. Differentiation of functions from R to C is defined by
splitting a given function into its real and imaginary parts then we just differentiate with respect
to the real variable one component at a time. For example:

%(e% cos(t) +ie* sin(t)) = %(e21t cos(t)) + z%(e% sin(t))

= (2¢* cos(t) — e* sin(t)) + i(2e* sin(t) + e* cos(t)) (9.1)
e (2 + i) (cos(t) + isin(t))
(2 + Z) (2+4)t

where I have made use of the identityﬂ et = e%(cos(y) + isin(y)). We just saw that

d
4 on

=\ At
dt c

which seems obvious enough until you appreciate that we just proved it for A = 2 +i. We make
use of this calculation in the next section in the case we have complex e-values.

9.2 introduction to systems of linear differential equations

A differential equation (DEqn) is simply an equation that is stated in terms of derivatives. The
highest order derivative that appears in the DEqn is called the order of the DEqn. In calculus
we learned to integrate. Recall that [ f(z)dz = y iff dy = f(x). Everytime you do an integral
you are solving a first order DEqn. In fact, it’s an ordmary DEnq (ODE) since there is only one
indpendent variable (it was x ). A system of ODEs is a set of differential equations with a common
independent variable. It turns out that any linear differential equation can be written as a system
of ODEs in normal form. T’ll define normal form then illustrate with a few examples.

Definition 9.2.1.

Lor definition, depending on how you choose to set-up the complex exponential, I take this as the definition in
calculus II
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Let ¢ be a real variable and suppose z1, x2, ..., z, are functions of t. If A;;, f; are functions
of t forall 1 <i<mand 1 < j < n then the following set of differential equations is defined
to be a system of linear differential equations in normal form:

91 = Anmy + Apza + - Az, + fi
d% = Ao1x1 + Agoxo + - - Aopxy + fo

% = Ama1T1 + Am2z2 + - - Ao + [
In matrix notation, ‘fl—f = Az + f. The system is called homogeneous if f = 0 whereas
the system is called nonhomogeneous if f # 0. The system is called constant coefficient
if %(Aij) = 0 for all 4,5. If m = n and a set of intial conditions z1(ty) = y1,z2(tg) =
Y2, ..., Tn(to) = yn are given then this is called an initial value problem (IVP).

Example 9.2.2. If x is the number of tigers and y is the number of rabbits then
& _zty & — 100z + 20y

18 a model for the population growth of tigers and bunnies in some closed environment. My logic for
my made-up example is as follows: the coefficient 1 is the growth rate for tigers which don’t breed to
quickly. Whereas the growth rate for bunnies is 20 since bunnies reproduce like, well bunnies. Then
the y in the ‘fl—f equation goes to account for the fact that more bunnies means more tiger food and
hence the tiger reproduction should speed up (this is probably a bogus term, but this is my made up
example so deal). Then the —100x term accounts for the fact that more tigers means more tigers

eating bunnies so naturally this should be negative. In matrix form

d
][ ] (7]
- —100 20 Y
How do we solve such a system? This is the question we seek to answer.

The preceding example is a predator-prey model. There are many other terms that can be added to
make the model more realistic. Ultimately all population growth models are only useful if they can
account for all significant effects. History has shown population growth models are of only limited
use for humans.

Example 9.2.3. Reduction of Order in calculus II you may have studied how to solve y" + by’ +
cy = 0 for any choice of constants b,c. This is a second order ODE. We can reduce it to a system
of first order ODEs by introducing new variables: x1 =y and xo =1 then we have

Ty =Y =22

and,

xh=y" = —by —cy=—bry —cxy



9.2. INTRODUCTION TO SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS 327

HEEIH

Similarly if y"" + 2y + 3y” + 4y’ + 5y = 0 we can introduce variables to reduce the order: x1 =
y,x9 =y, x3 =y", x4 =y then you can show:

As a matriz DEqgn,

/

T 0 1 0 0 1
i) . 0 0 1 0 T2
I3 N 0 0 0 1 T3
Ty -5 —4 -3 -2 Ty

is equivalent to y"" + 2y"" + 3y" + 4y’ + 5y = 0. We call the matriz above the companion matrix
of the n-th order constant coefficient ODE. There is a beautiful interplay between solutions to n-th
order ODEs and the linear algebra of the compansion matriz.

Example 9.2.4. Suppose y" + 4y’ + 5y = 0 and 2" +x = 0. The is a system of linear second
order ODEs. It can be recast as a system of 4 first order ODFEs by introducing new variables:
1 =1vy,x9 =y and r3 = x,x4 = 2'. In matriz form the given system in normal form is:

T9 | -5 -4 0 O T9
T3 - 0 0 0 1 T3
T4 0 0 -1 0 T4
The companion matrix above will be found to have eigenvalues N = —2 + 4 and A = +i. [ know

this without further calculation purely on the basis of what I know from DEqns and the interplay I
alluded to in the last example.

