Lecture Notes for Advanced Calculus

James S. Cook
Liberty University
Department of Mathematics and Physics

Spring 2010
introduction and motivations for these notes

I know this course cannot take priority to other courses since this is an extra course for most people who are considering it. There will be just one in-class test (and the final). The homeworks and take-home tests will have as relaxed a schedule as possible which I hope allows some of you to fit in the course at your convenience. The homeworks are due at 5 different times in the semester, I hope the timing allows you sufficient time to think through the problems. Some of the homeworks will not go well unless you try them a number of times. You need time to think about them, ask questions, work together and then write it up. The idea of doing well on the final as a substitute for missing large chunks of the homework doesn't make any sense what-so-ever in this course so don't take this course unless you plan to attempt a large portion of the homework.

We will cover portions of the following sources:

”Advanced Calculus of Several Variables” by C.H. Edwards

”Methods of Applied Mathematics” by Hildebrand

these notes

The text by Edwards is excellent for proofs of theorems, however it is a little sparse as far as examples are concerned. My plan for this course is to prove a few of the theorems but leave the rest for Edwards’ text. I do plan to prove the inverse and implicit function theorems and if there is time I might prove a couple others. But, generally I intend the pattern of lecture will be to state a theorem, tell you where the proof can be found or maybe sketch the proof, then illustrate the theorem with examples. In practice a large portion of our time will be spent on clarifying and expanding definitions and notation. My goal is that after you take this course you can decipher the proofs in Edwards or similar advanced undergraduate/beginning graduate texts. In contrast to some courses I teach, these notes will supplement the text in this course, they are not meant to be self-contained.

I also intend to discuss of some basic topics in elementary differential geometry. Some of these topics are in Edwards but I will likely add material in this direction. Also this is certainly a topic where Mathematica can help us calculate and illustrate through graphing. I have included a chapter on Euclidean structures and Newton’s Laws. That chapter goes deeper into the physical signifiance of rotations and translations in classical mechanics. It also gives you a very nice explicit idea of what I mean when I say ”physics is a model”. If you can understand that even Newtonian mechanics is abstract then you come a long way closer to freeing yourself from the conflation of physical law, mathematical stucture and physical reality.

1this comment mostly applies to a few proofs I skip
I also intend to assign a few problems from Chapter 2 of Hildebrand’s text. There are about 100 pages concerning variational calculus but we’ll only use a subset of those and even then I intend to provide my own notes on the subject. I’ll try to define the variational problem in a fairly narrow context for this course. I hope to give a reasonably precise definition of the variational derivative as well. My approach will be two-fold. To begin I’ll give the classic somewhat hand-wavey physics definition for the variation and we’ll speed on to solve a few standard problems of variational calculus. This will happen towards the middle of the course, I hope you find it fairly easy to grasp. The hardest part is solving the Euler-Lagrange equations. It would be very nice if we could animate some solutions to variational calculus problems via mathematica as well. Then at the very end of the course we’ll return to the calculus of variations and try to grasp their formulation in Banach space. Edwards is careful to prove things in such a way that when possible the proof generalizes without much writing to the infinite-dimensional case. I hope to convince you that the variational derivative is just an derivative in an infinite dimensional function space. Its the best linear approximation in the same way that the usual derivative functions in the case of a function with a finite dimensional domain. You should understand we are only scratching the surface in this course.

We will use a fair amount of linear algebra in portions of this course, however if you have not had math 321 you should still be able to follow along. I don’t want to redo Math 321 too much in this course so I may at times refer to something as "known linear algebra". If you have not had linear algebra then you might need to read a few pages to see what I’m talking about.

Approximate Weekly Lecture List:

- Euclidean spaces and continuity [p1-p48, Edwards]
- Major topological theorems in \(\mathbb{R}^n \), curves and TNB-frame [p49-p61, Edwards]
- Frenet-Serret eqns, geometry of curves, derivative and chain-rules [p63-p88, Edwards]
- constrained chain rules, two-variable Lagrange multiplier problems [p76-p99, Edwards]
- manifolds, and Lagrange multipliers, quadratic forms [p101-p117, Edwards + my notes]
- single and multivariate Taylor’s Theorem, more on quadratic forms [p117-p140, Edwards]
- further max/min problems, naive variational calculus [p142-p157, Edwards]
- Euler-Lagrange equations, geodesics, classical mechanics
- contraction mappings, multivariate mean-value theorems proofs [p160-p180, Edwards]
- inverse and implicit function theorem proofs [p181-p194, Edwards]
• multilinear algebra and the exterior algebra of forms
• differential forms and vector fields
• generalized Stoke's theorem, Maxwell's eqns.
• normed linear spaces and variational calculus. [p402-p444, Edwards]

Before we begin, I should warn you that I assume quite a few things from the reader. These notes are intended for someone who has already grappled with the problem of constructing proofs. I assume you know the difference between ⇒ and ⇔. I assume the phrase "iff" is known to you. I assume you are ready and willing to do a proof by induction, strong or weak. I assume you know what ℝ, ℂ, ℚ, ℕ and ℤ denote. I assume you know what a subset of a set is. I assume you know how to prove two sets are equal. I assume you are familiar with basic set operations such as union and intersection (although we don't use those much). More importantly, I assume you have started to appreciate that mathematics is more than just calculations. Calculations without context, without theory, are doomed to failure. At a minimum theory and proper mathematics allows you to communicate analytical concepts to other like-educated individuals.

Some of the most seemingly basic objects in mathematics are insidiously complex. We've been taught they're simple since our childhood, but as adults, mathematical adults, we find the actual definitions of such objects as ℝ or ℂ are rather involved. I will not attempt to provide foundational arguments to build numbers from basic set theory. I believe it is possible, I think it's well-thought-out mathematics, but we take the existence of the real numbers as an axiom for these notes. We assume that ℝ exists and that the real numbers possess all their usual properties. In fact, I assume ℝ, ℂ, ℚ, ℕ and ℤ all exist complete with their standard properties. In short, I assume we have numbers to work with. We leave the rigorization of numbers to a different course.

Note on the empty exercises: we will be filling those in lecture. If you ever need another example of a particular definition then please ask. One resource you should keep in mind is my calculus III notes, I have hundreds of pgs. of calculations posted. I will not try to reteach those basics in this course for the most part, however there are a few sections in my calculus III notes that I didn’t get a chance to cover when I taught math 231 last year. Most of those sections we will likely be covering in this course. For example, the Frenet-Serret equations, curvature, torsion, Kepler's laws, constrained partial differentiation.

Finally, please be warned these notes are a work in progress. I look forward to your input on how they can be improved, corrected and supplemented.

version 0.2
CONTENTS

6 differentiation

6.1 derivatives and differentials .. 91
 6.1.1 derivatives of functions of a real variable 92
 6.1.2 derivatives of vector-valued functions of a real variable......... 93
 6.1.3 directional derivatives .. 94

6.2 partial derivatives and the existence of the derivative 99
 6.2.1 examples of derivatives ... 101
 6.2.2 sick examples and continuously differentiable mappings 107

6.3 properties of the derivative .. 109
 6.3.1 additivity and homogeneity of the derivative 109
 6.3.2 product rules? ... 110

6.4 chain rule ... 112
 6.4.1 theorems ... 115

6.5 differential forms and differentials 118
 6.5.1 differential form notation ... 118
 6.5.2 linearity properties of the derivative 119
 6.5.3 the chain rule revisited .. 119

6.6 special product rules .. 121
 6.6.1 calculus of paths in \mathbb{R}^3 121
 6.6.2 calculus of matrix-valued functions of a real variable 123
 6.6.3 calculus of complex-valued functions of a real variable 124

7 local extrema for multivariate functions 125

7.1 Taylor series for functions of two variables 125
 7.1.1 deriving the two-dimensional Taylor formula 125

7.2 Taylor series for functions of many variables 131

7.3 quadratic forms, conic sections and quadric surfaces 133
 7.3.1 quadratic forms and their matrix 133
 7.3.2 almost an introduction to eigenvectors 134
 7.3.3 quadratic form examples ... 136

7.4 local extrema from eigenvalues and quadratic forms 142

8 on manifolds and multipliers ... 147

8.1 surfaces in \mathbb{R}^3 .. 147

8.2 manifolds as level sets ... 149

8.3 Lagrange multiplier method for one constraint 152

8.4 Lagrange multiplier method for several constraints 153

9 theory of differentiation .. 155

9.1 Newton's method for solving the insolvable 155
 9.1.1 local solutions to level curves 159
 9.1.2 from level surfaces to graphs 161

9.2 inverse and implicit mapping theorems 163
##CONTENTS

14.10 some theory of variational calculus .. 225

###15 appendices

15.1 set theory ... 227
15.2 introduction to topology .. 227
15.3 Einstein notation, an introduction to tensor arithmetic .. 229
 15.3.1 basic index arithmetic ideas 230
 15.3.2 applying Einstein’s notation 231
 15.3.3 The \(\nabla \) operator .. 232
 15.3.4 grad, curl and div in Cartesians 232
 15.3.5 properties of the gradient operator 232
15.4 vector space terminology .. 233
 15.4.1 definition of vector space 234
 15.4.2 subspace test .. 234
 15.4.3 linear combinations and spanning sets 235
 15.4.4 linear independence ... 235
15.5 Tensor products and exterior algebra 237
Chapter 1

introduction

What is advanced calculus? If you survey the books on the subject you'll find there is quite some variety in the concept of what this course contains. Basically there are two routes which are followed:

- emphasis of analytical concepts and proofs in calculus
- emphasis of calculations not learned in the main calculus sequence

Usually both routes emphasize that calculus can be done in \(n \)-dimensions rather than just the \(n = 1, 2, 3 \) of calculus I,II and III.

Because we have a rigorous analysis course at LU I have chosen to steer more towards option 2. However, I will actually prove some rather analytical results this semester. Your responsibilities as a student will tend more towards the calculational.

This course should challenge your understanding of basic concepts such as functions and sets. I also want you to understand the geometry of calculus III thoroughly. If you understand the implicit and inverse mapping theorems then you’ll leave this course with a much better understanding of when and how you can expect to solve equations.

Traditional undergraduate mathematics texts stay away from mentioning graduate topics. These notes are not so traditional. I attempt to weave introductions to advanced topics whenever the opportunity presents itself. I’ve also woven a fair amount of classical mechanics into these notes. I believe these strengthen the intuition of many students because we naturally ask the question ”but what is this for?” If that question does not appeal to you at all then you might just be a pure mathematician. Pure mathematicians are these strange creatures who find joy in studying math for math’s sake alone.
Chapter 2

analytic geometry

In this chapter I will describe n-dimensional Euclidean space and its essential properties. Much of this is not much removed from the discussion of vectors in calculus III. However, we will state as many things as possible for arbitrarily many finite dimensions. Also, we will make use of matrices and linear algebra where it is helpful. For those of you who have not yet taken linear algebra, I have included a few exercises in the Problem sets to help elucidate matrix concepts. If you do those exercises it should help. If you need more examples just ask.

2.1 Euclidean space and vectors

Rene Descartes put forth the idea of what we now call Cartesian coordinates for the plane several hundred years ago. The Euclidean concept of geometry predating Descartes seems abstract in comparison. Try graphing without coordinates. In any event, the definition of Cartesian coordinates and \mathbb{R}^n are intertwined in these notes. If we talk about \mathbb{R}^n then we have a preferred coordinate system because the zero point is at the origin.

Definition 2.1.1.

We define $\mathbb{R}^n = \{ (x_1, x_2, \ldots, x_n) \mid x_i \in \mathbb{R} \text{ for each } i = 1, 2, \ldots, n \}$. If $P = (a_1, a_2, \ldots, a_n)$ is a point in \mathbb{R}^n then the j-th Cartesian coordinate of the point P is a_j.

Notice that in terms of sets we can write $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ and $\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$. Since points in \mathbb{R}^n are in 1-1 correspondence with vectors in \mathbb{R}^n we can add vectors and rescale them by scalar multiplication. If I wish to emphasize that we are working with vectors I may use the notation $\langle a, b, c \rangle \in V^3$ etc... However, we will think of \mathbb{R}^n as both a set of points and a set of vectors, which takes precedence depends on the context.

\[^1 \text{some other authors might use } \mathbb{R}^n \text{ is refer to abstract Euclidean space where no origin is given apriori by the mathematics. Given Euclidean space } \mathcal{E} \text{ and a choice of an origin } \mathcal{O}, \text{ one can always set-up a 1-1 correspondence with } \mathbb{R}^n \text{ by mapping the origin to zero in } \mathbb{R}^n. \]

\[^2 \text{Technically these are ambiguous since the Cartesian product of sets is nonassociative but in these notes we identify } \mathbb{R} \times (\mathbb{R} \times \mathbb{R}) \text{ and } (\mathbb{R} \times \mathbb{R}) \times \mathbb{R} \text{ as the same object. Btw, my Math 200 notes have more on basics of Cartesian products.} \]
Definition 2.1.2.

We define \(V^n = \{ <v_1, v_2, \ldots, v_n> \mid v_i \in \mathbb{R} \text{ for each } i = 1, 2, \ldots, n \} \).

If \(v = <v_1, v_2, \ldots, v_n> \) is a \textbf{vector} in \(\mathbb{R}^n \) then the \textit{j}-th component of the vector \(v \) is \(v_j \).

Let \(v, w \in V^n \) with \(v = <v_i>, w = <w_i> \) and \(c \in \mathbb{R} \) then we define:

\[
v + w = <v_1 + w_1, v_2 + w_2, \ldots, v_n + w_n> \quad cv = <cv_1, cv_2, \ldots, cv_n>.
\]

I will refer to \(V^n \) as the set of \(n \)-dimensional real vectors. The dot-product is used to define angles and lengths of vectors in \(V^n \).

\[\text{Definition 2.1.3.}\]

If \(v = <v_1, v_2, \ldots, v_n> \) and \(w = <w_1, w_2, \ldots, w_n> \) are vectors in \(V^n \) then the \textbf{dot-product} of \(v \) and \(w \) is a \textbf{real number} defined by:

\[
v \cdot w = v_1w_1 + v_2w_2 + \cdots + v_nw_n.
\]

The \textbf{length (or norm)} of a \textbf{vector} \(v = <v_1, v_2, \ldots, v_n> \) is denoted \(||v|| \) and is the real number defined by:

\[
||v|| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2}.
\]

If \(v = <v_1, v_2, \ldots, v_n> \neq 0 \) and \(w = <w_1, w_2, \ldots, w_n> \neq 0 \) are vectors in \(V^n \) then the \textbf{angle} \(\theta \) between \(v \) and \(w \) is defined by:

\[
\theta = \cos^{-1}\left(\frac{v \cdot w}{||v|| ||w||}\right).
\]

The vectors \(v, w \) are said to be \textbf{orthogonal} iff \(v \cdot w = 0 \).

\[\text{Example 2.1.4.}\]
2.1. EUCLIDEAN SPACE AND VECTORS

The dot-product has many well-known properties:

Proposition 2.1.5.

Suppose \(x, y, z \in \mathbb{R}^{n \times 1}\) and \(c \in \mathbb{R}\) then

1. \(x \cdot y = y \cdot x\)
2. \(x \cdot (y + z) = x \cdot y + x \cdot z\)
3. \(c(x \cdot y) = (cx) \cdot y = x \cdot (cy)\)
4. \(x \cdot x \geq 0\) and \(x \cdot x = 0\) if \(x = 0\)

Notice that the formula \(\cos^{-1}\left(\frac{x \cdot y}{||x|| ||y||}\right)\) needs to be justified since the domain of inverse cosine does not contain all real numbers. The inequality that we need for it to be reasonable is \(\frac{x \cdot y}{||x|| ||y||} \leq 1\), otherwise we would not have a number in the \(\text{dom}(\cos^{-1}) = \text{range}(\cos) = [-1, 1]\). An equivalent inequality is \(|x \cdot y| \leq ||x|| ||y||\) which is known as the **Cauchy-Schwarz** inequality.

Proposition 2.1.6.

If \(x, y \in \mathbb{R}^{n \times 1}\) then \(|x \cdot y| \leq ||x|| ||y||\)

These properties are easy to justify for the norm we defined in this section.

Proposition 2.1.7.

Let \(x, y \in \mathbb{R}^{n \times 1}\) and suppose \(c \in \mathbb{R}\) then

1. \(||cx|| = |c||x||\)
2. \(||x + y|| \leq ||x|| + ||y||\)

Every nonzero vector can be written as a unit vector scalar multiplied by its magnitude.

\[v \in V^n\text{ such that } v \neq 0 \Rightarrow v = ||v|| \hat{v} \text{ where } \hat{v} = \frac{1}{||v||} v.\]

You should recall that we can write any vector in \(V^3\) as

\[v = \langle a, b, c \rangle = a < 1, 0, 0 > + b < 0, 1, 0 > + c < 0, 0, 1 > = a\hat{i} + b\hat{j} + c\hat{k}\]

where we defined the \(\hat{i} = < 1, 0, 0 >, \hat{j} = < 0, 1, 0 >, \hat{k} = < 0, 0, 1 >\). You can easily verify that distinct Cartesian unit-vectors are orthogonal. Sometimes we need to produce a vector which is orthogonal to a given pair of vectors, it turns out the cross-product is one of two ways to do that in \(V^3\). We will see much later that this is special to three dimensions.
Definition 2.1.8.

