Copying answers and steps is strictly forbidden. Same instructions as Mission 1. Do not fold. Thanks!

- **Problem 21** Show $f(z) = z + \overline{z}$ is not complex differentiable at any point in \mathbb{C} .
- **Problem 22** Let f = u + iv where $f(z) = \sin z$. Show u, v are continuously differentiable by explicitly calculating their formulas in terms of x, y and then show $\frac{d}{dz} \sin z = \cos z$ via the CR-equations written in the form $f'(z) = u_x + iv_x$.
- **Problem 23** Let $R = \{z \in \mathbb{C} \mid 1 < |z| < 2, \Re \mathfrak{e}(z) > 0, \Im \mathfrak{m}(z) > 0\}$. Describe the shape of the transformed region f(R) given:
 - (a.) f(z) = iz
 - **(b.)** $f(z) = z^2$
 - (c.) f(z) = 1/z
- **Problem 24** Find a sharp bound for $f(z) = e^z$ for z = x + iy with $0 \le x, y \le 1$.
- **Problem 25** Find the harmonic conjugate v of $u(x,y) = -e^x y \sin(y) + e^x x \cos(y)$. Also, find f = u + iv and write f as a function of z.
- **Problem 26** Suppose f = u + iv is a holomorphic function on \mathbb{C} and $u_x(x, y) = x^2 + y$ everywhere. Is this possible? If so, find all f(z) for which $u_x(x, y) = x^2 + y$.
- **Problem 27** Suppose f = u + iv is holomorphic at a point $z_o = x_o + iy_o$.
 - (a.) $|f'(z_o)| = ||(\nabla u)(x_o, y_o)|| = ||(\nabla v)(x_o, y_o)||$ (here we compare the length of the complex number $f'(z_o)$ with the lengths of the two-dimensional vectors $(\nabla u)(x_o, y_o)$ and $(\nabla v)(x_o, y_o)$
 - **(b.)** Show that $(\nabla u)(x_o, y_o)$ is orthogonal to $(\nabla v)(x_o, y_o)$.
- **Problem 28** Show $f: R \to T$ defined by $f(z) = \frac{1}{2i} \text{Log}\left(\frac{1+iz}{1-iz}\right)$ defines a bijection where

$$R = \{z \in \mathbb{C} \mid z \notin [i, i\infty] \cup [-i\infty, -i]\}$$

and

$$T = \{ w \in \mathbb{C} | -\pi < \mathfrak{Im}(w) < \pi \}$$

Also, show $f(z) = \operatorname{Tan}^{-1}(z)$.

Problem 29 The beauty of a holomorphic mapping has many facets. In particular, if f = u + iv is holomorphic it is very neat to examine the level curves of u and v. Graph level curves for u and v of $f(z) = z^2 e^z$. Where is the mapping conformal? What does this mean geometrically about the level curves of u and v where they intersect? (obviously you should use Mathematica, Maple or some technology to make these graphs, I used Desmos.)

Problem 30 We wish to show \mathbb{C} is complete. The heart of the claim follows from $|\mathfrak{Re}(w)| \leq |w|$ and $|\mathfrak{Im}(w)| \leq |w|$ paired with the fact we **assume** \mathbb{R} is complete. Show \mathbb{C} is complete. To sketch the solution: assume $z_n = x_n + iy_n$ is a Cauchy sequence in \mathbb{C} . Apply the given inequalities to argue x_n and y_n are Cauchy real sequences and hence converge to x and y respective. Finish the argument by showing $z_n \to x + iy$.