Example 9.2.5. If 4" 4+ 2y" + vy = 0 we can introduce variables to reduce the order: 1 =y, xy =
vy, x3 =vy", xy =y then you can show:

X1 0 1 0 0 il
T2 . 0 0 1 0 i)
T3 - 0 0 0 1 T3
T4 -1 0 -2 0 Xq

is equivalent to y"" +2y" +vy = 0. If we solve the matriz system then we solve the equation in y and
vice-versa. I happen to know the solution to the y equation is y = c1 cost+co sint+cst cost+cytsint.
From this I can deduce that the companion matrixz has a repeated e-value of A = +i and just one
complex e-vector and its conjugate. This matriz would answer the bonus point question I posed a
few sections back. I invite the reader to verify my claims.

Remark 9.2.6.
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For those of you who will or have taken math 334 my guesswork above is predicated on two
observations:

1. the 7auxillarly” or ”characteristic” equation in the study of the constant coefficient
ODE:s is identical to the characteristic equation of the companion matrix.

2. ultimately eigenvectors will give us exponentials and sines and cosines in the solution
to the matrix ODE whereas solutions which have multiplications by ¢ stem from
generalized e-vectors. Conversely, if the DEqn has a t or ¢? multiplying cosine, sine
or exponential functions then the companion matrix must in turn have generalized
e-vectors to account for the ¢ or 2 etc...

I will not explain (1.) in this course, however we will hopefully make sense of (2.) by the
end of this section.

9.3 the matrix exponential

Perhaps the most important first order ODE is %’ = ay. This DEqn says that the rate of change in

y is simply proportional to the amount of y at time t. Geometrically, this DEqn states the solutions
value is proportional to its slope at every point in its domain. The solutiorﬂ is the exponential

function y(t) = e®.

We face a new differential equation; ‘?Tf = Ax where z is a vector-valued function of f and A € R ™*",
Given our success with the exponential function for the scalar case is it not natural to suppose that
z = e is the solution to the matrix DEqn? The answer is yes. However, we need to define a few

items before we can understand the true structure of the claim.

Definition 9.3.1.

Let AR ™ ™ define e € R ™*" by the following formula

(oo}
A=) IAN=T+ A+ I+ HA 4

n=0

We also denote e = exp(A) when convenient.

This definition is the natural extension of the Taylor series formula for the exponential function we
derived in calculus II. Of course, you should be skeptical of this definition. How do I even know the
series converges for an arbitrary matrix A? And, what do I even mean by ”converge” for a series
of matrices? (skip the next subsection if you don’t care)

20k, technically separation of variables yields the general solution y = ce®* but I'm trying to focus on the expo-
nential function for the moment.
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9.3.1 analysis for matrices

Remark 9.3.2.

The purpose of this section is to alert the reader to the gap in the development here. We
will use the matrix exponential despite our inability to fully grasp the underlying analysis.
Much in the same way we calculate series in calculus without proving every last theorem. I
will attempt to at least sketch the analytical underpinnings of the matrix exponential. The
reader will be happy to learn this is not part of the required material.

We use the Frobenius norm for A € R ™", [[A[| = /3", :(4;;)?. We already proved this was a

norm in a previous chapter. A sequence of square matrices is a function from N to R "*". We
say the sequence {A,}5° , converges to L € R "*™ iff for each € > 0 there exists M € N such that
||An, — L|| < € for all n > M. This is the same definition we used in calculus, just now the norm is
the Frobenius norm and the functions are replaced by matrices. The definition of a series is also
analogus to the definition you learned in calculus II.

Definition 9.3.3.

Let Ay € R™*™ for all k, the sequence of partial sums of > ;7 Ay is given by S, =
Y 1 Ar. We say the series > 72, A converges to L € R ™*™ iff the sequence of partial
sums converges to L. In other words,

d A= lim ZAk.
k=1 k=1

Many of the same theorems hold for matrices:

Proposition 9.3.4.

Let t — Sa(t) = > Ax(t) and t — Sp(t) = >, Bk(t) be matrix valued functions of a real
variable ¢ where the series are uniformly convergent and ¢ € R then

2. Zk(Ak + Bk) = Zk A + Zk By
3. &2k A= Xk £ [Ax]
4. f[Zk Ak]dt =C + Y, [ Agdt where C' is a constant matrix.

The summations can go to infinity and the starting index can be any integer.

Uniform convergence means the series converge without regard to the value of t. Let me just
refer you to the analysis course, we should discuss uniform convergence in that course, the concept
equally well applies here. It is the crucial fact which one needs to interchange the limits which
are implicit within ), and %. There are counterexamples in the case the series is not uniformly
convergent. Fortunately,
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Proposition 9.3.5.

Let A be a square matrix then exp(A) = > 72, %Ak is a uniformly convergent series of
matrices.

Basically, the argument is as follows: The set of square matrices with the Frobenius norm is
isometric to R™ which is a complete space. A complete space is one in which every Cauchy sequence
converges. We can show that the sequence of partial sums for exp(A) is a Cauchy sequence in R ™*™
hence it converges. Obviously I'm leaving some details out here. You can look at the excellent
Calculus text by Apostle to see more gory details. Also, if you don’t like my approach to the matrix
exponential then he has several other ways to look it.

(Past this point I expect you to start following along again. )

9.3.2 formulas for the matrix exponential

Now for the fun part.
Proposition 9.3.6.