If \(A = \langle A_1, A_2, A_3 \rangle \) and \(B = \langle B_1, B_2, B_3 \rangle \) are vectors in \(V^3 \) then the cross-product of \(A \) and \(B \) is a vector \(A \times B \) which is defined by:

\[
\vec{A} \times \vec{B} = \langle A_2 B_3 - A_3 B_2, A_3 B_1 - A_1 B_3, A_1 B_2 - A_2 B_1 \rangle.
\]

The magnitude of \(\vec{A} \times \vec{B} \) can be shown to satisfy \(||\vec{A} \times \vec{B}|| = ||\vec{A}|| \ ||\vec{B}|| \sin(\theta) \) and the direction can be deduced by right-hand-rule. The right hand rule for the unit vectors yields:

\[
\hat{i} \times \hat{j} = \hat{k}, \quad \hat{k} \times \hat{i} = \hat{j}, \quad \hat{j} \times \hat{k} = \hat{i}.
\]

If I wish to discuss both the point and the vector to which it corresponds we may use the notation

\[
P = (a_1, a_2, \ldots, a_n) \quad \leftrightarrow \quad \vec{P} = \langle a_1, a_2, \ldots, a_n \rangle.
\]

With this notation we can easily define directed line-segments as the vector which points from one point to another, also the distance between points is simply the length of the vector which points from one point to the other:

Definition 2.1.9.

Let \(P, Q \in \mathbb{R}^n \). The directed line segment from \(P \) to \(Q \) is \(\overrightarrow{PQ} = \vec{Q} - \vec{P} \). This vector is drawn from tail \(Q \) to the tip \(P \) where we denote the direction by drawing an arrowhead. The distance between \(P \) and \(Q \) is \(d(P, Q) = ||\overrightarrow{PQ}|| \).

2.1.1 compact notations for vector arithmetic

I prefer the following notations over the hat-notation of the preceding section because this notation generalizes nicely to \(n \)-dimensions.

\[
e_1 = \langle 1, 0, 0 \rangle \quad e_2 = \langle 0, 1, 0 \rangle \quad e_3 = \langle 0, 0, 1 \rangle.
\]

Likewise the Kronecker delta and the Levi-Civita symbol are at times very convenient for abstract calculation:

\[
\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \quad \epsilon_{ijk} = \begin{cases} 1 & (i, j, k) \in \{(1, 2, 3), (3, 1, 2), (2, 3, 1)\} \\ -1 & (i, j, k) \in \{(3, 2, 1), (2, 1, 3), (1, 3, 2)\} \\ 0 & \text{if any index repeats} \end{cases}
\]

An equivalent definition for the Levi-civita symbol is simply that \(\epsilon_{123} = 1 \) and it is antisymmetric with respect to the interchange of any pair of indices;

\[
\epsilon_{ijk} = \epsilon_{jki} = \epsilon_{kij} = -\epsilon_{kji} = -\epsilon_{ijk} = -\epsilon_{ikj}.
\]
Now let us restate some earlier results in terms of the Einstein repeated index conventions: let $\vec{A}, \vec{B} \in V^n$ and $c \in \mathbb{R}$ then

<table>
<thead>
<tr>
<th>Expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vec{A} = A_k e_k$</td>
<td>standard basis expansion</td>
</tr>
<tr>
<td>$e_i \cdot e_j = \delta_{ij}$</td>
<td>orthonormal basis</td>
</tr>
<tr>
<td>$(\vec{A} + \vec{B})_i = \vec{A}_i + \vec{B}_i$</td>
<td>vector addition</td>
</tr>
<tr>
<td>$(\vec{A} - \vec{B})_i = \vec{A}_i - \vec{B}_i$</td>
<td>vector subtraction</td>
</tr>
<tr>
<td>$(c\vec{A})_i = c\vec{A}_i$</td>
<td>scalar multiplication</td>
</tr>
<tr>
<td>$\vec{A} \cdot \vec{B} = A_k B_k$</td>
<td>dot product</td>
</tr>
<tr>
<td>$(\vec{A} \times \vec{B})k = \epsilon{ijk} A_i B_j$</td>
<td>cross product.</td>
</tr>
</tbody>
</table>

All but the last of the above are readily generalized to dimensions other than three by simply increasing the number of components. However, the cross product is special to three dimensions. I can’t emphasize enough that the formulas given above for the dot and cross products can be utilized to yield great efficiency in abstract calculations.

Example 2.1.10.
2.2 matrices

An \(m \times n \) matrix is an array of numbers with \(m \)-rows and \(n \)-columns. We define \(\mathbb{R}^{m \times n} \) to be the set of all \(m \times n \) matrices. The set of all \(n \)-dimensional column vectors is \(\mathbb{R}^{n \times 1} \). The set of all \(n \)-dimensional row vectors is \(\mathbb{R}^{1 \times n} \). A given matrix \(A \in \mathbb{R}^{m \times n} \) has \(mn \)-components \(A_{ij} \). Notice that the components are numbers; \(A_{ij} \in \mathbb{R} \) for all \(i, j \) such that \(1 \leq i \leq m \) and \(1 \leq j \leq n \). We should not write \(A = A_{ij} \) because it is nonsense, however \(A = [A_{ij}] \) is quite fine.

Suppose \(A \in \mathbb{R}^{m \times n} \), note for \(1 \leq j \leq n \) we have \(\text{col}_j(A) \in \mathbb{R}^{m \times 1} \) whereas for \(1 \leq i \leq m \) we find \(\text{row}_i(A) \in \mathbb{R}^{1 \times n} \). In other words, an \(m \times n \) matrix has \(n \) columns of length \(m \) and \(m \) rows of length \(n \).

Definition 2.2.1.

Two matrices \(A \) and \(B \) are equal iff \(A_{ij} = B_{ij} \) for all \(i, j \). Given matrices \(A, B \) with components \(A_{ij}, B_{ij} \) and constant \(c \in \mathbb{R} \) we define

\[
(A + B)_{ij} = A_{ij} + B_{ij} \quad (cA)_{ij} = cA_{ij}
\]

for all \(i, j \).

The **zero matrix** in \(\mathbb{R}^{m \times n} \) is denoted \(0 \) and defined by \(0_{ij} = 0 \) for all \(i, j \). The additive inverse of \(A \in \mathbb{R}^{m \times n} \) is the matrix \(-A \) such that \(A + (-A) = 0 \). The components of the additive inverse matrix are given by \((-A)_{ij} = -A_{ij} \) for all \(i, j \). Likewise, if \(A \in \mathbb{R}^{m \times n} \) and \(B \in \mathbb{R}^{n \times p} \) then the product \(AB \in \mathbb{R}^{m \times p} \) is defined by:

\[
(AB)_{ij} = \sum_{k=1}^{n} A_{ik}B_{kj}
\]

for each \(1 \leq i \leq m \) and \(1 \leq j \leq p \). In the case \(m = p = 1 \) the indices \(i, j \) are omitted in the equation since the matrix product is simply a number which needs no index. The **identity matrix** in \(\mathbb{R}^{n \times n} \) is the \(n \times n \) square matrix \(I \) whose components are the Kronecker delta;

\[
I_{ij} = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}.
\]

The notation \(I_n \) is sometimes used if the size of the identity matrix needs emphasis, otherwise the size of the matrix \(I \) is to be understood from the context.

\[
I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.
\]

Let \(A \in \mathbb{R}^{n \times n} \). If there exists \(B \in \mathbb{R}^{n \times n} \) such that \(AB = I \) and \(BA = I \) then we say that \(A \) is **invertible** and \(A^{-1} = B \). Invertible matrices are also called **nonsingular**. If a matrix has no inverse then it is called a **noninvertible** or **singular** matrix. Let \(A \in \mathbb{R}^{m \times n} \) then \(A^T \in \mathbb{R}^{n \times m} \) is called the **transpose** of \(A \) and is defined by \((A^T)_{ji} = A_{ij} \) for all \(1 \leq i \leq m \) and \(1 \leq j \leq n \). Note **dot-product** of \(v, w \in \mathbb{V}^n \) is given by \(v \cdot w = v^T w \).
Remark 2.2.2.
We will use the convention that points in \mathbb{R}^n are column vectors. However, we will use the somewhat subtle notation $(x_1, x_2, \ldots, x_n) = [x_1, x_2, \ldots, x_n]^T$. This helps me write \mathbb{R}^n rather than $\mathbb{R}^{n \times 1}$ and I don’t have to pepper transposes all over the place. If you’ve read my linear algebra notes you’ll appreciate the wisdom of our convention. Likewise, for the sake of matrix multiplication, we adopt the subtle convention $<x_1, x_2, \ldots, x_n> = [x_1, x_2, \ldots, x_n]^T$ for vectors in V^n. Worse yet I will later in the course fail to distinguish between V^n and \mathbb{R}^n. Most texts adopt the view that points and vectors can be identified so there is no distinction made between these sets. We also follow that view, however I reserve the right to use V^n if I wish to emphasize that I am using vectors.

Definition 2.2.3.
Let $e_i \in \mathbb{R}^n$ be defined by $(e_i)_j = \delta_{ij}$. The size of the vector e_i is determined by context. We call e_i the i-th standard basis vector.

Example 2.2.4. . .

Definition 2.2.5.
The ij-th standard basis matrix for $\mathbb{R}^{m \times n}$ is denoted E_{ij} for $1 \leq i \leq m$ and $1 \leq j \leq n$. The matrix E_{ij} is zero in all entries except for the (i,j)-th slot where it has a 1. In other words, we define $(E_{ij})_{kl} = \delta_{ik}\delta_{jl}$.

Theorem 2.2.6.
Assume $A \in \mathbb{R}^{m \times n}$ and $v \in \mathbb{R}^{n \times 1}$ and define $(E_{ij})_{kl} = \delta_{ik}\delta_{jl}$ and $(e_i)_j = \delta_{ij}$ as before then,

$$v = \sum_{i=1}^{n} v_i e_i, \quad A = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}E_{ij},$$

$$[e_i^T A] = \text{row}_i(A) \quad [Ae_i] = \text{col}_i(A) \quad A_{ij} = (e_i)^T A e_j$$

$$E_{ij}E_{kl} = \delta_{jk}E_{il} \quad E_{ij} = e_i e_j^T \quad e_i^T e_j = e_i \cdot e_j = \delta_{ij}$$
You can look in my linear algebra notes for the details of the theorem. I’ll just expand one point here: Let $A \in \mathbb{R}^{m \times n}$ then

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{bmatrix} = A_{11} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} + A_{12} \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} + \cdots + A_{mn} \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}.$$

The calculation above follows from repeated mn-applications of the definition of matrix addition and another mn-applications of the definition of scalar multiplication of a matrix.

Example 2.2.7. . .
2.3 linear transformations

We should recall the precise definition of a linear combination: A linear combination of objects A_1, A_2, \ldots, A_k is a sum $c_1A_1 + c_2A_2 + \cdots + c_kA_k = \sum_{i=1}^{k} c_iA_i$ where $c_i \in \mathbb{R}$ for each i. Essentially, a vector space is simply a set of objects called "vectors" for which any linear combination of the vectors is again in the set. In other words, vectors in a vector space can be added by "vector addition" or rescaled by a so-called "scalar multiplication". A linear transformation is a mapping from one vector space to another which preserves linear combinations.

Definition 2.3.1.

Let V,W be vector spaces. If a mapping $L : V \to W$ satisfies

1. $L(x + y) = L(x) + L(y)$ for all $x, y \in V$,
2. $L(cx) = cL(x)$ for all $x \in V$ and $c \in \mathbb{R}$

then we say L is a linear transformation.

Example 2.3.2. . .

Example 2.3.3. . .

Example 2.3.4. . .
Definition 2.3.5.

Let $L : \mathbb{R}^{n \times 1} \to \mathbb{R}^{m \times 1}$ be a linear transformation, the matrix $A \in \mathbb{R}^{m \times n}$ such that $L(x) = Ax$ for all $x \in \mathbb{R}^{n \times 1}$ is called the standard matrix of L. We denote this by $[L] = A$ or more compactly, $[L_A] = A$, we say that L_A is the linear transformation induced by A.

Example 2.3.6. . .

Example 2.3.7. . .
Proposition 2.3.8.

Let V_1, V_2, V_3 be vector spaces and suppose $L_1 : V_1 \rightarrow V_2$ and $L_2 : V_2 \rightarrow V_3$ are linear transformations then $L_2 \circ L_1 : V_1 \rightarrow V_3$ is a linear transformation and if V_1, V_2 are column spaces then $[L_2 \circ L_1] = [L_2][L_1]$.

Example 2.3.9.

Example 2.3.10.
2.4 orthogonal transformations

Orthogonal transformations play a central role in the study of geometry.

Definition 2.4.1.

If $T: \mathbb{R}^{n \times 1} \rightarrow \mathbb{R}^{n \times 1}$ is a linear transformation such that $T(x) \cdot T(y) = x \cdot y$ for all $x, y \in \mathbb{R}^{n \times 1}$ then we say that T is an **orthogonal transformation**. The matrix R of an orthogonal transformation is called an **orthogonal matrix** and it satisfies $R^T R = I$. The set of orthogonal matrices is $O(n)$ and the subset of rotation matrices is denoted $SO(n) = \{ R \in O(n) | \det(R) = 1 \}$.

The definition above is made so that an orthogonal transformation preserves the lengths of vectors and the angle between pairs of vectors. Since both of those quantities are defined in terms of the dot-product it follows that lengths and angles are invariant under a linear transformation since the dot-product is unchanged. In particular,

$$||T(x)||^2 = T(x) \cdot T(x) = x \cdot x = ||x||^2 \Rightarrow ||T(x)|| = ||x||$$

Likewise, defining θ to be the angle between x, y and θ_T the angle between $T(x), T(y)$:

$$T(x) \cdot T(y) = x \cdot y \Rightarrow ||T(x)|| ||T(y)|| \cos \theta_T = ||x|| ||y|| \cos \theta \Rightarrow \cos \theta_T = \cos \theta \Rightarrow \theta_T = \theta$$

2.5 orthogonal bases

Definition 2.5.1.

A set S of vectors in $\mathbb{R}^{n \times 1}$ is **orthogonal** iff every pair of vectors in the set is orthogonal. If S is orthogonal and all vectors in S have length one then we say S is **orthonormal**.

It is easy to see that an orthogonal transformation maps an orthonormal set to another orthonormal set. Observe that the standard basis $\{e_1, e_2, \ldots, e_n\}$ is an orthonormal set of vectors since $e_i \cdot e_j = \delta_{ij}$. When I say the set is a **basis** for \mathbb{R}^n this simply means that it is a set of vectors which **spans** \mathbb{R}^n by finite linear combinations and is also **linearly independent**. In case you haven’t had linear,

Definition 2.5.2.

1. $S = \{v_1, v_2, \ldots, v_k\}$ is **linearly independent** iff $\sum_{i=1}^{k} c_i v_i = 0$ implies $c_i = 0$ for $i = 1, 2, \ldots k$.

2. $S = \{v_1, v_2, \ldots, v_k\}$ is **spans** W iff for each $w \in W$ there exist constants w_1, w_2, \ldots, w_k such that $w = \sum_{i=1}^{k} w_i v_i$.

3. β is a **basis** for a vector space V iff it is a linearly independent set which spans V. Moreover, if there are n vectors in β then we say $\dim(V) = n$.
In fact, since the dimension of \mathbb{R}^n is known to be n either spanning or linear independence of a set of n vectors is a sufficient condition to insure a given set of vectors is a basis for \mathbb{R}^n. In any event, we can prove that an orthonormal set of vectors is linearly independent. So, to summarize, if we have a linear transformation T we can construct a new orthonormal basis from the standard basis:

$$T(\{e_1, \ldots, e_n\}) = \{T(e_1), \ldots, T(e_n)\}$$

Example 2.5.3. In calculus III you hopefully observed (perhaps not in this language, but the patterns were there just waiting to be noticed):

1. a line through the origin is spanned by its direction vector.
2. a plane through the origin is spanned by any two non-parallel vectors that lie in that plane.
3. three dimensional space is spanned by three non-coplanar vectors. For example, $\hat{i}, \hat{j}, \hat{k}$ span \mathbb{R}^3.

2.6 coordinate systems

Definition 2.6.1.

A coordinate system of \mathbb{R}^n is a set of n functions $\bar{x}_i : \mathbb{R}^n \to \mathbb{R}$ for $i = 1, 2, \ldots, n$ such that we can invert the equations

$$\bar{x}_i = \bar{x}_i(x_1, x_2, \ldots, x_n)$$

to obtain

$$x_i = x_i(\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_n)$$

on most of \mathbb{R}^n In other words, we can group the functions into a coordinate map $\Phi = (\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_n)$ and \bar{x} is a 1-1 correspondence on most of \mathbb{R}^n. We call \bar{x}_j the j-th coordinate of the \bar{x} coordinate system. For a particular coordinate system we also define the j-th coordinate axis to be the set of points such that all the other coordinates are zero. If the coordinate axis is a line for each coordinate then the coordinate system is said to be rectilinear. If the coordinate axis is not a line for all the coordinates then the coordinate system is said to be curvilinear. If the coordinate axes have orthogonal unit vectors then the coordinate system is said to be an orthogonal coordinate system. Likewise, if the coordinate curves of a curvilinear coordinate system have orthogonal tangent vectors at all points then the curvilinear coordinate system is said to give an orthogonal coordinate system.

Example 2.6.2.
The case of Cartesian coordinates has $\Phi = Id$. Conceptually we think of the codomain as a different space than the domain in general. For example, in the case of polar coordinates on the plane we have a mapping $\Phi : \mathbb{R}^2 \to \mathbb{R}^2$ where a circle in the domain becomes a line in the range. The line in $r\theta$ space is a representation of the circle in the view of polar coordinates. Students often confuse themselves by implicitly insisting that the domain and range of the coordinate map are the same copy of \mathbb{R}^n but this is the wrong concept. Let me illustrate with a few mapping pictures:

Example 2.6.3.

