Math 331 Mission 2 [30pts]

Copying answers and steps is strictly forbidden. Same instructions as Mission 1. Do not fold. Thanks!

- **Problem 11** Your signature below indicates you have:
 - (a.) I have read Chapter 2 of Gamelin:
 - (b.) I have read Cook's Guide to Chapter 2:______
- **Problem 12** Show $\sin(z+w) = \cos(z)\sin(w) + \sin(z)\cos(w)$ for all $z, w \in \mathbb{C}$. Then use the relation of $\sinh(z), \cosh(z)$ to $\sin(z), \cos(z)$ to derive a corresponding identity for $\sinh(z+w)$.
- **Problem 13** Solve $\sinh z = i$ and write the infinite solution set in terms of $n \in \mathbb{Z}$.
- **Problem 14** Find a branch g(w) of $w^{1/3}$ which serves as the inverse function of $f(z)=z^3$ with $\mathrm{dom}(f)=\{z\in\mathbb{C}^\times\mid \mathrm{Arg}(z)\in[0,2\pi/3)\}$. Relate g(w) to the principal branch $\sqrt[3]{w}$. Recall, the principal branch is defined by $\sqrt[3]{w}=\sqrt[3]{|w|}\exp\left(\frac{i\mathrm{Arg}(w)}{3}\right)$ for each $w\in\mathbb{C}^-$ and serves as the inverse function to $h(z)=z^3$ with $\mathrm{dom}(h)=\{z\in\mathbb{C}^\times\mid \mathrm{Arg}(z)\in(-\pi/3,\pi/3)\}$. Draw a few pictures to organize your thoughts.
- **Problem 15** Let $S_{\alpha} = \mathbb{C} e^{i\alpha}[0,\infty)$; this is \mathbb{C} with the ray at $\theta = \alpha$ removed. Furthermore, define $\operatorname{Log}_{\alpha}(z) = \ln|z| + i\operatorname{Arg}_{\alpha}(z)$ where we define $\operatorname{Arg}_{\alpha}(z)$ to be the single element found in $arg(z) \cap (\alpha, \alpha + 2\pi]$. Calculate the discontinuity at $\theta = \alpha$ by following any circle $\gamma(t) = Re^{it}$ with parameter values $t \in (\alpha, \alpha + 2\pi]$. Compare $\operatorname{Log}_{\alpha}(\gamma(\alpha + 2\pi))$ and $\lim_{t \to \alpha^+} \operatorname{Log}_{\alpha}(\gamma(t))$.
- **Problem 16** Let $\mathbb{H} = \{z \in \mathbb{C} \mid \mathfrak{Im}(z) > 0\}.$
 - (a.) show with a sketch 1+i is an interior point of \mathbb{H} .
 - (b.) show every point in \mathbb{H} is an interior point of \mathbb{H} . Your argument may be guided by a sketch, but it should also be supported with explicit inequality arguments.
- **Problem 17** Let $a_n = z^n$ for $n \in \mathbb{N}$.
 - (a.) for which $z \in \mathbb{C}$ is a_n a bounded?
 - **(b.)** for which $z \in \mathbb{C}$ does a_n form a convergent sequence?
- **Problem 18** Consider the annulus A defined by $1 \le |z 2| \le 2$. Carefully sketch A and, if possible, find sets $A_1, A_2 \subseteq A$ for which $A_1 \cup A_2 = A$ and A_1, A_2 is star-shaped. If it is not possible, then try to accomplish the same with A_1, A_2, A_3 defined similarly. What is the minimum number of A_1, \ldots, A_k needed for this construction? In your answer, do indicate the starcenters as to be clear on your claim.
- **Problem 19** Let $g : \text{dom}(g) \subseteq \mathbb{C} \to \mathbb{C}$. Prove the following: If $\lim_{h\to 0} g(h)/|h| = 0$ then $\lim_{h\to 0} g(h)/h = 0$.
- **Problem 20** Let $f(z) = 1/z^2$.
 - (a.) Show $f'(z) = -2/z^3$ by calculating the limit of the difference quotient.
 - (b.) Find the derivative of $f(z) = 1/z^2$ for $z \neq 0$ via the Theorem of Caratheodory. See my notes for several similar problems including f(z) = 1/z etc.