Let A be a square matrix then % [eap(tA)] = Aexp(tA)

Proof: I'll give the proof in two notations. First,

4 lexp(tA)] = & [Z ]i!tkAk} defn. of matrix exponential

since matrix exp. uniformly conv.

I
(]2
&=
—
Bl

~

ol
>

-

[

[o¢]
— Z %tkilAk A* constant and %(tk) = k!

— AZ (k—ll)!tk_lAk_l since k! = k(k; _ 1)! and Ak _ AAk_l,

= Aexp(tA) defn. of matrix exponential.
I suspect the following argument is easier to follow:
2 (exp(tA)) = (I +tA+ 32A% + L2A% + ..
=4+ L(tA) + L4 (PA%) + L LAY + -
= A+tA*+ 1PA% +
= A(I +tA+ 3tPA* + )
= Aexp(tA). O

Notice that we have all we need to see that exp(tA) is a matrix of solutions to the differential
equation ' = Ax. The following prop. follows from the preceding prop. and Prop. [3.3.12
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Proposition 9.3.7.

If X = exp(tA) then X’ = Aexp(tA) = AX. This means that each column in X is a
solution to 2’ = Ax.

Let us illustrate this proposition with a particularly simple example.

Example 9.3.8. Suppose 2/ = x,y = 2y, 2’ = 3z then in matriz form we have:

/

T 1 00 T
y | =10 20 Y
z 0 0 3 z

The coefficient matriz is diagonal which makes the k-th power particularly easy to calculate,

k

100 1 0 0
A=1020| =0 2¢ 0
00 3 0 0 3*
~ [1 0 0 o btk 0 0
= exp(td) =) L]0 28 0 | = 0 Y2, ok 0
— k ' otk
k=0 0 0 3 0 0 ro 3"
et 0 0
= exp(tA)=| 0 € 0
0 0 €%

el 0 0
zi(t)y=1 0 zo(t) = | €% z3(t)=1 0
0 0 et

In turn these vector solutions amount to the solutions x = ety =0,2=0 orz =0,y =e*,2 =0
orxz=0,y=0,z=e3. Itis easy to check these solutions.

Usually we cannot calculate the matrix exponential explicitly by such a straightforward calculation.
We need e-vectors and sometimes generalized e-vectors to reliably calculate the solutions of interest.

Proposition 9.3.9.

If A, B are square matrices such that AB = BA then e85 = ¢4eB

Proof: I'll show how this works for terms up to quadratic order,

et =(1+A+1A%+. )1 +B+3iB*+--)=1+(A+B)+iA? + AB+iB*+ ...
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However, since AB = BA and
(A+B)?=(A+B)(A+B)=A*>+ AB+ BA+ B? = A + 2AB + B%.

Thus,
eAeB:1+(A+B)+%(A+B>2+”':€A+B =

You might wonder what happens if AB # BA. In this case we can account for the departure from
commutativity by the commutator of A and B.

Definition 9.3.10.

Let A, B € R ™™ then the commutator of A and B is [A, B] = AB — BA.

Proposition 9.3.11.

Let A, B,C € R ™" then
1. [A,B] = —[B, A]
2. [A+ B,C] = [A,C] + B, ]
3. [AB,C] = A[B,C] + [A,C|B
4. [A,BC] = BJA,C] + [A, B]C
5. [[4, B, C] + [[B, C), A] + [[C, A], B] = 0

The proofs of the properties above are not difficult. In contrast, the following formula known as
the Baker-Campbell-Hausdorff (BCH) relation takes considerably more calculation:

(AGB _ ATB+5[ABI+5[ABLB++ 5B ALA+ Y BOH-formula

The higher order terms can also be written in terms of nested commutators. What this means is
that if we know the values of the commutators of two matrices then we can calculate the product
of their exponentials with a little patience. This connection between multiplication of exponentials
and commutators of matrices is at the heart of Lie theory. Actually, mathematicians have greatly
abstracted the idea of Lie algebras and Lie groups way past matrices but the concrete example of
matrix Lie groups and algebras is perhaps the most satisfying. If you’d like to know more just ask.
It would make an excellent topic for an independent study that extended this course.

Remark 9.3.12.
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In fact the BC'H holds in the abstract as well. For example, it holds for the Lie algebra of
derivations on smooth functions. A derivation is a linear differential operator which satisfies
the product rule. The derivative operator is a derivation since D[fg] = D[f]g+ fD]g]. The
commutator of derivations is defined by [X,Y][f] = X(Y(f)) — Y(X(f)). It can be shown
that [D, D] = 0 thus the BCH formula yields

o@D D _ (a+b)D
If the coefficient of D is thought of as position then multiplication by e?? generates a

translation in the position. By the way, we can state Taylor’s Theorem rather compactly in
2
this operator notation: f(z+h) = exp(hD)f(z) = f(z)+hf'(z)+% f"(z)+ g—?f”’(z) +-e

Proposition 9.3.13.

Let A, P € R ™™™ and assume P is invertible then

exp(P~YAP) = P texp(A)P

Proof: this identity follows from the following observation:
(P1AP) = P~YAPP 'APP AP ... P'AP = P71 AFP.

Thus exp(P~1AP) = Y22 ) H(PT1AP)k = P71(3°0 ) £ AR)P = P lexp(A)P. O

Proposition 9.3.14.