Generally I admit that I’m being a bit vague here because the common usage of the term coordinate system is a bit vague. Later I’ll define a patched manifold and that structure will give a refinement of the coordinate concept which is unambiguous. That said, common coordinate systems such as polar, spherical coordinates fail to give coordinates for manifolds unless we add restrictions on the domain of the coordinate which are not typically imposed in applications. Let me give a few coordinate systems commonly used in applications so we can contrast those against the coordinate systems given from orthonormal bases of \mathbb{R}^n.

Example 2.6.4.
Example 2.6.5. Consider \(\mathbb{R}^2 \) with the usual \(x, y \) coordinates, polar coordinates \(r, \theta \) are given by the polar radius \(r = \sqrt{x^2 + y^2} \) and polar angle \(\theta = \tan^{-1}(y/x) \). These are inverted to give \(x = r \cos(\theta) \) and \(y = r \sin(\theta) \). Notice that \(\theta \) is not well defined along \(x = 0 \) if we take the given formula as the definition. Even so the angle at the origin is not well-defined no matter how you massage the equations. Polar coordinates are curvilinear coordinates, setting \(\theta = 0 \) yields a ray along the positive \(x \)-axis whereas setting \(r = 0 \) just yields the origin.

Example 2.6.6. Consider \(\mathbb{R}^3 \) with the usual \(x, y, z \) coordinates, spherical coordinates \(\rho, \theta, \phi \) are given by spherical radius \(\rho = \sqrt{x^2 + y^2 + z^2} \), polar angle \(\theta = \tan^{-1}(y/x) \) and azimuthal angle \(\phi = \cos^{-1}(z/\sqrt{x^2 + y^2 + z^2}) \). These are inverted to give \(x = \rho \cos(\theta) \sin(\phi) \) and \(y = \rho \sin(\theta) \sin(\phi) \) and \(z = \rho \cos(\phi) \). Even so the angles can’t be well-defined everywhere. The function of inverse tangent can never return a polar angle in quadrants II or III because range(\(\tan^{-1} \)) = \((-\pi/2, \pi/2)\). In order to find angles in the quadrants with \(x < 0 \) we have to adjust the equations by hand as we are taught in trigonometry. Spherical coordinates are also curvilinear, there is no coordinate axis for the spherical radius and the angles have rays rather than lines for their coordinate axes.
Example 2.6.7. Consider \mathbb{R}^n with the usual Cartesian coordinates $x = (x_1, x_2, \ldots, x_n)$. If $p \in \mathbb{R}^n$ then we can write

$$p = x_1e_1 + x_2e_2 + \cdots + x_ne_n = [e_1|e_2|\cdots|e_n][x_1, x_2, \ldots, x_n]^T$$

Let T be an orthogonal transformation and define a rotated basis f_i by $[f_1|\cdots|f_n] = [e_1|\cdots|e_n]R = R$ where $R \in SO(n)$. Since $R^TR = I$ it follows that $R^{-1} = R^T$ and so $[e_1|\cdots|e_n] = [f_1|\cdots|f_n]R^T$. Note that $p = [f_1|\cdots|f_n]y$ where $y = [y_1, y_2, \ldots, y_n]^T$. We deduce,

$$y = R^Tx.$$

We find that if we set up a rotated coordinate system where the new basis is formed by rotating the standard basis by R then the new coordinates relate to the old coordinates by the inverse rotation $R^T = R^{-1}$.

Let me break down the example in the $n = 2$ case.

Example 2.6.8. Let $\{e_1, e_2\}$ be the standard basis for \mathbb{R}^2. In invite the reader to check that

$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \in SO(2).$$

If our calculation is correct in the previous example the new coordinate axes should be obtained from the standard basis by the inverse transformation.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \cos \theta + y \sin \theta \\ -x \sin \theta + y \cos \theta \end{bmatrix}$$

The inverse transformations to give x, y in terms of x', y' are similar

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x' \cos \theta - y' \sin \theta \\ x' \sin \theta + y' \cos \theta \end{bmatrix}$$

Let’s find the equations of the primed coordinate axes.

1. The y' axis has equation $x' = 0$ hence $x = -y'\sin(\theta)$ and $y = y'\cos(\theta)$ which yields $y = -\cot(\theta)x$ for $y' \neq 0$

2. Likewise, the x' axis has equation $y' = 0$ hence $x = x'\cos(\theta)$ and $y = x'\sin(\theta)$ which yields $y = \tan(\theta)x$ for $x' \neq 0$.

Therefore the new primed axes are perpendicular to one another and are apparently rotated by angle θ in the clockwise direction as illustrated below.
2.7 orthogonal complements

Perhaps you’ve seen part of this Theorem before:

Proposition 2.7.1. Pythagorean Theorem in n-dimensions

If \(x, y \in \mathbb{R}^{n \times 1} \) are orthogonal vectors then \(||x||^2 + ||y||^2 = ||x+y||^2 \). Moreover, if \(x_1, x_2, \ldots, x_k \) are orthogonal then

\[
||x_1||^2 + ||x_2||^2 + \cdots + ||x_k||^2 = ||x_1 + x_2 + \cdots + x_k||^2
\]

The notation \(W \leq V \) is meant to read "\(W \) is a subspace of \(V \)." A subspace is a subset of a vector space which is again a vector space with respect to the operations of \(V \).

Proposition 2.7.2. Existence of Orthonormal Basis

If \(W \leq \mathbb{R}^{n \times 1} \) then there exists an orthonormal basis of \(W \).

The proof of the proposition above relies on an algorithm called **Gram-Schmidt orthogonalization**. That algorithm allows you to take any set of linearly independent vectors and replace it with a new set of vectors which are pairwise orthogonal.

Example 2.7.3. For the record, the standard basis of \(\mathbb{R}^{n \times 1} \) is an orthonormal basis and

\[
v = (v \cdot e_1)e_1 + (v \cdot e_2)e_2 + \cdots + (v \cdot e_n)e_n
\]

for any vector \(v \) in \(\mathbb{R}^{n \times 1} \).

Definition 2.7.4.

Suppose \(W_1, W_2 \subseteq \mathbb{R}^{n \times 1} \) then we say \(W_1 \) is **orthogonal** to \(W_2 \) iff \(w_1 \cdot w_2 = 0 \) for all \(w_1 \in W_1 \) and \(w_2 \in W_2 \). We denote orthogonality by writing \(W_1 \perp W_2 \).

Definition 2.7.5.

Let \(V \) be a vector space and \(W_1, W_2 \leq V \). If every \(v \in V \) can be written as \(v = w_1 + w_2 \) for a unique pair of \(w_1 \in W_1 \) and \(w_2 \in W_2 \) then we say that \(V \) is the **direct sum** of \(W_1 \) and \(W_2 \). Moreover, we denote the statement "\(V \) is a direct sum of \(W_1 \) and \(W_2 \)" by \(V = W_1 \oplus W_2 \).

Proposition 2.7.6.

Let \(W \leq \mathbb{R}^{n \times 1} \) then

1. \(\mathbb{R}^{n \times 1} = W \oplus W^\perp \).
2. \(\text{dim}(W) + \text{dim}(W^\perp) = n \),
3. \((W^\perp)^\perp = W \),
Basically the cross-product is used in V^3 to select the perpendicular to a plane formed by two vectors. The theorem above tells us that if we wished to choose a perpendicular direction for a 2-dimensional plane inside V^5 then we would have a $5 - 2 = 3$-dimensional orthogonal complement to choose a "normal" for the plane. In other words, the concept of a normal vector to a plane is not so simple in higher dimensions. We could have a particular plane with two different "normal" vectors which were orthogonal!

Example 2.7.7.

Example 2.7.8.

Example 2.7.9.
Chapter 3

topology and mappings

We begin this chapter by briefly examining all the major concepts of the metric topology for \(\mathbb{R}^n \). Then we discuss limits for functions and mappings from using the rigorous \(\epsilon - \delta \) formulation. For this chapter and course a "function" has range which is a subset of \(\mathbb{R} \). In contrast, a mapping has a range which is in some subset of \(\mathbb{R}^n \) for \(n \geq 2 \) if we want to make it interesting. Continuity is defined and a number of basic theorems are either proved by me or you. Finally I quote a few important (and less trivial) theorems about topology and mappings in \(\mathbb{R}^n \).

3.1 functions and mappings

In this section we discuss basic vocabulary for functions and mappings.

Definition 3.1.1.

Let \(U \subseteq \mathbb{R}^n \) and \(V \subseteq \mathbb{R} \) then we say that \(f : U \rightarrow V \) is a function iff \(f(x) \) assigns a single value in \(V \) for each input \(x \in U \). We say a function is single-valued from domain \(U \) to codomain \(V \). We denote \(\text{dom}(f) = U \). The range or image of the function is defined by:

\[
\text{range}(f) = f(D) = \{ y \in \mathbb{R} \mid \exists x \in U \text{ such that } f(x) = y \}
\]

We can also say that "\(f \) is a real-valued function of \(U \)."

Example 3.1.2. . .

I generally prefer the term function for a more abstract concept: I would like to say \(f : A \rightarrow B \) is an \(B \)-valued function of \(A \) and I don’t make any restriction except that \(A,B \) must be sets. Anyhow, I’ll try to respect the custom of calculus for this course because it saves us a lot of talking. I will use the term "abstract function" if I don’t wish to presuppose the codomain contains only real numbers.
A mapping is an abstract function with codomain in \(\mathbb{R}^n \).

Definition 3.1.3.

Let \(U \subseteq \mathbb{R}^n \) and \(V \subseteq \mathbb{R}^m \) then we say that \(f : U \rightarrow V \) is a **mapping** iff \(f(x) \) assigns a single value in \(V \) for each input \(x \in U \). We say a \(f \) is a single-value mapping from **domain** \(U \) to **codomain** \(V \). We mean for \(\text{dom}(f) = U \) to be read that the domain of \(f \) is \(U \). The **range** or **image** of the mapping is the set of all possible outputs: we denote

\[
\text{range}(f) = f(D) = \{ y \in \mathbb{R}^m \mid \exists x \in U \text{ such that } f(x) = y \}
\]

Suppose that \(x \in \text{dom}(f) \) and \(f(x) = (f_1(x), f_2(x), \ldots, f_m(x)) \) then we say that \(f_1, f_2, \ldots, f_m \) are the **component functions** of \(f \) and \(f = (f_i) = (f_1, f_2, \ldots f_m) \).

In the case \(m = 1 \) we find that the concept of a mapping reduces to a plain-old-function.

Example 3.1.4.

Definition 3.1.5.

A mapping \(f : U \subseteq \mathbb{R}^n \rightarrow V \subseteq \mathbb{R}^m \) is said to be **injective** or **1-1** on \(S \subseteq U \) iff \(f(x) = f(y) \) implies \(x = y \) for all \(x, y \in S \). If a mapping is 1-1 on its domain then it is said to be 1-1 or injective. The mapping \(f \) is said to be **surjective** or **onto** \(T \subseteq V \) iff for each \(v \in T \) there exists \(u \in U \) such that \(f(u) = v \); in set notation we can express: \(f \) is onto \(T \) iff \(f(U) = T \). A mapping is said to be surjective or onto iff it is onto its codomain. A mapping is a **bijection** or **1-1 correspondance** of \(U \) and \(V \) iff \(f \) is injective and surjective.

Example 3.1.6.
We can also adjust the domain of a given mapping by restriction and extension.

Definition 3.1.7.

Let \(f : U \subseteq \mathbb{R}^n \to V \subseteq \mathbb{R}^m \) be a mapping. If \(R \subseteq U \) then we define the **restriction of \(f \) to \(R \)** to be the mapping \(f|_R : R \to V \) where \(f|_R(x) = f(x) \) for all \(x \in R \). If \(U \subseteq S \) and \(V \subseteq T \) then we say a mapping \(g : S \to T \) is an **extension of \(f \)** iff \(g|_{\text{dom}(f)} = f \).

When I say \(g|_{\text{dom}(f)} = f \) this means that these functions have matching domains and they agree at each point in that domain; \(g|_{\text{dom}(f)}(x) = f(x) \) for all \(x \in \text{dom}(f) \). Once a particular subset is chosen the restriction to that subset is a unique function. Of course there are usually many subsets of \(\text{dom}(f) \) so you can imagine many different restrictions of a given function. The concept of extension is more vague, once you pick the enlarged domain and codomain it is not even necessarily the case that another extension to that same pair of sets will be the same mapping. To obtain uniqueness for extensions one needs to add more structure. This is one reason that complex variables are interesting, there are cases where the structure of the complex theory forces the extension of a complex-valued function of a complex variable to be unique. This is very surprising.

Example 3.1.8.

Definition 3.1.9.

Let \(\pi_U : \mathbb{R}^n \to U \subseteq \mathbb{R}^n \) be a mapping such that \(\pi_U(x) = x \) for all \(x \in U \). We say that \(\pi_U \) is a **projection** onto \(U \). The **identity mapping** on \(U \subseteq \mathbb{R}^n \) is defined by \(\text{Id}_U : U \to U \) with \(\text{Id}_U(x) = x \) for all \(x \in U \). We may also denote \(\text{Id}_{\mathbb{R}^n} = \text{Id}_n = \text{Id} \) where convenient.

The **\(j \)-th projection function** is \(\pi_j : \mathbb{R}^n \to \mathbb{R} \) defined by \(\pi_j(x_1, x_2, \ldots, x_n) = x_j \).

Notice that every identity map is a projection however not every projection is an identity.

Example 3.1.10.
Definition 3.1.11.
Let $f : V \subseteq \mathbb{R}^n \to W \subseteq \mathbb{R}^m$ and $g : U \subseteq \mathbb{R}^n \to V \subseteq \mathbb{R}^m$ are mappings such that $g(U) \subseteq \text{dom}(f)$ then $f \circ g : U \to W$ is a mapping defined by $(f \circ g)(x) = f(g(x))$ for all $x \in U$. We say f is the outside function and g is the inside function.

Notice that the definition of the composite assumes that the range of the inside function fits nicely in the domain of the outside function. If domains are not explicitly given then it is customary to choose the domain of the composite of two functions to be as large as possible. Indeed, the typical pattern in calculus is that the domain is implicitly indicated by some formula. For example, $g(x) = e^{x^2-4}$ has implied domain $\text{dom}(g) = (-\infty, 4) \cup (4, \infty)$ however if we simply the formula to give $g(x) = e^x$ then the implied domain of \mathbb{R} is not correct. Of course we can not make that simplification unless $x \neq 4$. In short, when we do algebra for variables we should be careful to consider the values which the variables may assume. Often one needs to break a calculation into cases to avoid division by zero.

Example 3.1.12. . .

Definition 3.1.13.
Let $f : U \subseteq \mathbb{R}^n \to V \subseteq \mathbb{R}^m$ be a mapping, if there exists a mapping $g : f(U) \to U$ such that $f \circ g = \text{Id}_{f(U)}$ and $g \circ f = \text{Id}_U$ then g is the inverse mapping of f and we denote $g = f^{-1}$.

If a mapping is injective then it can be shown that the inverse mapping is well defined. We define $f^{-1}(y) = x$ iff $f(x) = y$ and the value x must be a single value if the function is one-one. When a function is not one-one then there may be more than one point which maps to a particular point in the range.

Example 3.1.14. . .
Definition 3.1.15.

Let \(f : U \subseteq \mathbb{R}^n \to V \subseteq \mathbb{R}^m \) be a mapping. We define a fiber of \(f \) over \(y \in \text{range}(f) \) as

\[
f^{-1}\{y\} = \{x \in U | f(x) = y\}
\]

Notice that the inverse image of a set is well-defined even if there is no inverse mapping. Moreover, it can be shown that the fibers of a mapping are disjoint and their union covers the domain of the mapping:

\[
f(y) \neq f(z) \implies f^{-1}\{y\} \cap f^{-1}\{z\} = \emptyset \quad \bigcup_{y \in \text{range}(f)} \ f^{-1}\{y\} = \text{dom}(f).
\]

This means that the fibers of a mapping partition the domain.

Example 3.1.16. . .

Definition 3.1.17.

Let \(f : U \subseteq \mathbb{R}^n \to V \subseteq \mathbb{R}^m \) be a mapping. Furthermore, suppose that \(s : U \to U \) is a mapping which is constant on each fiber of \(f \). In other words, for each fiber \(f^{-1}\{y\} \subseteq U \) we have some constant \(u \in U \) such that \(s(f^{-1}\{y\}) = u \). The subset \(s^{-1}(U) \subseteq U \) is called a cross section of the fiber partition of \(f \).

How do we construct a cross section for a particular mapping? For particular examples the details of the formula for the mapping usually suggests some obvious choice. However, in general if you accept the axiom of choice then you can be comforted in the existence of a cross section even in the case that there are infinitely many fibers for the mapping.

Example 3.1.18. . .
CHAPTER 3. TOPOLOGY AND MAPPINGS

Proposition 3.1.19.
Let \(f : U \subseteq \mathbb{R}^n \rightarrow V \subseteq \mathbb{R}^m \) be a mapping. The restriction of \(f \) to a cross section \(S \) of \(U \) is an injective function. The mapping \(\tilde{f} : U \rightarrow f(U) \) is a surjection. The mapping \(\tilde{f}|_S : S \rightarrow f(U) \) is a bijection.

The proposition above tells us that we can take any mapping and cut down the domain and/or codomain to reduce the function to an injection, surjection or bijection. If you look for it you’ll see this result behind the scenes in other courses. For example, in linear algebra if we throw out the kernel of a linear mapping then we get an injection. The idea of a local inverse is also important to the study of calculus.

Example 3.1.20.

