Please write your solutions on separate paper. While you may work together, you must write the solution you turn in by yourself in your own words (no copying). Thanks! Warning: this test appears more difficult than it actually is... notice your assignments are mostly just the bold part.

- **Problem 1** [10pts] Suppose $r, R \in \mathbb{R}$ with $0 \le r < R$. **Prove that** $S = \{z \in \mathbb{C} \mid r < |z z_o| < R\}$ is an open set.
- **Problem 2** [10pts] Let f(z) be analytic in a domain D and suppose $f(z) f(z_o)$ has a zero of order n at $z_o \in D$. Prove that for $\epsilon > 0$ sufficiently small, there exists a $\delta > 0$ such that for all w with $|w f(z_o)| < \delta$ the equation f(z) w = 0 has exactly n roots in $|z z_o| < \epsilon$. You may (probably should) use Rouche's Theorem in your proof.
- **Problem 3** [10pts] Suppose $\sum_{n=0}^{\infty} (1+3^{-n-1})z^n$ represents f(z) for 0 < |z| < 1. Calculate $\int_C f(z)dz$ for C positively oriented |z-1| < 1/2. Analytic continuation is key concept here, not direct calculation, although some calculation is needed.
- **Problem 4** [20pts] The solution of $\nabla^2 \phi = \phi_{xx} + \phi_{yy} = 0$ on a closed domain D subject to boundary conditions for ϕ on ∂D can often be seen from conformally mapping the solution from one of the basic cases below. Here we merely seek to familiarize ourselves with these basic cases:
 - (a.) $\phi(z) = ARe(z) + B$ solves $\nabla^2 \phi = 0$ on vertical strips $x_1 \le Re(z) \le x_2$ with $\phi(x_1) = c_1$ and $\phi(x_2) = c_2$ for appropriate choices of A, B as to impose the boundary conditions. Choose A, B such that $\phi(-1) = 0$ and $\phi(1) = 2$ and explain why $\phi(z) = ARe(z) + B$ is indeed a solution to Laplace's equation
 - (b.) $\phi(z) = AIm(z) + B$ solves $\nabla^2 \phi = 0$ on horizontal strips $y_1 \leq Im(z) \leq y_2$ with $\phi(y_1) = c_1$ and $\phi(y_2) = c_2$ for appropriate choices of A, B as to impose the boundary conditions. Choose A, B such that $\phi(i) = 10$ and $\phi(4i) = 20$ and explain why $\phi(z) = AIm(z) + B$ is indeed a solution to Laplace's equation
 - (c.) $\phi(z) = ALog(|z|) + B$ solves $\nabla^2 \phi = 0$ for $z \in \mathbb{C}$ with $R_1 \leq |z| < R_2$ and for appropriate choices of the constants A, B we may impose $\phi|_{|z|=R_1} = c_1$ and $\phi|_{|z|=R_2} = c_2$ for any given set of boundary values c_1, c_2 . Explain why ALog(|z|) + B solves Laplace's equation and find A, B for which $\phi(z) = 0$ if |z| = 2 and $\phi(z) = 10$ if |z| = 7.
 - (d.) Let us denote $Arg_{\alpha}(z) \in arg(z) \cap (\alpha, 2\pi + \alpha]$. For example, $\alpha = -\pi$ is the principle argument function. Generally this gives us branch of the argument for which the discontinuity occurs at angle α . Claim: $\phi(z) = BArg_{\alpha}(z) + A$ solves $\nabla^2 \phi = 0$ for $z \in \mathbb{C}$ with $\theta_1 \leq Arg_{\alpha}(z) \leq \theta_2$ and for appropriate choices of the constants A, B we may impose $\phi|_{Arg_{\alpha}(z)=\theta_1} = c_1$ and $\phi|_{Arg_{\alpha}(z)=\theta_2} = c_2$ for any given set of boundary values c_1, c_2 . Explain why $BArg_{\alpha}(z) + A$ solves Laplace's equation in the upper half-plane and find α, B, A such that $\phi(z) = 1$ for Re(z) > 0 and $\phi(z) = 3$ for Re(z) < 0.
 - (e.) Suppose $x_1 < x_2 < \cdots < x_n$ and $A_1, A_2, \dots A_n$ are constants which are used to formulate the function $\phi(z) = \sum_{j=1}^n A_j Arg(z-x_j)$. Show that $\phi(z) = \sum_{j=1}^n A_j Arg(z-x_j)$ solves $\nabla^2 \phi = 0$ in the upper half-plane. Also, find the boundary values of the given solution on the real axis.

- **Problem 5** [50pts] If $\phi(z) \in \mathbb{R}$, z = x + iy, solves $\phi_{xx} + \phi_{yy} = 0$ on some domain D of \mathbb{C} and if f is an injective analytic function where we denote w = f(z), w = u + iv, then $\Psi(u, v) = \phi(f^{-1}(w)) = \phi(x(u, v), y(u, v))$ solves $\Psi_{uu} + \Psi_{vv} = 0$. The proof is simple: ϕ is harmonic hence we can find an analytic function g such that $Re(g) = \phi$. Then, since the composition of analytic functions is once more analytic, $\Psi = Re(g \circ f^{-1})$ is the real component of an analytic function and is hence harmonic. Therefore, we can replace the Dirichlet problem in the z = x + iy plane for a possibly simpler Dirichlet problem in the w = u + iv plane. Once we find Ψ in u, v then we simply invert $\Psi = \phi \circ f^{-1}$ to find $\phi = \Psi \circ f$. This mapping equation simply means to take the u, v in the Ψ solution and replace them with the appropriate expressions in x, y as defined by f(x, y) = u(x, y) + iv(x, y). We have many injective analytic functions to utilize in this technique: rotations, magnifications, translations, inversion (these give us the Mobius transformations collectively), exponential mapping,... there are many more techniques I have not shared in lecture, the literature here is vast.
 - (a.) Solve the Dirichlet problem on the slanted strip $x \le y \le x+1$ for z=x+iy where $\phi(x+ix)=10$ and $\phi(x+i(x+1))=20$. Hint: use a rotation and the result of either (a.) or (b.) of the previous problem
 - (b.) Solve the Dirichlet problem on the annulus $2 \le |z-1+2i| \le 7$ where the inner-circle has constant boundary value of $\phi = 0$ whereas the outer-circle takes constant boundary value 10. Hint: use a translation and the result of (c.) of the previous problem
 - (c.) Solve the Dirichlet problem on the disk $|z| \le 1$ such that $\phi(z) = 1$ for Im(z) > 0 and $\phi(z) = 3$ for Im(z) < 0 Hint: use some Mobius transformation and the result of (d.) of the previous problem
 - (d.) Solve the Dirichlet problem on the disk around infinity $|z| \ge 1$ such that $\phi(z) = 1$ for |z| = 1 with Re(z) > 0 and $\phi(z) = 3$ for |z| = 1 and Re(z) < 0 Hint: use some Mobius transformation and the result of (d.) of the previous problem

Remark: the other half of this test will concern infinite products and the Mittag Leffler expansion which you have already begun work on in Test 2...