Let A be a square matrix, det(exp(A)) = exp(trace(A)).

Proof: If the matrix A is diagonalizable then the proof is simple. Diagonalizability means there
exists invertibleP = [v1|va] - - |v,] such that P~1AP = D = [Ajv1]|Aava| - - - |A\yv,] where v; is an
e-vector with e-value \; for all 7. Use the preceding proposition to calculate

det(exp(D)) = det(exp(P ' AP) = det(P~ 'exp(A)P) = det(P~'P) det(exp(A)) = det(exp(A))
On the other hand, the trace is cyclic trace(ABC) = trace(BC'A)
trace(D) = trace(P~'AP) = trace(PP~A) = trace(A)

But, we also know D is diagonal with eigenvalues on the diagonal hence exp(D) is diagonal with

e’ on the corresponding diagonals

det(exp(D)) = eMe? ... e and trace(D) = A + Ao+ -+ Ay

Finally, use the laws of exponents to complete the proof,

gtrace(d) — gtrace(D) — ghitdattdn — higha . hn — det(exp(D)) = det(exp(A)).
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I’ve seen this proof in texts presented as if it were the general proof. But, not all matrices are
diagonalizable so this is a curious proof. I stated the proposition for an arbitrary matrix and I
meant it. The proof, the real proof, is less obvious. Let me sketch it for you:

better proof: The preceding proof shows it may be hopeful to suppose that det(exp(tA)) =
exp(ttrace(A)) for t € R. Notice that y = ¥ satisfies the differential equation ith = ky. Conversely,
if % = ky for some constant k then the general solution is given by y = c,eF* for some ¢, € R.
Let f(t) = det(exp(tA)). If we can show that f'(t) = trace(A)f(t) then we can conclude f(t) =

coel trace(4) - Consider:
f'@t) =4 f(t+h)
h=0
= < det(exp[(t + h)A])

h=0

det(exp[tA]lexp[hA])

h=0

= det(exp[tA]) <det(exp[hA])

h=0

= f(t)dcﬁl<det(I+hA+ A% ¢ EnPA3 4

h=0

= f(t) & <det([ + hA))

h=0

Let us discuss the %(det(l + hA)) term seperately for a moment

de(det(I+hA)) = 21" €iigin (I + A1 (I + hA)iy -+ (I + hA)i nlh=o

7;17---7in
= D €iyigin g (T4 hA), (I + hA) 15, - (I + hA)ni, |n=0
= > €irigein (At Triy - Tniy, + Ty Agiy -+ Ty, + -+ + Tuiy Ty -+ Api,))
$1 eyl
= eandin + > €ligndon + o+ > €191, Ani,
i is in

=An+An+-+ Ann
= trace(A)

31 use the definition of the identity matrix I;; = d;; in eliminating all but the last summation in the fourth line.
Then the levi-civita symbols serve the same purpose in going to the fifth line as €;,2..n = 014, ,€1i5...n. = 62i, €tC...
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Therefore, f'(t) = trace(A)f(t) consequently, f(t) = c,ettr®eA) = det(exp(tA)). However, we can
resolve ¢, by calculating f(0) = det(exp(0)) = det(I) =1 = ¢, hence

ettrace(d) — det(exp(tA))

Take ¢ = 1 to obtain the desired result. [J

Remark 9.3.15.

The formula det(exp(A)) = exp(trace(A)) is very important to the theory of matrix Lie
groups and Lie algebras. Generically, if G is the Lie group and g is the Lie algebra then
they are connected via the matrix exponential: exp : g — G, where I mean GG, to denoted
the connected component of the identity. For example, the set of all nonsingular matrices
GL(n) forms a Lie group which is disconnected. Half of GL(n) has positive determinant
whereas the other half has negative determinant. The set of all n x n matrices is denoted
gl(n) and it can be shown that exp(gl(n)) maps onto the part of GL(n) which has positive
determinant. One can even define a matrix logarithm map which serves as a local inverse for
the matrix exponential near the identity. Generally the matrix exponential is not injective
thus some technical considerations must be discussed before we could put the matrix log on
a solid footing. This would take us outside the scope of this course. However, this would
be a nice topic to do a follow-up independent study. The theory of matrix Lie groups and
their representations is ubiqitious in modern quantum mechanical physics.
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Finally, we come to the formula that is most important to our study of systems of DEqns. Let’s
call this the magic formula.

Proposition 9.3.16.

Let A € C and suppose A € R "*" then

exp(tA) = (I +t(A— M)+ E(A-AD2+ 5 (A - AP + ).

Proof: Notice that tA = t(A — AI) + tAI and t\] commutes with all matrices thus,
exp(tA) = exp(t(A — AI) + tAI)
= exp(t(A — A))exp(tA)
= eMeap(t(A — \I))
— M+t (A= M)+ E(A- A2+ L(A- AP+ )
In the third line I used the identity proved below,

eap(tAl) = T+ tAI + L(N212 - =T+ tA+ B2 1.y = 1P O
While the proofs leading up to the magic formula only dealt with real matrices it is not hard to see
the proofs are easily modified to allow for complex matrices.