Definition 3.1.21.
Let \(f : U \subseteq \mathbb{R}^n \rightarrow V \subseteq \mathbb{R}^m \) be a mapping then we say a mapping \(g \) is a local inverse of \(f \) iff there exits \(S \subseteq U \) such that \(g = (f|_S)^{-1} \).

Usually we can find local inverses for functions in calculus. For example, \(f(x) = \sin(x) \) is not 1-1 therefore it is not invertible. However, it does have a local inverse \(g(y) = \sin^{-1}(y) \). If we were more pedantic we wouldn’t write \(\sin^{-1}(y) \). Instead we would write \(g(y) = (\sin|_{\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]})^{-1}(y) \) since the inverse sine is actually just a local inverse. To construct a local inverse for some mapping we must locate some subset of the domain upon which the mapping is injective. Then relative to that subset we can reverse the mapping. The inverse mapping theorem (which we’ll study mid-course) will tell us more about the existence of local inverses for a given mapping.

Definition 3.1.22.
Let \(f : U \subseteq \mathbb{R}^n \rightarrow V_1 \subseteq \mathbb{R}^p \) and \(g : U \subseteq \mathbb{R}^n \rightarrow V_2 \subseteq \mathbb{R}^q \) be a mappings then \((f,g) \) is a mapping from \(U \) to \(V_1 \times V_2 \) defined by \((f,g)(x) = (f(x), g(x)) \) for all \(x \in U \).

There’s more than meets the eye in the definition above. Let me expand it a bit here:

\[(f,g)(x) = (f_1(x), f_2(x), \ldots, f_p(x), g_1(x), g_2(x), \ldots, g_q(x)) \quad \text{where} \quad x = (x_1, x_2, \ldots, x_n) \]

You might notice that Edwards uses \(\pi \) for the identity mapping whereas I use \(Id \). His notation is quite reasonable given that the identity is the cartesian product of all the projection maps:

\[\pi = (\pi_1, \pi_2, \ldots, \pi_n) \]

I’ve had courses where we simply used the coordinate notation itself for projections, in that notation have formulas such as \(x(a, b, c) = a \), \(x_j(a) = a_j \) and \(x_j(e_i) = \delta_{ji} \).
3.1. FUNCTIONS AND MAPPINGS

Example 3.1.23.

The constructions thus far in this section have not relied on the particular properties of real vectors. If you look at the definitions they really only depend on an understanding of sets, points and subsets. In contrast, the definition given below defines the sum of two mappings, the scalar product of a mapping and a constant or a function, and the dot-product of two mappings.

Definition 3.1.24.

Let $f, g : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a mappings and $c \in \mathbb{R}$ and $h : U \rightarrow \mathbb{R}$ a function. We define:

1. $f + g$ is a mapping from U to \mathbb{R}^m where $(f + g)(x) = f(x) + g(x)$ for all $x \in U$.
2. hf is a mapping from U to \mathbb{R}^m where $(hf)(x) = h(x)f(x)$ for all $x \in U$.
3. cf is a mapping from U to \mathbb{R}^m where $(cf)(x) = cf(x)$ for all $x \in U$.
4. $f \cdot g$ is a function of U where $(f \cdot g)(x) = f(x) \cdot g(x)$ for all $x \in U$.

We cannot hope to define the product and quotient of mappings to be another new mapping because we do not know how to define the product or quotient of vectors for arbitrary dimensions. In contrast, we can define the product of matrix-valued maps or of complex-valued maps because we have a way to multiply matrices and complex numbers. If the range of a function allows for some type of product it generally makes sense to define a corresponding operation on functions which map into that range.
Definition 3.1.25.

Let $f, g : U \subseteq \mathbb{R}^n \to \mathbb{C}$ be complex-valued functions. We define:

1. fg is a complex-valued function defined by $(fg)(x) = f(x)g(x)$ for all $x \in U$.
2. If $0 \notin g(U)$ then f/g is a complex-valued function defined by $(f/g)(x) = f(x)/g(x)$ for all $x \in U$.

Example 3.1.26. . .

Definition 3.1.27.

Let $A, B : U \subseteq \mathbb{R} \to \mathbb{R}^{m \times n}$ and $X : U \subseteq \mathbb{R} \to \mathbb{R}^{n \times p}$ be matrix-valued functions and $f : U \subseteq \mathbb{R} \to \mathbb{R}$. We define:

1. $A + B$ is a matrix-valued function defined by $(A + B)(x) = A(x) + B(x)$ for all $x \in U$.
2. AX is a matrix-valued function defined by $(AX)(x) = A(x)B(x)$ for all $x \in U$.
3. fA is a matrix-valued function defined by $(fA)(x) = f(x)A(x)$ for all $x \in U$.

The calculus of matrices is important to physics and differential equations.

Example 3.1.28. . .
3.2 elementary topology and limits

In this section we describe the *metric topology* for \mathbb{R}^n. In the study of functions of one real variable we often need to refer to open or closed intervals. The definition that follows generalizes those concepts to n-dimensions. I have included a short discussion of general topology in the Appendix if you’d like to learn more about the term.

Definition 3.2.1.

An **open ball** of radius ϵ centered at $a \in \mathbb{R}^n$ is the subset all points in \mathbb{R}^n which are less than ϵ units from a, we denote this open ball by

$$B_\epsilon(a) = \{ x \in \mathbb{R}^n \mid ||x - a|| < \epsilon \}$$

The **closed ball** of radius ϵ centered at $a \in \mathbb{R}^n$ is likewise defined

$$\overline{B}_\epsilon(a) = \{ x \in \mathbb{R}^n \mid ||x - a|| \leq \epsilon \}$$

Notice that in the $n = 1$ case we observe an open ball is an open interval: let $a \in \mathbb{R}$,

$$B_\epsilon(a) = \{ x \in \mathbb{R} \mid ||x - a|| < \epsilon \} = \{ x \in \mathbb{R} \mid |x - a| < \epsilon \} = (a - \epsilon, a + \epsilon)$$

In the $n = 2$ case we observe that an open ball is an open disk: let $(a, b) \in \mathbb{R}^2$,

$$B_\epsilon((a, b)) = \{ (x, y) \in \mathbb{R}^2 \mid ||(x, y) - (a, b)|| < \epsilon \} = \{ (x, y) \in \mathbb{R}^2 \mid \sqrt{(x-a)^2 + (y-b)^2} < \epsilon \}$$

For $n = 3$ an open-ball is a sphere without the outer shell. In contrast, a closed ball in $n = 3$ is a solid sphere which includes the outer shell of the sphere.

Definition 3.2.2.

Let $D \subseteq \mathbb{R}^n$. We say $y \in D$ is an **interior point** of D iff there exists some open ball centered at y which is completely contained in D. We say $y \in \mathbb{R}^n$ is a **limit point** of D iff every open ball centered at y contains points in $D - \{y\}$. We say $y \in \mathbb{R}^n$ is a **boundary point** of D iff every open ball centered at y contains points not in D and other points which are in $D - \{y\}$. We say $y \in D$ is an **isolated point** of D if there exist open balls about y which do not contain other points in D. The set of all interior points of D is called the **interior of D**. Likewise the set of all boundary points for D is denoted ∂D. The **closure** of D is defined to be $\overline{D} = D \cup \{ y \in \mathbb{R}^n \mid y$ a limit point $\}$

If you’re like me the paragraph above doesn’t help much until I see the picture below. All the terms are aptly named. The term "limit point" is given because those points are the ones for which it is natural to define a limit.

Example 3.2.3. . .
Definition 3.2.4.

Let $A \subseteq \mathbb{R}^n$ is an open set iff for each $x \in A$ there exists $\epsilon > 0$ such that $x \in B_{\epsilon}(x)$ and $B_{\epsilon}(x) \subseteq A$. Let $B \subseteq \mathbb{R}^n$ is an closed set iff its complement $\mathbb{R}^n - B = \{x \in \mathbb{R}^n \mid x \notin B\}$ is an open set.

Notice that $\mathbb{R} - [a,b] = (\infty, a) \cup (b, \infty)$. It is not hard to prove that open intervals are open hence we find that a closed interval is a closed set. Likewise it is not hard to prove that open balls are open sets and closed balls are closed sets. I may ask you to prove the following proposition in the homework.

Proposition 3.2.5.

A closed set contains all its limit points, that is $A \subseteq \mathbb{R}^n$ is closed iff $A = \overline{A}$.

Example 3.2.6. . .

In calculus I the limit of a function is defined in terms of deleted open intervals centered about the limit point. We can define the limit of a mapping in terms of deleted open balls centered at the limit point.

Definition 3.2.7.

Let $f : U \subseteq \mathbb{R}^n \to V \subseteq \mathbb{R}^m$ be a mapping. We say that f has limit $b \in \mathbb{R}^m$ at limit point a of U iff for each $\epsilon > 0$ there exists a $\delta > 0$ such that $x \in \mathbb{R}^n$ with $0 < ||x - a|| < \delta$ implies $||f(x) - b|| < \epsilon$. In such a case we can denote the above by stating that

$$\lim_{x \to a} f(x) = b.$$
Definition 3.2.9.

Let $f : U \subseteq \mathbb{R}^n \rightarrow V \subseteq \mathbb{R}^m$ be a mapping. If $a \in U$ is a limit point of f then we say that f is continuous at a iff

$$\lim_{x \to a} f(x) = f(a)$$

If $a \in U$ is an isolated point then we also say that f is continuous at a. The mapping f is continuous on S iff it is continuous at each point in S. The mapping f is continuous iff it is continuous on its domain.

Notice that in the $m = n = 1$ case we recover the definition of continuous functions from calc. I.

Proposition 3.2.10.

Let $f : U \subseteq \mathbb{R}^n \rightarrow V \subseteq \mathbb{R}^m$ be a mapping with component functions f_1, f_2, \ldots, f_m hence $f = (f_1, f_2, \ldots, f_m)$. If $a \in U$ is a limit point of f then

$$\lim_{x \to a} f(x) = b \iff \lim_{x \to a} f_j(x) = b_j$$

for each $j = 1, 2, \ldots, m$.

We can analyze the limit of a mapping by analyzing the limits of the component functions:

Example 3.2.11. . .

The following follows immediately from the preceding proposition.

Proposition 3.2.12.

Suppose that $f : U \subseteq \mathbb{R}^n \rightarrow V \subseteq \mathbb{R}^m$ is a mapping with component functions f_1, f_2, \ldots, f_m. Let $a \in U$ be a limit point of f then f is continuous at a iff f_j is continuous at a for $j = 1, 2, \ldots, m$. Moreover, f is continuous on S iff all the component functions of f are continuous on S. Finally, a mapping f is continuous iff all of its component functions are continuous. . .

The proof of the proposition is in Edwards, it’s his Theorem 7.2. It’s about time I proved something.
Proposition 3.2.13.

The projection functions are continuous. The identity mapping is continuous.

Proof: Let $\epsilon > 0$ and choose $\delta = \epsilon$. If $x \in \mathbb{R}^n$ such that $0 < ||x - a|| < \delta$ then it follows that $||x - a|| < \epsilon$. Therefore, $\lim_{x \to a} x = a$ which means that $\lim_{x \to a} \text{Id}(x) = \text{Id}(a)$ for all $a \in \mathbb{R}^n$. Hence Id is continuous on \mathbb{R}^n which means Id is continuous. Since the projection functions are component functions of the identity mapping it follows that the projection functions are also continuous (using the previous proposition). □

Definition 3.2.14.

The sum and product are functions from \mathbb{R}^2 to \mathbb{R} defined by

\[s(x, y) = x + y \quad p(x, y) = xy \]

Proposition 3.2.15.

The sum and product functions are continuous.

Preparing for the proof: Let the limit point be (a, b). Consider what we wish to show: given a point (x, y) such that $0 < ||(x, y) - (a, b)|| < \delta$ we wish to show that

\[|s(x, y) - (a + b)| < \epsilon \quad \text{or for the product} \quad |p(x, y) - (ab)| < \epsilon \]

follow for appropriate choices of δ. Think about the sum for a moment,

\[|s(x, y) - (a + b)| = |x + y - a - b| \leq |x - a| + |y - b| \]

I just used the triangle inequality for the absolute value of real numbers. We see that if we could somehow get control of $|x - a|$ and $|y - b|$ then we’d be getting closer to the prize. We have control of $0 < ||(x, y) - (a, b)|| < \delta$ notice this reduces to

\[||(x - a, y - b)|| < \delta \quad \Rightarrow \quad \sqrt{(x - a)^2 + (y - b)^2} < \delta \]

it is clear that $(x - a)^2 < \delta^2$ since if it was otherwise the inequality above would be violated as adding a nonnegative quantity $(y - b)^2$ only increases the radicand resulting in the squareroot to be larger than δ. Hence we may assume $(x - a)^2 < \delta^2$ and since $\delta > 0$ it follows $|x - a| < \delta$. Likewise, $|y - b| < \delta$. Thus

\[|s(x, y) - (a + b)| = |x + y - a - b| < |x - a| + |y - b| < 2\delta \]

We see for the sum proof we can choose $\delta = \epsilon/2$ and it will work out nicely.
Proof: Let \(\epsilon > 0 \) and let \((a, b) \in \mathbb{R}^2\). Choose \(\delta = \epsilon/2 \) and suppose \((x, y) \in \mathbb{R}^2\) such that \(||(x, y) - (a, b)|| < \delta \). Observe that

\[||(x, y) - (a, b)|| < \delta \Rightarrow ||(x - a, y - b)||^2 < \delta^2 \Rightarrow |x - a|^2 + |y - b|^2 < \delta^2. \]

It follows \(|x - a| < \delta \) and \(|y - b| < \delta \). Thus

\[|s(x, y) - (a + b)| = |x + y - a - b| \leq |x - a| + |y - b| < \delta + \delta = 2\delta = \epsilon. \]

Therefore, \(\lim_{(x,y) \to (a,b)} s(x, y) = a + b \) and it follows that the sum function is continuous at \((a, b)\). But, \((a, b)\) is an arbitrary point thus \(s \) is continuous on \(\mathbb{R}^2 \) hence the sum function is continuous. \(\square \)

Preparing for the proof of continuity of the product function: I’ll continue to use the same notation as above. We need to study \(|p(x, y) - (ab)| = |xy - ab| < \epsilon \). Consider that

\[|xy - ab| = |xy - ya + ya - ab| = |y(x - a) + a(y - b)| \leq |y||x - a| + |a||y - b| \]

We know that \(|x - a| < \delta \) and \(|y - b| < \delta \). There is one less obvious factor to bound in the expression. What should we do about \(|y|? \). I leave it to the reader to show that:

\[|y - b| < \delta \Rightarrow |y| < |b| + \delta \]

Now put it all together and hopefully we’ll be able to ”solve” for \(\epsilon \).

\[|xy - ab| \leq |y||x - a| + |a||y - b| < (|b| + \delta)\delta + |a|\delta = \delta^2 + \delta(|a| + |b|) = " \epsilon \]

I put solve in quotes because we have considerably more freedom in our quest for finding \(\delta \). We could just as well find \(\delta \) which makes the " = " become an <. That said let’s pursue equality,

\[\delta^2 + \delta(|a| + |b|) - \epsilon = 0 \quad \delta = \frac{-|a| - |b| \pm \sqrt{(|a| + |b|)^2 + 4\epsilon}}{2} \]

Since \(\epsilon, |a|, |b| > 0 \) it follows that \(\sqrt{(|a| + |b|)^2 + 4\epsilon} < \sqrt{(|a| + |b|)^2} = |a| + |b| \) hence the (+) solution to the quadratic equation yields a positive \(\delta \) namely:

\[\delta = \frac{-|a| - |b| + \sqrt{(|a| + |b|)^2 + 4\epsilon}}{2} \]

Yowsers, I almost made this a homework. There may be an easier route. You might notice we have run across a few little lemmas (I’ve boxed the punch lines for the lemmas) which are doubtless useful in other \(\epsilon - \delta \) proofs. We should collect those once we’re finished with this proof.

Proof: Let \(\epsilon > 0 \) and let \((a, b) \in \mathbb{R}^2\). By the calculations that prepared for the proof we know that the following quantity is positive, hence choose

\[\delta = \frac{-|a| - |b| + \sqrt{(|a| + |b|)^2 + 4\epsilon}}{2} > 0. \]
Note that

\[|xy - ab| = |xy - ya + ya - ab| = |y(x - a) + a(y - b)| \text{ algebra} \]
\[\leq |y||x - a| + |a||y - b| \text{ triangle inequality} \]
\[< (|b| + \delta)|x - a| + |a|\delta \text{ by the boxed lemmas} \]
\[= \delta^2 + \delta(|a| + |b|) \text{ algebra} \]
\[= \epsilon \]

where we know that last step follows due to the steps leading to the boxed equation in the proof preparation. Therefore, \(\lim_{(x,y) \to (a,b)} p(x, y) = ab \) and it follows that the product function if continuous at \((a, b)\). But, \((a, b)\) is an arbitrary point thus \(p \) is continuous on \(\mathbb{R}^2 \) hence the product function is continuous. \(\square \).

Lemma 3.2.16.

\[
\begin{align*}
\text{Assume } & \delta > 0. \\
1. \text{ If } a, x \in \mathbb{R} \text{ then } |x - a| < \delta & \Rightarrow |x| < |a| + \delta. \\
2. \text{ If } x, a \in \mathbb{R}^n \text{ then } ||x - a|| < \delta & \Rightarrow |x_j - a_j| < \delta \text{ for } j = 1, 2, \ldots n.
\end{align*}
\]

The proof of the proposition above is mostly contained in the remarks of the preceding two pages.

Example 3.2.17. . . .