9.4 solutions for systems of DEqns with real eigenvalues

Let us return to the problem of solving ¥’ = AZ for a constant square matrix A where ¥ =
[x1,22,...,2,] is a vector of functions of ¢. I'm adding the vector notation to help distinguish the
scalar function x; from the vector function 7 in this section. Let me state one theorem from the
theory of differential equations. The existence of solutions theorem which is the heart of of this
theorem is fairly involved to prove, you’ll find it in one of the later chapters of the differential
equations text by Nagel Saff and Snider.

Theorem 9.4.1.

If 7/ = AZ and A is a constant matrix then any solution to the system has the form
f(t) = 171 (t) + Cgfg(t) + -+ Cn.fn(t)

where {Z1,Z2,...,Z,} is a linearly independent set of solutions defined on R (this is
called the fundamental solution set). Moreover, these fundamental solutions can be
concatenated into a single invertible solution matrix called the fundamental matrix
X = [#1|&3]---|Zy] and the general solution can be expressed as Z(t) = X(t)¢ where &
is an arbitrary vector of real constants. If an initial condtion Z(t,) = ¥, is given then the
solution to the IVP is #(t) = X ~1(t,) X (t)Z,.
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We proved in the previous section that the matrix exponential exp(tA) is a solution matrix and the
inverse is easy enought to guess: exp(tA)~! = exp(—tA). This proves the columns of exp(tA) are
solutions to ' = AZ which are linearly independent and as such form a fundamental solution set.

Problem: we cannot directly calculate exp(tA) for most matrices A. We have a solution we
can’t calculate. What good is that?

When can we explicitly calculate exp(tA) without much thought? Two cases come to mind: (1.) if
A is diagonal then it’s easy, saw this in Example (2.) if A is a nilpotent matrix then there
is some finite power of the matrix which is zero; A¥ = 0. In the nilpotent case the infinite series
defining the matrix exponential truncates at order k:

exp(tA) = I + 1A+ GA? 4. 4 oAb

Example 9.4.2. Let A = [ 01 ] we calculate A? = [ 01 } [ 01 } = [ 00 } thus

0 0 0 0 0 0 0 0
1 1 1
e:cp(tA):I—l—tA:[O?]—l—t[go]:[o i]

Incidentally, the solution to T' = AT is generally Z(t) = ¢ [ (1) ] + ¢ [ i ] In other words,

x1(t) = co + cot whereas x2(t) = co. These solutions are easily seen to solve the system | = xo
and x4 = 0.

Unfortunately, the calculation we just did in the last example almost never works. For example,
1 2
3 4
for all examples to truncate. The magic formula gives us a way around this dilemma:

try to calculate an arbitrary power of A = } , let me know how it works out. We would like

Proposition 9.4.3.

Let A € R ™™, Suppose v is an e-vector with e-value A then exp(tA)v = e M.

Proof: we are given that (A — AI)v = 0 and it follows that (A — AI)*v = 0 for all k > 1. Use the
magic formula,

exp(tA)yv = eM(I +t(A = N) + - Jv=eMTv+t(A - ADv + - = Mo
noting all the higher order terms vanish since (A — A\I)*v = 0. O

We can’t hope for the matrix exponential itself to truncate, but when we multiply exp(tA) on an
e-vector something special happens. Since eM # 0 the set of vector functions
{e/\ltvl, ety eAktvk} will be linearly independent if the e-vectors v; are linearly independent. If
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the matrix A is diagonalizable then we’ll be able to find enough e-vectors to construct a fundamental
solution set using e-vectors alone. However, if A is not diagonalizable, and has only real e-values,
then we can still find a Jordan basis {v1,vs,...,v,} which consists of generalized e-vectors and it
follows that {etAvl, ey, ... ,etAvn} forms a fundamental solution set. Moreover, this is not just
of theoretical use. We can actually calculate this solution set.

Proposition 9.4.4.

Let A € R ™™ Suppose A has a chain {vj,ve,..., v} is of generalized e-vectors with
e-value A, meaning (A — \)vy = 0 and (A — \)vg_1 = vi for k > 2, then
1. etAvl = e>‘tv1,

2. etluy = eM(vy + tuy),
3. etAvg = e (1)3 + tvg + %vl),

k—1
4. etAvk =M (vk +tvp_1+ -+ ﬁvl).

Proof: Study the chain condition,
(A=Xvy=v1 = (A=XN?vp=(A—-X)v; =0

(A=XDvg=vy = (A—X)?v3=(A—A)vy =1,

Continuing with such calculationﬁﬂ we find (A — AI)7v; = v;_; for all i > j and (A — \)'v; = 0.
The magic formula completes the proof:

ety = e)‘t(vg +t(A— Al)vy + %(A — )2y - ) =M (vz + tvl)
likewise,

e vy = M (vs + (A = ADJvs + (A = AD)Pus + 5 (A = AD 05 + )
=M (v3 + tvg + %(A — M )vs)

= e’\t(vg + tvg + %vl).

We already proved the e-vector case in the preceding proposition and the general case follows from
essentially the same calculation. [

We have all the theory we need to solve systems of homogeneous constant coefficient ODEs.

“4keep in mind these conditions hold because of our current labling scheme, if we used a different indexing system
then you’d have to think about how the chain conditions work out, to test your skill perhaps try to find the general
solution for the system with the matrix from Example @
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3 1
3 1

. 1 . 1
ar[4] w e[l

thus we find the general solution to ¥’ = AT is simply,

) = e [ _13]+c264t[”

just to illustrate the terms: we have fundmamental solution set and matriz:

S ]y =[5 a]

Notice that a different choice of e-vector scaling would just end up adjusting the values of ¢1, ¢ in
the event an initial condition was given. This is why different choices of e-vectors still gives us the
same general solution. It is the flexibility to change c1, ¢o that allows us to fit any initial condition.

Example 9.4.5. Recall Example |7.2.11| we found A = [

] had e-values A\ = 0 and Ao = 4

and corresponding e-vectors

Example 9.4.6. We can modify Example and propose a different model for a tiger/bunny
system. Suppose x is the number of tigers and y is the number of rabbits then

o — o 4y L = 10z + 19y
is a model for the population growth of tigers and bunnies in some closed environment. Suppose
that there is initially 2 tigers and 100 bunnies. Find the populations of tigers and bunnies
at time ¢ > 0O:

1 -4
—10 19
can calculate the eigenvalues and corresponding eigenvectors:

Solution: notice that we must solve ¥' = AT where A = [ ] and £(0) = [2,100]7. We

det(A_)\I):O = M=-1 A=21 = UIZ[?]7UQZ|:_51:|

Therefore, using Proposition[9.].4}, the general solution has the form:
- | 2 -1
Z(t) = cie t[ 1 } —i—chzlt[ 5 ]
Howewver, we also know that Z(0) = [2,100]7 hence
P I N B A R
2l 5 100|711 5 || e

|
= [a]=nl a2 ][ ]=u ] ws]
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Finally, we find the vector-form of the solution to the given initial value problem:
2 -1
. —t 198 21t
Z(t) = 10e |:1]+116 [5]
Which means that z(t) = 20e™" — %62” and y(t) = 1020e~" + 90e2! are the number of tigers and

bunnies respective at time t.

Notice that a different choice of e-vectors would have just made for a different choice of ¢1,co in
the preceding example. Also, notice that when an initial condition is given there ought not be any
undetermined coefficients in the final answeil

0 0 —4
Example 9.4.7. We found that in Example |7.2.13 the matrizc A = | 2 4 2 has e-values
2 0 6
A1 = A2 =4 and A3 = 2 with corresponding e-vectors
0 -1 -2
U= | 1 | U= 0 s = 1
0 1 1
Hence, using Proposition and Theorem the general solution of Cﬁ% = AZ is simply:
0 -1 -2
Z(t) = creity + coet iy + cze®tis = cre | 1 | +e2e? | 0 + c3e?t 1
0 1 1

Example 9.4.8. Find the general solution of ‘é—f = AT given that:

1100
0100
A_OOll
0 0 01

We analyzed this matriz in Example[74.14. We found a pair of chains of generalized e-vectors all
with eigenvalue A = 1 which satisfied the following conditions:

(A-Dis=1w, (A-D)it1 =0 (A= Dy =1y, (A— iy =0

In particular, i; = e;j for j =1,2,3,4. We can use the magic formula to extract 4 solutions from
the matriz exponential, by Proposition we find:

fl = 6Atl_[1 = etﬁl = 6t61 (92)
fg = 6Atl_[2 = et(62 + tel)
fg = 6Atl_[3 = eteg

f4 = 6Atl_[4 = et(e4 + t63)

5 Assuming of course that there are enough initial conditions given to pick a unique solution from the family of
solutions which we call the ”general solution”.
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Let’s write the general solution in vector and scalar form, by Theorem |[9.4.1

crel + tegel
Cget
t t
c3e” + tege
C46t

T(t) = 171 + caffa + c3T3 + caTy = cre’er +cael(ea +ter) +caeles +cael (eg +tes) =

In other words, x1(t) = c1e! + teael, xa(t) = coel, w3(t) = czel + teqel and w4(t) = caet form the
general solution to the given system of differential equations.

Example 9.4.9. Find the general solution of ‘é—‘f = AZ given (generalized)eigenvectors u;, i =
1,2,3,4,5,6,7,8,9 such that:

(A—1Du; =0, Aty =1y, Ausz=Tus, (A—IDiy=1u

(A+5I)ﬁ5:0, (A—3I)176:ﬁ7 Al = 37, Atig =0, (A—3I)ﬁg=ﬁ6

We can use the magic formula to extract 9 solutions from the matrix exponential, by Proposition
we find:

l_"l =€ ﬁl == etﬁl == 6%71 (93)
fg = 6Atﬁ2 = etﬁg

fg = 6Atl_[3 = €7tﬁ3

Ty = Mgy = el (g + tiiy) can you see why?

fg, = 6Atl_[5 = 6_5tﬁ5

Zg = eMifg = egt(ﬁg + tir) can you see why?

7 = eMiy = etir,

Ty = eMiiy = iy

To = iy = egt(ﬁg + tug + %t2ﬂ’7) can you see why?