\(^2\)my notation is that when we stack inequalities the inequality in a particular line refers only to the immediate vertical successor.
Proposition 3.2.18.

Let $f : V \subseteq \mathbb{R}^p \to \mathbb{R}^m$ and $g : U \subseteq \mathbb{R}^n \to \mathbb{R}^p$ be mappings. Suppose that $\lim_{x \to a} g(x) = b$ and suppose that f is continuous at b then

$$\lim_{x \to a} (f \circ g)(x) = f\left(\lim_{x \to a} g(x)\right).$$

The proof is in Edwards, see pages 46-47. Notice that the proposition above immediately gives us the important result below:

Proposition 3.2.19.

Let f and g be mappings such that $f \circ g$ is well-defined. The composite function $f \circ g$ is continuous for points $a \in \text{dom}(f \circ g)$ such that the following two conditions hold:

1. g is continuous at a
2. f is continuous at $g(a)$.

I make use of the earlier proposition that a mapping is continuous iff its component functions are continuous throughout the examples that follow. For example, I know (Id, Id) is continuous since Id was previously proved continuous.

Example 3.2.20. Note that if $f = p \circ (\text{Id}, \text{Id})$ then $f(x) = (p \circ (\text{Id}, \text{Id}))(x) = p((\text{Id}, \text{Id})(x)) = p(x, x) = x^2$. Therefore, the quadratic function $f(x) = x^2$ is continuous on \mathbb{R} as it is the composite of continuous functions.

Example 3.2.21. Note that if $f = p \circ (p \circ (\text{Id}, \text{Id}), \text{Id})$ then $f(x) = p(x^2, x) = x^3$. Therefore, the cubic function $f(x) = x^3$ is continuous on \mathbb{R} as it is the composite of continuous functions.

Example 3.2.22. The power function is inductively defined by $x^1 = x$ and $x^n = xx^{n-1}$ for all $n \in \mathbb{N}$. We can prove $f(x) = x^n$ is continuous by induction on n. We proved the $n = 1$ case previously. Assume inductively that $f(x) = x^{n-1}$ is continuous. Notice that

$$x^n = xx^{n-1} = xf(x) = p(x, f(x)) = (p \circ (\text{Id}, f))(x).$$

Therefore, using the induction hypothesis, we see that $g(x) = x^n$ is the composite of continuous functions thus it is continuous. We conclude that $f(x) = x^n$ is continuous for all $n \in \mathbb{N}$.

We can play similar games with the sum function to prove that sums of power functions are continuous. In your homework you will prove constant functions are continuous. Putting all of these things together gives us the well-known result that polynomials are continuous on \mathbb{R}.
Proposition 3.2.23.

Let a be a limit point of mappings $f, g : U \subseteq \mathbb{R}^n \to V \subseteq \mathbb{R}$ and suppose $c \in \mathbb{R}$. If

\[\lim_{x \to a} f(x) = b_1 \in \mathbb{R} \quad \text{and} \quad \lim_{x \to a} g(x) = b_2 \in \mathbb{R} \]

then

1. $\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$.
2. $\lim_{x \to a} (f(x)g(x)) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$.
3. $\lim_{x \to a} (cf(x)) = c \lim_{x \to a} f(x)$.

Moreover, if f, g are continuous then $f + g, fg$ and cf are continuous.

Proof: Edwards proves (1.) carefully on pg. 48. I’ll do (2.) here: we are given that

\[\lim_{x \to a} f(x) = b_1 \quad \text{and} \quad \lim_{x \to a} g(x) = b_2 \]

thus by Proposition 3.2.10 we find

\[\lim_{x \to a} (f,g)(x) = (b_1, b_2). \]

Consider then,

\[
\lim_{x \to a} (f(x)g(x)) = \lim_{x \to a} (p(f,g)) = p(\lim_{x \to a} (f,g)) = p(b_1, b_2) = b_1b_2 = (\lim_{x \to a} f(x))(\lim_{x \to a} g(x)).
\]

In your homework you proved that $\lim_{x \to a} c = c$ thus item (3.) follows from (2.). □.

The proposition that follows does follow immediately from the proposition above, however I give a proof that again illustrates the idea we used in the examples. Reinterpreting a given function as a composite of more basic functions is a useful theoretical and calculational technique.

Proposition 3.2.24.

Assume $f, g : U \subseteq \mathbb{R}^n \to V \subseteq \mathbb{R}$ are continuous functions at $a \in U$ and suppose $c \in \mathbb{R}$.

1. $f + g$ is continuous at a.
2. fg is continuous at a
3. cf is continuous at a.

Moreover, if f, g are continuous then $f + g, fg$ and cf are continuous.

Proof: Observe that $(f + g)(x) = (s \circ (f,g))(x)$ and $(fg)(x) = (p \circ (f,g))(x)$. We’re given that f, g are continuous at a and we know s, p are continuous on all of \mathbb{R}^2 thus the composite functions $s \circ (f,g)$ and $p \circ (f,g)$ are continuous at a and the proof of items (1.) and (2.) is complete. To prove (3.) I refer the reader to their homework where it was shown that $h(x) = c$ for all $x \in U$ is a continuous function. We then find (3.) follows from (2.) by setting $g = h$ (function multiplication commutes for real-valued functions). □.
We can use induction arguments to extend these results to arbitrarily many products and sums of power functions. To prove continuity of algebraic functions we’d need to do some more work with quotient and root functions. I’ll stop here for the moment, perhaps I’ll ask you to prove a few more fundamentals from calculus I. I haven’t delved into the definition of exponential or log functions not to mention sine or cosine. We will assume that the basic functions of calculus are continuous on the interior of their respective domains. Basically if the formula for a function can be evaluated at the limit point then the function is continuous.

It’s not hard to see that the comments above extend to functions of several variables and mappings. If the formula for a mapping is comprised of finite sums and products of power functions then we can prove such a mapping is continuous using the techniques developed in this section. If we have a mapping with a more complicated formula built from elementary functions then that mapping will be continuous provided its component functions have formulas which are sensibly calculated at the limit point. In other words, if you are willing to believe me that \(\sin(x), \cos(x), e^x, \ln(x), \cosh(x), \sinh(x), \sqrt{x}, \frac{1}{x^2}, \ldots \) are continuous on the interior of their domains then it’s not hard to prove:

\[
f(x, y, z) = \left(\sin(x) + e^x + \sqrt{\cosh(x^2) + \sqrt{y + e^x}}, \cosh(xyz), xe^{\sqrt{x + \frac{1}{y^2}}} \right)
\]

is a continuous mapping at points where the radicands of the square root functions are nonnegative. It wouldn’t be very fun to write explicitly but it is clear that this mapping is the Cartesian product of functions which are the sum, product and composite of continuous functions.

Definition 3.2.25. A polynomial in \(n \)-variables has the form:

\[
f(x_1, x_2, \ldots, x_n) = \sum_{i_1, i_2, \ldots, i_n=0}^{\infty} c_{i_1, i_2, \ldots, i_n} x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}
\]

where only finitely many coefficients \(c_{i_1, i_2, \ldots, i_n} \neq 0 \). We denote the set of multinomials in \(n \)-variables as \(\mathbb{R}(x_1, x_2, \ldots, x_n) \).

Polynomials are \(\mathbb{R}(x) \). Polynomials in two variables are \(\mathbb{R}(x, y) \), for example,

\[
\begin{align*}
f(x, y) &= ax + by & \text{deg}(f) = 1, \text{ linear function} \\
f(x, y) &= ax + by + c & \text{deg}(f) = 1, \text{ affine function} \\
f(x, y) &= ax^2 + bxy + cy^2 & \text{deg}(f) = 2, \text{ quadratic form} \\
f(x, y) &= ax^2 + bxy + cy^2 + dx + ey + g & \text{deg}(f) = 2
\end{align*}
\]

If all the terms in the polynomial have the same number of variables then it is said to be **homogeneous**. In the list above only the linear function and the quadratic form were homogeneous. Returning to the topic of the previous chapter for a moment we should note that a linear transformation has component functions which are homogeneous linear polynomials: suppose that
$L : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a linear transformation with matrix $A \in \mathbb{R}^{m \times n}$ then in the notation of this chapter we have $L = (L_1, L_2, \ldots, L_m)$ where

$$L_j(x) = (Ax) \cdot e_j = A_{j1}x_1 + A_{j2}x_2 + \cdots + A_{jn}x_n$$

It is clear that such functions are continuous since they are the sum of products of continuous functions. Therefore, linear transformations are continuous with respect to the usual metric topology on \mathbb{R}^n.

Remark 3.2.26.

There are other topologies possible for \mathbb{R}^n. For example, one can prove that

$$||v||_1 = |v_1| + |v_2| + \cdots + |v_n|$$

gives a norm on \mathbb{R}^n and the theorems we proved transfer over almost without change by just trading $|| \cdot ||$ for $|| \cdot ||_1$. The unit "ball" becomes a diamond for the 1-norm. There are many other norms which can be constructed, infinitely many it turns out. However, it has been shown that the topology of all these different norms is equivalent. This means that open sets generated from different norms will be the same class of sets. For example, if you can fit an open disk around every point in a set then it’s clear you can just as well fit an open diamond and vice-versa. One of the things that makes infinite dimensional linear algebra more fun is the fact that the topology generated by distinct norms need not be equivalent for infinite dimensions. There is a difference between the open sets generated by the Euclidean norm verses those generated by the 1-norm. Incidentally, my thesis work is mostly built over the 1-norm. It makes the supernumbers happy.

3.3 compact sets and continuous images

It should be noted that the sets \mathbb{R}^n and the empty set \emptyset are both open and closed (these are the only such sets in the metric topology, other sets are either open, closed or neither open nor closed).

Theorem 3.3.1.

The mapping $f : dom(f) \subset \mathbb{R}^n \rightarrow \mathbb{R}^m$ is continuous iff $f^{-1}(U)$ is open in $dom(f)$ for all open sets $U \subset \mathbb{R}^m$. Additionally, f is continuous iff $f^{-1}(U)$ is closed for each closed set U in \mathbb{R}^m.

Notice this theorem makes no explicit reference to the norm. It turns out this theorem is used as the very definition of continuity in more abstract topological settings.

I leave the proof of the closed case to the reader. I tackle the open case here:

Proof: (\Rightarrow) Suppose f is continuous and U is open in \mathbb{R}^m then for each $z \in U$ there exists an open ball $B_r(z) \subset U$. If $x \in f^{-1}(U)$ then there exists $y \in U$ such that $f(x) = y$ and hence there exists an open ball about $B_r(y) \subset U$. I propose that $f^{-1}(B_r(y))$ is an open subset of $f^{-1}(U)$ which contains
x. Note that $y \in B_\epsilon(y)$ thus $f(x) = y$ implies $x \in f^{-1}(B_\epsilon(y))$ as according to the definition of inverse image. We seek to show $f^{-1}(B_\epsilon(y)) \subseteq f^{-1}(U)$. Suppose $v \in f^{-1}(B_\epsilon(y))$. It follows that there exists $w \in B_\epsilon(y)$ such that $f(w) = v$. Note that $B_\epsilon(y) \subset U$ therefore $w \in B_\epsilon(y)$ implies $w \in U$ and so $v \in f^{-1}(U)$ as $w \in U$ has $f(w) = v$. We have shown that an arbitrary element in $f^{-1}(B_\epsilon(y))$ is also in $f^{-1}(U)$ hence $f^{-1}(B_\epsilon(y)) \subseteq f^{-1}(U)$.

(\Leftarrow) Assume that $f^{-1}(U)$ is open in $\text{dom}(f)$ for each open set $U \subset \mathbb{R}^m$. Let $a \in \text{dom}(f)$. Assume $\epsilon > 0$ and note that $B_\epsilon(f(a))$ is an open set in \mathbb{R}^m therefore $f^{-1}(B_\epsilon(f(a)))$ is open in $\text{dom}(f)$. Note $a \in f^{-1}(B_\epsilon(f(a)))$ since $f(a) \in B_\epsilon(f(a))$. Thus a is a point in the open set $f^{-1}(B_\epsilon(f(a)))$ so there exists a $\delta > 0$ such that $B_\delta(a) \subset f^{-1}(B_\epsilon(f(a))) \subset \text{dom}(f)$. Suppose that $x \in B_\delta(a)$ note that $B_\delta(a) \subset f^{-1}(B_\epsilon(f(a)))$ hence $x \in f^{-1}(B_\epsilon(f(a)))$. It follows that there exists $y \in B_\epsilon(f(a))$ such that $f(x) = y$ thus $||f(x) - f(a)|| < \epsilon$. Thus, $\lim_{x \to a} f(x) = f(a)$ for each $a \in \text{dom}(f)$ and we conclude that f is continuous. □

Definition 3.3.2.

A mapping S from \mathbb{N} to \mathbb{R}^n is called a sequence and we usually denote $S(n) = S_n$ for all $n \in \mathbb{N}$. If $\{a_n\}_{n=1}^\infty$ is a sequence then we say $\lim_{n \to \infty} a_n = L$ iff for each $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $n > N$ we have $||a_n - L|| < \epsilon$.

A sequence of vectors is not so different than a sequence of numbers. A sequence in \mathbb{R}^n is just a list of vectors instead of a list of numbers and our concept of distance is provided by the norm rather than the absolute value function.

Example 3.3.3. . . .

Definition 3.3.4.

A set $C \subset \mathbb{R}^n$ is said to be compact iff every sequence of points in C contains a convergent subsequence in C which converges to a point in C.

The Bolzano-Weierstrauss theorem says that every closed interval is compact. It’s not hard to see that every closed ball in \mathbb{R}^n is compact. I now collect the interesting results from pg. 52 of Edwards’ text: note that to say a set is bounded simply means that it is possible to surround the whole set with some sufficiently large open ball.
Proposition 3.3.5.

1. Compact subsets of \mathbb{R}^n are closed and bounded.
2. Closed subsets of a compact set are compact.
3. The cartesian product of compact sets gives a compact set.
4. A subset of \mathbb{R}^n is compact iff it is closed and bounded.

The proof in Edwards is very understandable and the idea of a compact set is really encapsulated by item (4.).

Proposition 3.3.6.

Let C be a compact subset of \mathbb{R}^n and $f : \text{dom}(f) \rightarrow \mathbb{R}^m$ a continuous mapping with $C \subset \text{dom}(f)$, it follows that $f(C)$ is a compact subset of \mathbb{R}^m.

The proposition above simply says that the continuous image of compact sets is compact. We finally come to the real reason I am mentioning these topological theorems in this course.

Proposition 3.3.7.

If D is a compact set in \mathbb{R}^n and $f : D \rightarrow \mathbb{R}$ is a continuous function then f attains a minimum and maximum value on D. In other words, there exist at least two points $a, b \in D$ such that $f(a) \leq f(x) \leq f(b)$ for all $x \in D$.

Since a closed ball is bounded we have that it is compact and the theorem above tells us that if we take any continuous function then the image of a closed ball under the continuous function will have absolute extreme values relative to the closed ball. This result is important to our later efforts to locate min/max values for functions of several variables. The idea will be that we can approximate the function locally by a quadratic form and the local extreme values will be found by evaluating the quadratic form over the unit-n-sphere.

Definition 3.3.8.

Let $f : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a mapping. We say f is uniformly continuous iff for each $\epsilon > 0$ there exists a $\delta > 0$ such that $x, y \in U$ with $\|x - y\| < \delta$ we find $\|f(x) - f(y)\| < \epsilon$.

Proposition 3.3.9.

If $f : C \rightarrow \mathbb{R}$ is a continuous mapping and C is compact then f is uniformly continuous.

The Heine-Borel theorem gives a topological refinement of the definition of compactness we gave earlier in this section. Our definition is equivalent to the following: a compact set is a set for which every open cover has a finite subcover. An open cover of a set is simply a family
of open sets whose unions cover the given set. Theorem 8.10 in Edwards states that if we have a sequence of nested subset in \mathbb{R}^n which contains a compact set:

$$V_1 \subset V_2 \subset V_3 \subset \ldots \quad \text{where} \quad C \subset \bigcup_{n=1}^{\infty} V_n$$

then if we go far enough out in the sequence we’ll be able to find V_N such that $C \subset V_N$. In other words, we can find a finite cover for C. The finite-cover definition is preferred in the abstract setting because it makes no reference to the norm or distance function. In graduate topology you’ll learn how to think about open sets and continuity without reference to a norm or distance function. Of course it’s better to use the norm and distance function in this course because not using it would just result in a silly needless abstraction which made all the geometry opaque. We have an idea of distance and we’re going to use it in this course.

3.4 continuous surfaces

We are often interested in a subset of \mathbb{R}^m. A particular subset may be a set of points, a curve, a two-dimensional surface, or generally a p-dimensional surface for $p \leq m$. There are more pathological subsets in general, you might have a subset which is one-dimensional in one sector and two-dimensional in another; for example, $S = (\{0\} \times \mathbb{R}) \cup B_1(0) \subset \mathbb{R}^2$. What dimensionality would you ascribe to S? I give the following definition to help refine our idea of a p-dimensional continuous surface inside \mathbb{R}^m.

Definition 3.4.1.

Let $S \subseteq \mathbb{R}^m$. We say S is **continuous surface of dimension** p iff there exists a finite covering of S say $\bigcup_{i=1}^{k} V_i = S$ such that $V_i = \Phi_i(U_i)$ for a continuous bijection $\Phi_i : U_i \rightarrow V_i$ with continuous inverse and U_i homeomorphic to \mathbb{R}^p for all $i = 1, 2, \ldots, k$. We define **homeomorphic to** \mathbb{R}^p to mean that there exists a continuous bijection with continuous inverse from U_i to \mathbb{R}^p. In addition, we insist that on the intersections $V_j \cap V_k \neq \emptyset$ the mappings Φ_j, Φ_k are **continuously compatible**. If $V_j \cap V_k \neq \emptyset$ then the mappings Φ_j, Φ_k are said to be **continuously compatible** iff $\Phi_j^{-1} \circ \Phi_k$ is continuous when restricted to $\Phi_k^{-1}(V_j \cap V_k)$. Finally we say two subsets $V \subseteq \mathbb{R}^n$ and $W \subseteq \mathbb{R}^m$ are **homeomorphic** iff there exists a continuous bijection from V to W and we write $V \approx W$ in this case.

You might expect we could just use bijectivity to define dimension of a subset but there are some very strange constructions that forbid such simple thinking. For example, Cantor showed that there is one-one mapping of \mathbb{R} onto $[0, 1] \times [0, 1]$-the unit square. The existence of such a mapping prompts us to state that \mathbb{R} and \mathbb{R}^2 share the same **cardinality**. The concept of cardinality ignores dimensionality, it purely focuses on the more basic set-theoretic nature of a given set. Cardinality ignores the difference between \mathbb{R} and \mathbb{R}^n. Later Netto showed that such mappings were not continuous. So, you might be tempted to say that a p-dimensional surface is a continuous

\[\text{I have an introductory chapter on this topic in my math 200 notes}\]
image of \(\mathbb{R}^p \). However, in 1890 Peano was able to construct a (!!!) continuous mapping of the unit-interval \([0,1]\) onto the unit square \([0,1] \times [0,1]\). Peano’s construction was not a one-one mapping. You can gather from these results that we need both bijectivity and continuity to capture our usual idea of dimensionality. The curves that Cantor and Peano constructed are called space filling curves. You might look in Han Sagan’s text *Space Filling Curves* if you’d like to see more on this topic.

Example 3.4.2. Lines are one-dimensional surfaces. A line in \(\mathbb{R}^m \) with direction \(v \neq 0 \in \mathbb{R}^m \) passing through \(a \in \mathbb{R}^m \) has the form \(L_v = \{ a + tv \mid t \in \mathbb{R} \} \). Note \(F(t) = a + tv \) is a continuous mapping from \(\mathbb{R} \) into \(\mathbb{R}^m \). In this silly case we have \(U_1 = \mathbb{R} \) and \(\Phi_1 = \text{Id} \) so clearly \(\Phi_1 \) is a continuous bijection and the image \(F(\mathbb{R}) = L_v \) is a continuous one-dimensional surface.

Example 3.4.3. A plane in \(\mathbb{R}^m \) with point \(a \in \mathbb{R}^m \) containing linearly independent vectors \(\vec{u}, \vec{v} \in \mathbb{R}^m \) has the form \(P = \{ a + s\vec{u} + t\vec{v} \mid (s,t) \in \mathbb{R}^2 \} \). Notice that \(F(s,t) = a + s\vec{u} + t\vec{v} \) provides a continuous bijection from \(\mathbb{R}^2 \) to \(P \) hence \(P \) is a two-dimensional continuous surface in \(\mathbb{R}^m \).

Example 3.4.4. Suppose that \(L: \mathbb{R}^n \rightarrow \mathbb{R}^m \) is a linear transformation. I claim that \(\text{range}(L) \leq \mathbb{R}^m \) is a continuous surface of dimension \(\text{rank}(L) \). If the matrix of \(L \) is \(A \) then the dimension of the surface \(L(\mathbb{R}) \) is precisely the number of linearly independent column vectors.

All the examples thus far were examples of flat surfaces. Usually curved surfaces require more attention.

Example 3.4.5. The open ball of radius one in \(\mathbb{R}^n \) centered at the origin is homeomorphic to \(\mathbb{R}^n \). To prove this assertion we need to provide a continuous bijection with continuous inverse from \(B_1(0) \) to \(\mathbb{R}^n \). A moments thought suggests

\[
\Phi(x) = \begin{cases}
\frac{x}{||x||} \tan \left(\frac{\pi ||x||}{2} \right) & x \in B_1(0) \text{ such that } x \neq 0 \\
0 & x = 0
\end{cases}
\]

might work. The idea is that the point \(x \in B_1(0) \) maps to the point which lies along the same ray emanating from the origin but a distance \(\tan \left(\frac{\pi ||x||}{2} \right) \) along the ray. Note that as \(||x|| \rightarrow 1 \) we find \(\tan \left(\frac{\pi ||x||}{2} \right) \rightarrow \infty \). This map takes the unit-ball and stretches it to cover \(\mathbb{R}^n \). It is clear that \(\Phi \) is continuous since each component function of \(\Phi \) is the product and composite of continuous functions. It is clear that \(\Phi(x) = 0 \) iff \(x = 0 \). Thus, to prove \(1 - 1 \) suppose that \(\Phi(x) = \Phi(y) \) for \(x,y \in B_1(0) \) such that \(x,y \neq 0 \). It follows that \(||\Phi(x)|| = ||\Phi(y)|| \). Hence,

\[
\tan \left(\frac{\pi ||x||}{2} \right) = \tan \left(\frac{\pi ||y||}{2} \right).
\]

But \(x,y \in B_1(0) \) thus \(||x||, ||y|| < 1 \) so we find \(0 < \frac{\pi ||x||}{2}, \frac{\pi ||y||}{2} < \frac{\pi}{2} \). Tangent is one-one on the open interval \((0, \pi/2)\) hence \(\frac{\pi ||x||}{2} = \frac{\pi ||y||}{2} \) therefore \(||x|| = ||y|| \). Consider the vector equation \(\Phi(x) = \Phi(y) \), replace \(||y|| \) with \(||x|| \) since we proved they’re equal,

\[
\frac{x}{||x||} \tan \left(\frac{\pi ||x||}{2} \right) = \frac{y}{||x||} \tan \left(\frac{\pi ||x||}{2} \right)
\]
multiply both sides by the nonzero quantity $||x||/\tan \frac{\pi ||x||}{2}$ to find $x = y$. We have shown that Φ is injective. The inverse mapping is given by

$$\Phi^{-1}(v) = \frac{2 \tan^{-1}(||v||)}{\pi} \frac{v}{||v||}$$

for $v \in \mathbb{R}^n$ such that $v \neq 0$ and $\Phi^{-1}(0) = 0$. This map takes the vector v and compresses it into the unit-ball. Notice that the vector length approaches infinity the inverse maps closer and closer to the boundary of the ball as the inverse tangent tends to $\pi/2$ as its input tends to infinity. I invite the reader to verify that this is indeed the inverse of Φ, you need to show that $\Phi(\Phi^{-1}(v)) = v$ for all $v \in \mathbb{R}^n$ and $\Phi^{-1}(\Phi(x)) = x$ for all $x \in B_1(0)$.

Remark 3.4.6.

The example above gives us license to use open balls as the domains for the mappings which define a continuous surface. You could call the Φ_i continuous patches if you wish. A smooth surface will be defined in terms of smooth patches or perhaps in terms of the inverse maps Φ_i^{-1} which are called coordinate maps. We need to define a few ideas about differentiability before we can give the definition for a smooth surface. In fact the concept of a surface and the definition of the derivative in some sense are inseparable. For this reason I have begun the discussion of surfaces in this chapter.

I assume that the closed unit-ball $\overline{B}_1(0)$ is homeomorphic to \mathbb{R}^2 in the example below. I leave it to the reader supply proof of that claim.

Example 3.4.7. I claim that the unit-two-sphere S^2 is a two-dimensional continuous surface in \mathbb{R}^3. We define

$$S^2 = \partial B_1(0) = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

We can write $S^2 = S^+ \cup S^-$ where we define the upper hemisphere S^+ and the lower hemisphere S^- in the usual manner:

$$S^+ = \{(x, y, z) \in S^2 \mid z \geq 0\} \quad S^- = \{(x, y, z) \in S^2 \mid z \leq 0\}$$

The equator is at the intersection,

$$E = S^+ \cap S^- = \{(x, y, z) \in S^2 \mid z = 0\} = S^1 \times \{0\}$$

Define mappings $\Phi_{\pm} : \overline{B}_1(0) \subset \mathbb{R}^2 \rightarrow S^\pm$ as follows:

$$\Phi_{\pm}(x, y) = (x, y, \pm \sqrt{1 - x^2 - y^2})$$

where $(x, y) \in \mathbb{R}^2$ such that $x^2 + y^2 \leq 1$. I claim the inverse mappings are

$$\Phi_{\pm}^{-1}(x, y, z) = (x, y).$$
for all \((x,y,z) \in S^\pm\). Let’s check to see if my claim is correct in the \((+)\) case. Let \((x,y,z) \in S^+\),

$$\Phi_+(\Phi_+^{-1}(x,y,z)) = \Phi_+(x,y) = (x, y, \sqrt{1-x^2-y^2}) = (x, y, z)$$

since \((x,y,z) \in S^+\) implies \(z = \sqrt{1-x^2-y^2}\). The \((-)\) case is similar. Likewise let \((x,y) \in B_1(0) \subset \mathbb{R}^2\) and calculate

$$\Phi_-^{-1}(\Phi_-(x,y)) = \Phi_-^{-1}(x, y, -\sqrt{1-x^2-y^2}) = (x, y).$$

It follows that \(\Phi_\pm\) are bijections and it is clear from their formulas that they are continuous mappings. We should check if these are compatible patches. Consider the mapping \(\Phi_+^{-1} \circ \Phi_-\). A typical point in the \(\Phi_-(E)\) should have the form \((x,y) \in S^1\) which means \(x^2 + y^2 = 1\), consider then

$$\Phi_+^{-1}(\Phi_-(x,y)) = \Phi_+^{-1}(x, y, -\sqrt{1-x^2-y^2}) = (x, y)$$

thus \(\Phi_+^{-1} \circ \Phi_-\) is the identity mapping which is continuous. We find that the two-sphere is a continuous two-dimensional surface.

Example 3.4.8. Let \(U\) be homeomorphic to \(\mathbb{R}^p\). The image of a continuous mapping \(F: U \to \mathbb{R}^m\) is a \(p\)-dimensional continuous surface in \(\mathbb{R}^m\). In this case compatibility is trivially satisfied.

Remark 3.4.9.

A \(p\)-dimensional surface is locally modeled by \(\mathbb{R}^p\). You can imagine pasting \(p\)-space over the surface. Bijectivity and continuity insure that the pasting is not pathological as in Cantors’ bijective mapping of \([0, 1]\) onto \(\mathbb{R}^n\) or Peano’s continuous mapping of \([0, 1]\) onto \([0, 1] \times [0, 1]\). In a later chapter we’ll add the criteria of differentiability of the mapping. This will make the pasting keep from getting crinkled up at a point. For example, a cone is a continuous surface however it is not a smooth surface due to the point of the cone.
Chapter 4

geometry of curves

If the curve is assigned a sense of direction then we call it an oriented curve. A particular curve can be parametrized by many different paths. You can think of a parametrization of a curve as a process of pasting a flexible numberline onto the curve.

Definition 4.0.10.

Let $C \subseteq \mathbb{R}^n$ be an oriented curve which starts at P and ends at Q. We say that $\gamma : [a, b] \rightarrow \mathbb{R}^n$ is a smooth non-stop parametrization of C if $\gamma([a, b]) = C$, $\gamma(a) = P$, $\gamma(b) = Q$, and γ is smooth with $\gamma'(t) \neq 0$ for all $t \in [a, b]$. We will typically call γ a path from P to Q which covers the curve C.

I have limited the definition to curves with endpoints however the definition for curves which go on without end is very similar. You can just drop one or both of the endpoint conditions.

4.1 arclength

Let’s begin by analyzing the tangent vector to a path in three dimensional space. Denote $\gamma = (x, y, z)$ where $x, y, z \in C^\infty([a, b], \mathbb{R})$ and calculate that $\gamma'(t) = \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt}$. Multiplying by dt yields

$$\gamma'(t)dt = \frac{dx}{dt}dt, \frac{dy}{dt}dt, \frac{dz}{dt}dt.$$

The arclength ds subtended from time t to time $t + dt$ is simply the length of the vector $\gamma'(t)dt$ which yields,

$$ds = ||\gamma'(t)dt|| = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2}dt.$$

You can think of this as the length of a tiny bit of string that is laid out along the curve from the point $\gamma(t)$ to the point $\gamma(t + dt)$. Of course this infinitesimal notation is just shorthand for an explicit limiting processes. If we sum together all the little bits of arclength we will arrive at the total arclength of the curve. In fact, this is how we define the arclength of a curve. The preceding
discussion was in 3 dimensions but the formulas stated in terms of the norm generalizes naturally to \(\mathbb{R}^n \).

Definition 4.1.1.

Let \(\gamma : [a, b] \to \mathbb{R}^n \) be a smooth, non-stop path which covers the oriented curve \(C \). The **arclength function** of \(\gamma \) is a function \(s_\gamma : [a, b] \to \mathbb{R} \) where

\[
s_\gamma = \int_a^t \|\gamma'(u)\| \, du
\]

for each \(t \in [a, b] \). If \(\tilde{\gamma} \) is a smooth non-stop path such that \(\|\tilde{\gamma}'(t)\| = 1 \) then we say that \(\tilde{\gamma} \) is a unit-speed curve. Moreover, we say \(\tilde{\gamma} \) is parametrized with respect to arclength.

The arclength function has many special properties. Notice that item (1.) below is actually just the statement that the speed is the magnitude of the velocity vector.

Proposition 4.1.2.

Let \(\gamma : [a, b] \to \mathbb{R}^n \) be a smooth, non-stop path which covers the oriented curve \(C \). The **arclength function** of \(\gamma \) denoted by \(s_\gamma : [a, b] \to \mathbb{R} \) has the following properties:

1. \(\frac{d}{dt} (s_\gamma(w)) = \|\gamma'(w)\| \frac{dw}{dt} \),
2. \(\frac{ds_\gamma}{dt} > 0 \) for all \(t \in (a, b) \),
3. \(s_\gamma \) is a 1-1 function,
4. \(s_\gamma \) has inverse \(s_\gamma^{-1} : s_\gamma([a, b]) \to [a, b] \).

Proof: We begin with (1.). We apply the fundamental theorem of calculus:

\[
\frac{d}{dt} (s_\gamma(w)) = \frac{d}{dt} \int_a^w \|\gamma'(u)\| \, du = \|\gamma'(w)\| \frac{dw}{dt}
\]

for all \(w \in (a, b) \). For (2.), set \(w = t \) and recall that \(\|\gamma'(t)\| = 0 \) iff \(\gamma'(t) = 0 \) however we were given that \(\gamma \) is non-stop so \(\gamma'(t) \neq 0 \). We find \(\frac{ds_\gamma}{dt} > 0 \) for all \(t \in (a, b) \) and consequently the arclength function is an increasing function on \((a, b) \). For (3.), suppose (towards a contradiction) that \(s_\gamma(x) = s_\gamma(y) \) where \(a < x < y < b \). Note that \(\gamma \) smooth implies \(s_\gamma \) is differentiable with continuous derivative on \((a, b) \) therefore the mean value theorem applies and we can deduce that there is some point on \(c \in (x, y) \) such that \(s_\gamma'(c) = 0 \), which is impossible, therefore (3.) follows. If a function is 1-1 then we can construct the inverse pointwise by simply going backwards for each point mapped to in the range; \(s_\gamma^{-1}(x) = y \) iff \(s_\gamma(y) = x \). The fact that \(s_\gamma \) is single-valued follows from (3.). \(\square \)
4.1. ARCLENGTH

If we are given a curve C covered by a path γ (which is smooth and non-stop but may not be unit-speed) then we can reparametrize the curve C with a unit-speed path $\tilde{\gamma}$ as follows:

$$\tilde{\gamma}(s) = \gamma(s^{-1}_\gamma(s))$$

where s^{-1}_γ is the inverse of the arclength function.

Proposition 4.1.3.

If γ is a smooth non-stop path then the path $\tilde{\gamma}$ defined by $\tilde{\gamma}(s) = \gamma(s^{-1}_\gamma(s))$ is unit-speed.

Proof: Differentiate $\tilde{\gamma}(t)$ with respect to t, we use the chain-rule,

$$\tilde{\gamma}'(t) = \frac{d}{dt}(\gamma(s^{-1}_\gamma(t))) = \gamma'(s^{-1}_\gamma(t)) \frac{d}{dt}(s^{-1}_\gamma(t)).$$

Hence $\tilde{\gamma}'(t) = \gamma'(s^{-1}_\gamma(t)) \frac{d}{dt}(s^{-1}_\gamma(t))$. Recall that if a function is increasing on an interval then its inverse is likewise increasing hence, by (2.) of the previous proposition, we can pull the positive constant $\frac{d}{dt}(s^{-1}_\gamma(t))$ out of the norm. We find, using item (1.) in the previous proposition,

$$||\tilde{\gamma}'(t)|| = ||\gamma'(s^{-1}_\gamma(t))|| \frac{d}{dt}(s^{-1}_\gamma(t)) = d\gamma(s^{-1}_\gamma(t)) = d\gamma(t) = 1.$$

Therefore, the curve $\tilde{\gamma}$ is unit-speed. We have $ds/dt = 1$ when $t = s$ (this last sentence is simply a summary of the careful argument we just concluded). \square

Remark 4.1.4.

While there are many paths which cover a particular oriented curve the unit-speed path is unique and we’ll see that formulas for unit-speed curves are particularly simple.

Example 4.1.5.
4.2 vector fields along a path

Definition 4.2.1.
Let \(C \subseteq \mathbb{R}^3 \) be an oriented curve which starts at \(P \) and ends at \(Q \). A **vector field along the curve** \(C \) is a function from \(C \to V^3 \). You can visualize this as attaching a vector to each point on \(C \).