Let’s write the general solution in vector and scalar form, by Theorem [9.4.1

9
f(t) = Z Cifi
i=1

where the formulas for each solution ¥; was given above. If I was to give an explicit matriz A with
the eigenvectors given above it would be a 9 x 9 matriz. Challenge: find the matrix exponential
eAt in terms of the given (generalized)eigenvectors.

Hopefully the examples have helped the theory settle in by now. We have one last question to
settle for systems of DEqns.
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Theorem 9.4.10.

The nonhomogeneous case ' = AZ+ f the general solution is Z(t) = X (t)c+Zp(t) where X
is a fundamental matrix for the corresponding homogeneous system and ), is a particular
solution to the nonhomogeneous system. We can calculate Z,(t) = X (¢) [ X 1 fdt.

Proof: suppose that Z, = X for X a fundamental matrix of ¥’ = A% and some vector of unknown
functions ¥. We seck conditions on ¥ which make Z), satisfy #,’ = A%, + f. Consider,

(2,) = (X0) = X'U+ X0 = AX0+ X0
But, #," = A)Zerf: AX7 + f hence

v _ 7 i 17
XW_f o d_ x-If

Integrate to find & = [ X' fdt therefore x,(t) = X (t) [ X~ fdt. O

If you ever work through variation of parameters for higher order ODEqns then you should appreci-
ate the calculation above. In fact, we can derive n-th order variation of parameters from converting
the n-th order ODE by reduction of order to a system of n first order linear ODEs. You can show
that the so-called Wronskian of the fundamental solution set is precisely the determinant of the
fundamental matrix for the system Z’ = A% where A is the companion matrix. I have this worked
out in an old test from a DEqns course I taught at NCSUH

r .t

Example 9.4.11. Suppose that A = [ 3 1 } and f: :—t ], find the general solution of the

nonhomogenous DEqn &' = A:E—i—f. Recall that in Example:!).;é we found ¥’ = AZ has fundamental
1 4t

matriz X = _3 24t . Use variation of parameters for systems of ODEs to constuct &p. First

calculate the inverse of the fundamental matriz, for a 2 x 2 we know a formula:

1 e4t _€4t 3 1 -1
ef—(=3)e™ | 3 1 T A 3e ¥

Ssee solution of Problem 6 in www.supermath.info/ma341f07test2 sol.pdf for the n = 2 case of this comment,
also §6.4 of Nagel Saff and Snider covers n-th order variation of parameters if you want to see details

X(t) =
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Thus,

() = X () / ! [ 3el—4t T ] [ (fft ] dt = 1x(1) / [ 3:_;_ ert_5t } dt

a1 et el +e!
1 -3 edt et _ %6—51:
] Wet+e )+ ett(—e™3 — %6*5'5)
4 I —3(et 4 e—t) 4 64t(_6—3t _ %6—51&)
1 et—l-e_t—et—%e_t
4 =3¢l =3¢t —el — %e*t
4 —t
1 5¢
4 —4€t _ %e—t

Therefore, the general solution is

—t

= o 1 At 1 1 e
x(t)cl[_:g}—i-@e [1]+5[—et—46_t]'
The general scalar solutions implicit within the general vector solution Z(t) = [x(t),y(t)]T are
z(t) = c1 + cae® + le! y(t) = —3c1 + coett — Tel — %e*t.

T’ll probably ask you to solve a 3 x 3 system in the homework. The calculation is nearly the same
as the preceding example with the small inconvenience that finding the inverse of a 3 x 3 requires
some calculation.

Remark 9.4.12.

You might wonder how would you solve a system of ODEs 2’ = Az such that the coefficients
A;; are not constant. We will not cover such problems in this course. We do cover how to
solve an n — th order ODE with nonconstant coefficients via series techniques in Math 334.
It’s probably possible to extend some of those techniques to systems. Laplace Transforms
also extend to systems of ODEs. It’s just a matter of algebra. Nontrivial algebra.
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9.5 solutions for systems of DEqns with complex eigenvalues

The calculations in the preceding section still make sense for a complex e-value and complex e-
vector. However, we usually need to find real solutions. How to fix this? The same way as
always. We extract real solutions from the complex solutions. Fortunately, our previous work on
linear independence of complex e-vectors insures that the resulting solution set will be linearly
independent.

Proposition 9.5.1.

Let A € R ™™ Suppose A has a chain {vi,vs,...,v;} is of generalized complex e-vectors
with e-value A = a + i, meaning (A — AN)v; = 0 and (A — N)vg_1 = v for £ > 2 and
v; = aj + tb; for a;,b; € R" for each j, then
1. etAvl = e’\tvl,
2. ety = eM(vy + tuy),
3. etAys = M (vs + tvg + %Ul)a
tk71

4. etAvk =M (vk +tvg_1 4+ -+ Wvl)‘

Furthermore, the following are the 2k linearly independent real solutions that are implicit
within the complex solutions above,

1. @1 = Re(etv;) = e[ (cos Bt)a; — (sin Bt)b1],
= e™[(sin Bt)as + (cos Bt)b1]),
3. 23 = Re(etvy) = e [(cos Bt)(ag + tar) — (sin Bt)(bg + tby)],
= ¢®*[(sin Bt)(az + ta1) + (cos Bt)(bg + tby)],
5. x5 = Re(e!vz) = e [(cos Bt)(az + tag + £ a1) — (sin Bt) (b3 + tha + Eb1)],

6. x6 = Im(e!vg) = e*[(cos Bt)(az + tas + %al) — (sin fBt)(bs + tba + %bl)].