The tangent (T), normal(N) and binormal (B) vector fields defined below will allow us to identify when two oriented curves have the same shape.

Example 4.2.2.

Definition 4.2.3.
Let \(\gamma : [a, b] \to \mathbb{R}^3 \) be a path from \(P \) to \(Q \) in \(\mathbb{R}^3 \). The **tangent vector field** of \(\gamma \) is a mapping \(T : [a, b] \to V^3 \) defined by

\[
T(t) = \frac{1}{||\gamma'(t)||} \gamma'(t)
\]

for each \(t \in [a, b] \). Likewise, if \(T'(t) \neq 0 \) for all \(t \in [a, b] \) then the **normal vector field** of \(\gamma \) is a mapping \(N : [a, b] \to V^3 \) defined by

\[
N(t) = \frac{1}{||T'(t)||} T'(t)
\]

for each \(t \in [a, b] \). Finally, if \(T'(t) \neq 0 \) for all \(t \in [a, b] \) then the **binormal vector field** of \(\gamma \) is defined by \(B(t) = T(t) \times N(t) \) for all \(t \in [a, b] \).

Example 4.2.4. Let \(R > 0 \) and suppose \(\gamma(t) = (R \cos(t), R \sin(t), 0) \) for \(0 \leq t \leq 2\pi \). We can calculate

\[
\gamma'(t) = <-R \sin(t), R \cos(t), 0>
\]

\(\Rightarrow \) \(||\gamma'(t)|| = R \).

Hence \(T(t) = <-\sin(t), \cos(t), 0> \) and we can calculate,

\[
T'(t) = <-\cos(t), -\sin(t), 0>
\]

\(\Rightarrow \) \(||T'(t)|| = 1 \).
Thus $N(t) = < - \cos(t), - \sin(t), 0 >$. Finally we calculate the binormal vector field,

$$B(t) = T(t) \times N(t) = [-\sin(t)e_1 + \cos(t)e_2] \times [-\cos(t)e_1 - \sin(t)e_2]$$

$$= \sin^2(t)e_1 \times e_2 - \cos^2(t)e_2 \times e_1$$

$$= [\sin^2(t) + \cos^2(t)]e_1 \times e_2$$

$$e_3 = < 0, 0, 1 >$$

Notice that $T \cdot N = N \cdot B = T \cdot B = 0$. For a particular value of t the vectors \{ $T(t), N(t), B(t)$ \} give an orthogonal set of unit vectors, they provide a comoving frame for γ. It can be shown that the tangent and normal vectors span the plane in which the path travels for times infinitesimally close to t. This plane is called the osculating plane. The binormal vector gives the normal to the osculating plane. The curve considered in this example has a rather boring osculating plane since B is constant. This curve is just a circle in the xy-plane which is traversed at constant speed.

Example 4.2.5. Notice that $s(\gamma(t)) = R t$ in the preceding example. It follows that $\tilde{\gamma}(s) = (R \cos(s/R), R \sin(s/R), 0)$ for $0 \leq s \leq 2\pi R$ is the unit-speed path for curve. We can calculate

$$\tilde{\gamma}'(s) = < - \sin(s/R), \cos(s/R), 0 > \Rightarrow ||\tilde{\gamma}'(s)|| = 1.$$

Hence $T(s) = < - \sin(s/R), \cos(s/R), 0 >$ and we can also calculate,

$$\tilde{T}'(s) = \frac{1}{R} < - \cos(s/R), - \sin(s/R), 0 > \Rightarrow ||\tilde{T}'(s)|| = 1/R.$$

Thus $\widetilde{N}(s) = < - \cos(s/R), - \sin(s/R), 0 >$. Note $\widetilde{B} = \widetilde{T} \times \widetilde{N} = < 0, 0, 1 >$ as before.

Example 4.2.6. Let $m, R > 0$ and suppose $\gamma(t) = (R \cos(t), R \sin(t), mt)$ for $0 \leq t \leq 2\pi$. We can calculate

$$\gamma'(t) = < - R \sin(t), R \cos(t), m > \Rightarrow ||\gamma'(t)|| = \sqrt{R^2 + m^2}.$$

Hence $T(t) = \frac{1}{\sqrt{R^2 + m^2}} < - R \sin(t), R \cos(t), m >$ and we can calculate,

$$T'(t) = \frac{1}{\sqrt{R^2 + m^2}} < - R \cos(t), - R \sin(t), 0 > \Rightarrow ||T'(t)|| = \frac{R}{\sqrt{R^2 + m^2}}.$$

Thus $N(t) = < - \cos(t), - \sin(t), 0 >$. Finally we calculate the binormal vector field,

$$B(t) = T(t) \times N(t) = \frac{1}{\sqrt{R^2 + m^2}} [- R \sin(t)e_1 + R \cos(t)e_2 + me_3] \times [- \cos(t)e_1 - \sin(t)e_2]$$

$$= \frac{1}{\sqrt{R^2 + m^2}} < m \sin(t), - m \cos(t), R >$$
We again observe that $T \cdot N = N \cdot B = T \cdot B = 0$. The osculating plane is moving for this curve, note the t-dependence. This curve does not stay in a single plane, it is not a planar curve. In fact this is a circular helix with radius R and slope m.

Example 4.2.7. Let’s reparametrize the helix as a unit-speed path. Notice that $s_\gamma(t) = t \sqrt{R^2 + m^2}$ thus we should replace t with $s/\sqrt{R^2 + m^2}$ to obtain $\gamma(s)$. Let $a = 1/\sqrt{R^2 + m^2}$ and $\gamma(s) = (R \cos(as), R \sin(as), ams)$ for $0 \leq s \leq 2\pi \sqrt{R^2 + m^2}$. We can calculate

$$\gamma'(s) = <- Ra \sin(as), Ra \cos(as), am> \Rightarrow ||\gamma'(s)|| = a \sqrt{R^2 + m^2} = 1.$$

Hence $\tilde{T}(s) = a <- R \sin(as), R \cos(as), m>$ and we can calculate,

$$\tilde{T}'(s) = Ra^2 <- \cos(as), - \sin(as), 0> \Rightarrow ||\tilde{T}'(s)|| = Ra^2 = \frac{R}{R^2 + m^2}.$$

Thus $\tilde{N}(s) = <- \cos(as), - \sin(as), 0>$. Next, calculate the binormal vector field,

$$\tilde{B}(s) = \tilde{T}(s) \times \tilde{N}(s) = a <- R \sin(as), R \cos(as), m> \times <- \cos(as), - \sin(as), 0>$$

$$= \frac{1}{\sqrt{R^2 + m^2}} < m \sin(as), - m \cos(as), R>$$

Hopefully you can start to see that the unit-speed path shares the same T, N, B frame at arclength s as the previous example with $t = s/\sqrt{R^2 + m^2}$.

4.3 Frenet Serret equations

We now prepare to prove the Frenet Serret formulas for the T, N, B frame fields. It turns out that for nonlinear curves the T, N, B vector fields always provide an orthonormal frame. Moreover, for nonlinear curves, we’ll see that the torsion and curvature capture the geometry of the curve.
Proposition 4.3.1.

If γ is a path with tangent, normal and binormal vector fields T, N and B then
\{ $T(t), N(t), B(t)$ \} is an orthonormal set of vectors for each $t \in \text{dom}(\gamma)$.

Proof: It is clear from $B(t) = T(t) \times N(t)$ that $T(t) \cdot B(t) = N(t) \cdot B(t) = 0$. Furthermore, it is also clear that these vectors have length one due to their construction as unit vectors. In particular this means that $T(t) \cdot T(t) = 1$. We can differentiate this to obtain (by the product rule for dot-products)

$$T'(t) \cdot T(t) + T(t) \cdot T'(t) = 0 \Rightarrow 2T(t) \cdot T'(t) = 0$$

Divide by $||T'(t)||$ to obtain $T(t) \cdot N(t) = 0$. □

We omit the explicit t-dependence for the discussion to follow here, also you should assume the vector fields are all derived from a particular path γ. Since T, N, B are nonzero and point in three mutually distinct directions it follows that any other vector can be written as a linear combination of T, N, B. This means if $v \in V^3$ then there exist c_1, c_2, c_3 such that $v = c_1 T + c_2 N + c_3 B$. The orthonormality is very nice because it tells us we can calculate the coefficients in terms of dot-products with T, N and B:

$$v = c_1 T + c_2 N + c_3 B \Rightarrow c_1 = v \cdot T, \ c_2 = v \cdot N, \ c_3 = v \cdot B$$

We will make much use of the observations above in the calculations that follow. Suppose that

$$T' = c_{11} T + c_{12} N + c_{13} B$$
$$N' = c_{21} T + c_{22} N + c_{23} B$$
$$B' = c_{31} T + c_{32} N + c_{33} B.$$

We observed previously that $T' \cdot T = 0$ thus $c_{11} = 0$. It is easy to show $N' \cdot N = 0$ and $B' \cdot B = 0$ thus $c_{22} = 0$ and c_{33}. Furthermore, we defined $N = \frac{1}{||T||} T'$ hence $c_{13} = 0$. Note that

$$T' = c_{12} N = \frac{c_{12}}{||T'||} T' \Rightarrow c_{12} = ||T'||.$$

To summarize what we’ve learned so far:

$$T' = c_{12} N$$
$$N' = c_{21} T + c_{23} B$$
$$B' = c_{31} T + c_{32} N.$$

We’d like to find some condition on the remaining coefficients. Consider that:

$$B = T \times N \Rightarrow B' = T' \times N + T \times N'$$
a product rule

$$\Rightarrow B' = [c_{12} N] \times N + T \times [c_{21} T + c_{23} B]$$
using previous eqn.

$$\Rightarrow B' = c_{23} T \times B$$
noted $N \times N = T \times T = 0$

$$\Rightarrow B' = -c_{23} N$$
you can show $N = B \times T$.

$$\Rightarrow c_{31} T + c_{32} N = -c_{23} N$$
refer to previous eqn.

$$\Rightarrow c_{31} = 0 \text{ and } c_{32} = -c_{23}.$$
using LI of \{ T, N \}

\footnote{You might recognize $[v]_\beta = [c_1, c_2, c_3]^T$ as the coordinate vector with respect to the basis $\beta = \{ T, N, B \}$}
We have reduced the initial set of equations to the following:

\[T' = c_{12}N \]
\[N' = c_{21}T + c_{23}B \]
\[B' = -c_{23}N. \]

The equations above encourage us to define the curvature and torsion as follows:

Definition 4.3.2.

Let \(C \) be a curve which is covered by the unit-speed path \(\tilde{\gamma} \) then we define the curvature \(\kappa \) and torsion \(\tau \) as follows:

\[
\kappa(s) = \left| \frac{dT}{ds} \right| \quad \quad \tau(s) = -\frac{d\tilde{B}}{ds} \cdot \tilde{N}(s)
\]

One of your homework questions is to show that \(c_{21} = -c_{12} \). Given the result you will prove in the homework we find the famous Frenet-Serret equations:

\[
\frac{dT}{ds} = \kappa \tilde{N} \quad \frac{d\tilde{N}}{ds} = -\kappa \tilde{T} + \tau \tilde{B} \quad \frac{d\tilde{B}}{ds} = -\tau \tilde{N}.
\]

We had to use the arclength parameterization to insure that the formulas above unambiguously define the curvature and the torsion. In fact, if we take a particular (unoriented) curve then there are two choices for orienting the curve. You can show that that the torsion and curvature are independent of the choice of orientation. Naturally the total arclength is also independent of the orientation of a given curve.

Curvature, torsion can also be calculated in terms of a path which is not unit speed. We simply replace \(s \) with the arclength function \(s_\gamma(t) \) and make use of the chain rule. Notice that \(dF/dt = (ds/dt)(d\tilde{F}/ds) \) hence,

\[
\frac{dT}{dt} = \frac{ds}{dt} \frac{dT}{ds}, \quad \frac{d\tilde{N}}{dt} = \frac{ds}{dt} \frac{d\tilde{N}}{ds}, \quad \frac{d\tilde{B}}{dt} = \frac{ds}{dt} \frac{d\tilde{B}}{ds}
\]

Or if you prefer, use the dot-notation \(ds/dt = \dot{s} \) to write:

\[
\frac{1}{s} \frac{dT}{dt} = \frac{\dot{\tilde{T}}}{\dot{s}}, \quad \frac{1}{s} \frac{d\tilde{N}}{dt} = \frac{\dot{\tilde{N}}}{\dot{s}}, \quad \frac{1}{s} \frac{d\tilde{B}}{dt} = \frac{\dot{\tilde{B}}}{\dot{s}}
\]

Substituting these into the unit-speed Frenet Serret formulas yield:

\[
\frac{dT}{dt} = \dot{s} \kappa \tilde{N} \quad \frac{d\tilde{N}}{dt} = -\dot{s} \kappa \tilde{T} + \dot{s} \tau \tilde{B} \quad \frac{d\tilde{B}}{dt} = -\dot{s} \tau \tilde{N}.
\]

where \(\tilde{T}(s_\gamma(t)) = T(t), \tilde{N}(s_\gamma(t)) = N(t) \) and \(\tilde{B}(s_\gamma(t)) = B(t) \). Likewise deduce\(^2\) that

\[
\kappa(t) = \frac{1}{\dot{s}} \left| \frac{dT}{dt} \right| \quad \tau(t) = -\frac{1}{\dot{s}} \left(\frac{dB}{dt} \cdot N(t) \right)
\]

\(^2\)I'm using the somewhat ambiguous notation \(\kappa(t) = \kappa(s_\gamma(t)) \) and \(\tau(t) = \tau(s_\gamma(t)) \). We do this often in applications of calculus. Ask me if you’d like further clarification on this point.
4.4 curvature, torsion and the osculating plane

In the preceding section we saw how the calculus and linear algebra suggest we define curvature and torsion. We now stop to analyze the geometric meaning of those definitions.

4.4.1 curvature

Let us begin with the curvature. Assume is a non-stop smooth path,

\[\gamma = \mathbf{T} \]

Infinitesimally this equation gives

\[||dT|| = \kappa s dt = \kappa \frac{ds}{dt} dt = \kappa ds. \]

But this is a strange equation since \(||T|| = 1. \) So what does this mean? Perhaps we should add some more detail to resolve this puzzle; let \(dT = T(t + dt) - T(t). \)

Notice that

\[||dT||^2 = [T(t + dt) - T(t)] \cdot [T(t + dt) - T(t)] \]
\[= T(t + dt) \cdot T(t + dt) + T(t) \cdot T(t) - 2T(t) \cdot T(t + dt) \]
\[= T(t + dt) \cdot T(t + dt) + T(t) \cdot T(t) - 2T(t) \cdot T(t + dt) \]
\[= 2(1 - \cos(\phi)) \]

where we define \(\phi \) to be the angle between \(T(t) \) and \(T(t + dt). \) This angle measures the change in direction of the tangent vector at \(t \) goes to \(t + dt. \) Since this is a small change in time it is reasonable to expect the angle \(\phi \) is small thus \(\cos(\phi) \approx 1 - \frac{1}{2}\phi^2 \) and we find that

\[||dT|| = \sqrt{2(1 - \cos(\phi))} = \sqrt{2(1 - 1 + \frac{1}{2}\phi^2)} = \sqrt{\phi^2} = |\phi| \]

Therefore, \(||dT|| = \kappa ds = |\phi| \) and we find \(\kappa = \pm \frac{ds}{d\phi} \)

Remark 4.4.1.

The curvature measures the infinitesimal change in the direction of the unit-tangent vector to the curve. We say the the reciprocal of the curvature is the radius of curvature \(r = \frac{1}{\kappa}. \) This makes sense as \(ds = |1/\kappa|d\phi \) suggests that a circle of radius \(1/\kappa \) fits snugly against the path at time \(t. \) We form the osculating circle at each point along the path by placing a circle of radius \(1/\kappa \) tangent to the unit-tangent vector in the plane with normal \(B(t). \) We probably should draw a picture of this.
4.4.2 osculating plane and circle

It was claimed that the "infinitesimal" motion of the path resides in a plane with normal B. Suppose that at some time t_0 the path reaches the point $\gamma(t_0) = P_0$. Infinitesimally the tangent line matches the path and we can write the parametric equation for the tangent line as follows:

$$l(t) = \gamma(t_0) + t\gamma'(t_0) = P_0 + tv_0T_0$$

where we used that $\gamma'(t) = \dot{s}T(t)$ and we evaluated at $t = t_0$ to define $\dot{s}(t_0) = v_0$ and $T(t_0) = T_0$.

The normal line through P_0 has parametric equations (using $N_0 = N(t_0)$):

$$n(\lambda) = P_0 + \lambda N_0$$

We learned in the last section that the path bends away from the tangent line along a circle whose radius is $1/\kappa_0$. We find the infinitesimal motion resides in the plane spanned by T_0 and N_0 which has normal $T_0 \times N_0 = B(t_0)$. The tangent line and the normal line are perpendicular and could be thought of as a xy-coordinate axes in the osculating plane. The osculating circle is found with its center on the normal line a distance of $1/\kappa_0$ from P_0. Thus the center of the circle is at:

$$Q_0 = P_0 - \frac{1}{\kappa_0}N_0$$

I’ll think of constructing x, y, z coordinates based at P_0 with respect to the T_0, N_0, B_0 frame. We suppose \vec{r} be a point on the osculating circle and x, y, z to be the coefficients in $\vec{r} = P_0 + xT_0 + yN_0 + zB_0$. Since the circle is in the plane based at P_0 with normal B_0 we should set $z = 0$ for our circle thus $\vec{r} = xT + yN$.

$$||\vec{r} - Q_0||^2 = \frac{1}{\kappa_0^2} \Rightarrow ||xT_0 + (y + \frac{1}{\kappa_0})N_0||^2 = \frac{1}{\kappa_0^2}.$$

Therefore, by the pythagorean theorem for orthogonal vectors, the x, y, z equations for the osculating circle are simply3:

$$x^2 + (y + \frac{1}{\kappa_0})^2 = \frac{1}{\kappa_0^2}, \quad z = 0.$$

3Of course if we already use x, y, z in a different context then we should use other symbols for the equation of the osculating circle.
Finally, notice that if the torsion is zero then the Frenet Serret formulas simplify to:

\[
\frac{dT}{dt} = \dot{s} \kappa N, \quad \frac{dN}{dt} = -\dot{s} \kappa T, \quad \frac{dB}{dt} = 0.
\]

we see that \(B \) is a constant vector field and motion will remain in the osculating plane. The change in the normal vector causes a change in the tangent vector and vice-versa however the binormal vector is not coupled to \(T \) or \(N \).