Proof: the magic formula calculations of the last section just as well apply to the complex case.
Furthermore, we proved that

Re [eatﬂﬂt(v + iw)]| = e [(cos Bt)v — (sin Bt)w]

and
Im[e®™ P (v + iw)] = e [(sin Btv + (cos ft)w],

the proposition follows. [
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0 1
-1 0
find the e-values and e-vectors of the matriz. Observe that det(A—XI) = A\241 hence the eigevalues
are A = +i. We find uy = [1,i]T. Notice that

a-[1]-[] 1]

This means that ' = AT has general solution:

#t) = o1 (Cos(t) { . } _ sin() { ; D e <sin(t) [ . ] + cos(t) [ " D

The solution above is the “vector-form of the solution”. We can add the terms together to find the

scalar solutions: denoting T(t) = [z(t),y(t)]T,

Example 9.5.2. This example uses the results derived in Example|7.7.9 Let A = [ ] and

x(t) = c1 cos(t) + cosin(t) y(t) = —cq sin(t) + co cos(t)

These are the parametric equations of a circle with radius R = \/c3 + c3.

1 10
Example 9.5.3. We solved the e-vector problem for A= | —1 1 0 | in Fxample|7.7.4 We
0 0 3
found one real e-value A\1 = 3 and a pair of complex e-values Ao = 1+i. The corresponding e-vectors
0 0 1
iy =10 ig= |1 |+4|0
1 0 0

We identify that Re(t2) = ez and Im
form:

—~

t2) = ey. The general solution of &' = AZ should have the

Z(t) = cre™iy + coRe(eMily) + csIm(e?tisy)
The vectors above are e-vectors so these solution simplify nicely:
Z(t) = cre®es + coel(cos(t)ey — sin(t)ey) + czel (sin(t)eg 4 cos(t)er)

For fun let’s look at the scalar form of the solution. Denoting T(t) = [x(t),y(t), z(t)],

z(t) = —coel sin(t) + cze’ cos(t), y(t) = cae’ cos(t) + cze’ sin(t), 2(t) = 13

Believe it or not this is a spiral helix which has an exponentially growing height and radius.

Example 9.5.4. Let’s suppose we have a chain of 2 complex eigenvectors i1, Us with eigenvalue
A=2+4143. I'm assuming that

(A= @+ )iy =i,  (A—(2+14)])id; =0.
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We get a pair of complex-vector solutions (using the magic formula which truncates since these are
e-vectors):
Z1(t) = ety = e(2+’)tu_'1, Zy(t) = ety = e(2+z)t(u_'2 + tuy),

The real and imaginary parts of these solutions give us 4 real solutions which form the general
solution:

Z(t) = cre® [cos(3t) Re(iiy) — sin(3¢) Im(ii1)]
+ cpe® [sin(3t) Re (1) + cos(3t)Im (1))
+ cze? [cos(3t)[Re(ii2) + tRe(ii1)] — sin(3t)[Im(d2) + tIm(i)]]
+ cse? [sin(3t)[Re(ua) + tRe(i1)] + cos(3t) [Im(ia) + tIm(d)]].

9.6 geometry and difference equations revisited

In Example we studied A = [g 91] and how it pushed the point z, = [}] around the plane.
We found x; for i = 1,2,3,4 by multiplication by A directly. That method is fine for small 4
but what is we wished to know the formula for the 1000-th state? We should hope there is some
way to find that state without direct multiplication repeated 1000 times. One method is to make
use of the diagonalization of the matrix. We know that e-vectors (if they exist) can be glued
together to make the diagonalizing similarity transforming matrix; there exists P € R ™" such
that P~'AP = D where D is a diagonal matrix. Notice that D is easy to calculate. We can solve
for A= PDP~! and find that A2 = PDP~'PDP~! = PD?P~!. The you can prove inductively
that A¥ = PD*P~1. It is much easier to calculate PD¥P~! when k >> 1.

9.6.1 difference equations vs. differential equations

I mentioned that the equation i1 = Axy is a difference equation. We can think of this as a
differential equation where the time-step is always one-unit. To see this I should remind you how
Z' = BZ is defined in terms of a limiting process:

Z'(t) = lim

Ft+h) -8
i ——— = B

A gross approximation to the continuous limiting process would be to just take h = 1 and drop the
limit. That approximation yields:

BZ(t) = Z(t+ 1) — Z(¢).
We then suppose ¢t € N and denote Z(t) = Z; to obtain:

ft.l,_l = (B + I)ft



9.6. GEOMETRY AND DIFFERENCE EQUATIONS REVISITED 347

We see that the differential equation #’ = BZ is crudely approximated by the difference equation
Zyy1 = AZy. where A = B + I. Since we now have tools to solve differential equations directly it
should be interesting to contrast the motion generated by the difference equation to the exact para-
metric equations which follow from the e-vector solution of the corresponding differential equation.
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