Remark 4.4.2.

The torsion measures the infinitesimal change in the direction of the binormal vector relative to the normal vector of the curve. Because the normal vector is in the plane of infinitesimal motion and the binormal is perpendicular to that plane we can say that the torsion measures how the path lifts or twists up off the plane of infinitesimal motion. Furthermore, we can expect path which is trapped in a particular plane (these are called **planar** curves) will have torsion which is identically zero. We should also expect that the torsion for something like a helix will be nonzero everywhere since the motion is always twisting up off the plane of infinitesimal motion. It is probable you will examine these questions in your homework.

4.5 acceleration and velocity

Let’s see how the preceding section is useful in the analysis of the motion of physical objects. In the study of dynamics or the physics of motion the critical objects of interest are the position, velocity and acceleration vectors. Once a force is supplied we can in principle solve Newton’s Second Law \(\vec{F} = m \vec{A} \) and find the equation of motion \(\vec{r} = \vec{r}(t) \). Moreover, since the map \(t \mapsto \vec{r}(t) \) is a path we can analyze the velocity and acceleration in terms of the **Frenet Frame** \(\{ T, N, B \} \). To keep it interesting we’ll assume the motion is non-stop and smooth so that the analysis of the last section applies.

(For now the next two pages are stolen from a course I took from Dr. R.O. Fulp some years back)
4.5. ACCELERATION AND VELOCITY

.
4.6 Keplers’ laws of planetary motion

Kepler’s Laws of Planetary Motion

In antiquity there have been radically different views of the universe at large and the motion or lack of motion of the earth through it. At the time of Kepler the heliocentric view of Copernicus (1473–1543) had taken hold, but astronomers insisted that planets traveled in circles, then circles on top of circles on top of circles. This system of “perfect” circles were known as epicycles. Epicycles worked quite well but Kepler (1571–1630) found them unnatural. Kepler instead thought he could explain the motion of planets by a few simple rules. He found these rules empirically by studying the exquisite data taken by Tycho Brahe. These laws were chosen simply to fit the data. Only later were these laws derived from basic physical laws. By the way, much of modern physics are still like Kepler’s Laws, it is always the dream/goal/aspiration to derive known phenomenological law from basic principles. There is some controversy as to who first derived Kepler’s Laws, many credit Newton himself others credit Johann Bernoulli in 1710. The incredible thing is that we can derive the laws in a few short pages. Our intuition and understanding of vector calculus is several hundred years in advance, so ordinary folks like myself can grasp the proof.

Set-up

Kepler’s Laws for the Sun and a single planet are:

1. The orbit of the planet is elliptical with the sun at a focus.
2. During equal times the planet sweeps out equal areas in the ellipse.
3. \(T^2 \propto a^3 \) where \(T \) = period of planet's orbit, \(a \) = length of semi-major axis of ellipse.

We plot the origin at the sun. We expect that
4.6. KEPLER'S LAWS OF PLANETARY MOTION

- My proof of Kepler's laws follows College of 541 fairly closely.

Proposition: The motion of the planet lies in a plane which also contains the sun if we assume Newton's Universal Law of Gravitation governs the motion through Newton's Laws.

Proof: our goal is to show that \(\ddot{r} \times \dot{r} = c \) for some constant vector \(c \). This will show that planet moves in a plane with normal \(c \). Note,

\[
\frac{d}{dt} (\ddot{r} \times \dot{r}) = \frac{d}{dt} \dot{r} \times \ddot{r} + \ddot{r} \times \frac{d}{dt} \dot{r} = \dddot{r} \times \ddot{r}.
\]

Recall in our current notation that \(\ddot{r} = r \dddot{r} \) and Newton tells us that,

\[
\ddot{r} = \frac{GMm}{r^2} \frac{\hat{r}}{r^2} = -\frac{GMm}{r^2} \hat{r}.
\]

\[
\Rightarrow \dddot{r} \times \dot{r} = 0 \Rightarrow \frac{d}{dt} (\ddot{r} \times \dot{r}) = \dddot{r} \times \dot{r} = 0 \Rightarrow \dddot{r} \times \dot{r} = 0.
\]

Theorem 1st Law: The planet's orbit is an ellipse with sun at one focus.

Proof: this will take a little work so be patient, let's get a better hold on \(\ddot{r} \),

\[
\ddot{r} = \frac{d^2}{dt^2} (r \hat{r}) = \frac{d}{dt} (r \hat{r}) + r \frac{d^2}{dt^2} \hat{r} = \dddot{r} \hat{r} + r \dddot{r} \hat{r} = \dddot{r} \hat{r} + r \dddot{r} \hat{r}
\]

Apply this to the following,

\[
\dddot{r} = r \hat{r} \times \left[\dddot{r} \hat{r} + r \dddot{r} \hat{r} \right] = r \hat{r} \times \dddot{r} \hat{r} = \dddot{r} \hat{r}
\]

Calculate then, using (1)

\[
\dddot{r} \hat{r} = (-\frac{GM}{r^2}) \hat{r} \times (r^2 \hat{r} \times \frac{d}{dt})
\]

\[
= -GM \left[\hat{r} \times (r^2 \hat{r} \times \frac{d}{dt}) \right]
\]

\[
= GM \left[(r \hat{r} \times \hat{r}) \times \hat{r} \right]: \text{recall} \ A \times (B \times C) = (A \cdot C) B - (A \cdot B) C
\]

\[
= GM \left[(r \hat{r}) \hat{r} - (r \hat{r}) \hat{r} \right]: \text{recall} \ A \cdot F = 1 \Rightarrow \hat{r} \cdot \hat{r} = 0 \Rightarrow \hat{r} \cdot \hat{r} = 0
\]

\[
= GM \frac{d}{dt}
\]

\[
= \frac{d}{dt} (GM \hat{r}) = \dddot{r} \hat{r}
\]
Proof of Kepler’s 1st Law continued.

We may derive another identity for $\vec{a} \times \vec{c}$,

$$\vec{a} \times \vec{c} = \frac{d}{dt} \vec{c} + \vec{v} \times \frac{d\vec{c}}{dt}; \text{ added zero since } \frac{d\vec{c}}{dt} = 0.$$

$$= \frac{d}{dt} \left[\vec{v} \times \vec{c} \right]; \text{ using identity (V) on (245)}$$

Thus comparing (II) & (III) we find

$$\frac{d}{dt} \left(GM \vec{r} \right) = \frac{d}{dt} \left(\vec{v} \times \vec{c} \right) \quad \therefore \quad \vec{v} \times \vec{c} = GM \vec{r} + \vec{d}$$

where \vec{d} is a constant vector, it lies in the orbital plane since $\vec{v} \times \vec{c}$ and \vec{r} do. Now choose coordinates in the orbital plane so that \vec{d} lines up with the x-axis. Let θ be the usual θ in the xy-plane,

$$\vec{r} \cdot \vec{d} = r |\vec{d}| \cos \theta = d \cos \theta$$

where $|\vec{d}| = d$ in our notation here.

Now consider the length of \vec{c} squared,

$$c^2 = \vec{c} \cdot \vec{c}$$

$$= (\vec{r} \times \vec{v}) \cdot \vec{c}$$

$$= \vec{r} \cdot (\vec{v} \times \vec{c}); \text{ using identity (V) of (243)}$$

$$= r \hat{r} \cdot \left[GM \vec{r} + \vec{d} \right]; \text{ using IV, we found just above,}$$

$$= GMr + r \hat{r} \cdot \vec{d}$$

$$= GMr + rd \cos \theta$$

$$= r \left(GM + d \cos \theta \right)$$

Therefore we solve for $r = \sqrt{x^2 + y^2 + z^2} = \sqrt{x^2 + y^2}$ (we’re in $z = 0$) and obtain the r^2 of an ellipse or parabola or hyperbola

$$r = \frac{c^2}{GM + d \cos \theta} = \frac{c^2 / GM}{1 + (\frac{d}{GM}) \cos \theta} = \frac{p}{1 + e \cos \theta} = \frac{1}{\epsilon}$$

where we define $p = c^2 / GM$ and the eccentricity $\epsilon = d / GM$. This is an ellipse in polar coordinates. Since you’ve likely not seen that recently (or maybe never) we’ll connect to ¥
4.6. KEPLER'S LAWS OF PLANETARY MOTION

Proof of Kepler's 1st Law Continued

the usual Cartesian eq's for the ellipse. The details will be of use to us in proving the 3rd Law of Kepler later on.

\[r = \frac{p}{1 + e \cos \theta} \Rightarrow r = p - e \cos \theta \]

Trying to convert the polar coordinates \((r, \theta)\) to \((x, y)\) where \(x = r \cos \theta\) and \(y = r \sin \theta\). We see, using \(x = r \cos \theta\)

\[r = p - e x \]

\[r^2 = x^2 + y^2 = p^2 - 2epx + e^2 x^2 \]

\[x^2 - e^2 x^2 + y^2 + 2epx = p^2 \]

\[x^2(1-e^2) + 2epx + y^2 = p^2 \]

\[x^2 + \frac{2ep}{1-e^2} x + \frac{y^2}{1-e^2} = \frac{p^2}{1-e^2} \quad \text{assume } e \neq 1 \]

\[\left(x - \frac{ep}{1-e^2} \right)^2 + \frac{y^2}{p^2(1-e^2)} = \frac{p^2}{1-e^2} + \frac{e^2 p^2}{(1-e^2)^2} = \frac{p^2 - e^2 p^2}{(1-e^2)^2} = \frac{p^2}{(1-e^2)^2} \]

\[\frac{\left(x - \frac{ep}{1-e^2} \right)^2}{p^2(1-e^2)} + \frac{y^2}{p^2(1-e^2)} = 1 \]

This is an ellipse with center \((ep/(1-e^2), 0)\) and it has semimajor axis length \(a = p/(1-e^2)\) and semiminor axis \(b = p/\sqrt{1-e^2}\).

Remark: Recall that we defined \(p = c^2/GM\) so \(p > 0\) and we need not worry about \(x\) by \(p\). Now \(e = d/GM > 0\) so we can rule out \(e = -1\) as a problem. Notice we have division by \(\sqrt{1-e^2}\) as part of our setup, this only makes sense if \(0 < e < 1\). The case \(e = 1\) needs separate treatment. Motion in the case \(0 < e < 1\) is that of planets.

\(e = 1 \):

\[r = p - rcos \theta \Rightarrow r^2 = (p - x)^2 = p^2 - 2px + x^2 \]

that is \(x^2 + y^2 = p^2 - 2px + x^2 \Rightarrow 2px = p^2 - y^2 \)

\[x = \frac{p}{2} - \frac{y^2}{2p} \quad \text{parabola} \]

Remark: One nice resource for background on conic-sections and polar coordinates is "Precalculus, Concepts through functions" Sullivan & Sullivan. There is just about all the cases you can imagine, rotated ellipses for example.
CHAPTER 4. GEOMETRY OF CURVES

Kepler's 2nd Law: During equal times a planet sweeps through equal areas.

Proof: Pick a point \(P_0 \) at angle \(\Theta_0 \). The later in the course we will learn that the area in polar coordinates swept by the region from \(\Theta_0 \) to \(\Theta \) is simply

\[
A(\Theta) = \int_{\Theta_0}^{\Theta} \frac{1}{2} r^2 \, d\Theta
\]

We seek to show that \(\frac{dA}{dt} = \text{constant} \). Consider then

\[
\frac{dA}{d\Theta} = \frac{d}{d\Theta} \left(\frac{1}{2} \int_{\Theta_0}^{\Theta} r^2 \, d\Theta \right) = \frac{1}{2} r^2 \text{ by F.I.C.}
\]

Then the chain rule tells us:

\[
\frac{dA}{dt} = \frac{dA}{d\Theta} \frac{d\Theta}{dt} = \frac{1}{2} r^2 \frac{d\Theta}{dt}
\]

Notice that \(\hat{r} = \langle \cos \Theta, \sin \Theta \rangle \) thus differ implicitly, remember \(\Theta = \Theta(t) \).

\[
\frac{d\hat{r}}{dt} = \langle -\sin \Theta, \cos \Theta \rangle \frac{d\Theta}{dt} = \langle -\sin \Theta, \cos \Theta, 0 \rangle \frac{d\Theta}{dt} \text{ (we've been suppressing the \(3 \)-comp.)}
\]

\(0, 0 \Rightarrow \overline{c} = r^2 (\hat{r} \times \frac{d\hat{r}}{dt}) = r^2 \frac{d\Theta}{dt} \langle \cos \Theta, \sin \Theta, 0 \rangle \times \langle -\sin \Theta, \cos \Theta, 0 \rangle \)

\[
\overline{c} = r^2 \frac{d\Theta}{dt} \langle 0, 0, 1 \rangle = 0 = r^2 \frac{d\Theta}{dt}
\]

Hence

\[
\frac{dA}{dt} = \frac{1}{2} r^2 \frac{d\Theta}{dt} = \frac{c}{2} = \text{constant}. \quad \Box
\]

Kepler's 3rd Law: \(T^2 = K a^3 \) where \(T \) is the orbital period and \(a \) is the length of the semimajor axis, \(K \) is some constant.

Proof: I proved back on p.g. 138 in E7 that the area of an ellipse is \(A = \pi ab \). On the other hand we could say that \(dA = \frac{dA}{dt} \, dt \) and integrate over a whole orbit to find

\[
\pi ab = \int_0^T \frac{dA}{dt} \, dt = \int_0^T \frac{c}{2} \, dt \implies T = \frac{2\pi ab}{c^2} \implies T^2 = \frac{4\pi^2 a^2}{GM^2}
\]

Notice that \(a^2 = p^2/(1-e^2) \) and \(b^2 = p^2/(1+e^2) \), also \(c^2 = GMp \).

\[
T^2 = \frac{4\pi^2}{GM} \left(\frac{p^2}{(1-e^2)} \right) = \frac{4\pi^2}{GM} \left(\frac{p^3}{1-e^2} \right) = \frac{4\pi^2 a^3}{GM^2} \quad \Box
\]

It is interesting that \(K = \frac{4\pi^2}{GM} \) is independent of the planets and all the planets orbit under the same \(K \)-value.
Remark: There is another method of proving Kepler's Laws that begins with the two-body Lagrangian for a central potential (well force really but $F = f(r) \Rightarrow U = U(r), \ldots$). In that derivation one need not assume the Sun is at the origin. Instead one considers the center of mass to be at the origin and work out how the reduced mass μ orbits. Anyway its very beautiful, take Mechanics at the Junior/Senior level to see the more general derivation. Also they will actually find $R(t)$ explicitly as opposed to the indirect arguments we have offered (or rather stolen from Celioy).
Chapter 5

Euclidean structures and physics

Although much was known about the physical world prior to Newton that knowledge was highly unorganized and formulated in such a way that it was difficult to use and understand. The advent of Newton changed all that. In 1665-1666 Newton transformed the way people thought about the physical world, years later he published his many ideas in "Principia mathematica philosophiae naturalia" (1686). His contribution was to formulate three basic laws or principles which along with his universal law of gravitation would prove sufficient to derive and explain all mechanical systems both on earth and in the heavens known at the time. These basic laws may be stated as follows:

1. **Newton’s First Law:** Every particle persists in its state of rest or of uniform motion in a straight line unless it is compelled to change that state by impressed forces.

2. **Newton’s Second Law:** The rate of change of motion is proportional to the motive force impressed; and is made in the direction of the straight line in which that force is impressed.

3. **Newton’s Third Law:** To every action there is an equal reaction; or the mutual actions of two bodies upon each other are always equal but oppositely directed.

Until the early part of the last century Newton’s laws proved adequate. We now know, however that they are only accurate within prescribed limits. They do not apply for things that are very small like an atom or for things that are very fast like cosmic rays or light itself. Nevertheless Newton’s laws are valid for the majority of our common macroscopic experiences in everyday life.

1What follows is borrowed from Chapter 6 of my Mathematical Models in Physics notes which is turn borrowed from my advisor Dr. R.O. Fulp’s notes for Math 430 at NCSU. I probably will not cover all of this in lecture but I thought it might be interesting to those of you who are more physically minded. I have repeated some mathematical definitions in this chapter in the interest of making this chapter more readable. This chapter gives you an example of the practice of Mathematical Physics. One common idea in Mathematical Physics is to take known physics and reformulate it in a proper mathematical context. Physicists don’t tend to care about domains or existence so if we are to understand their calculations then we need to do some work in most cases.
It is implicitly presumed in the formulation of Newton’s laws that we have a concept of a straight line, of uniform motion, of force and the like. Newton realized that Euclidean geometry was a necessity in his model of the physical world. In a more critical formulation of Newtonian mechanics one must address the issues implicit in the above formulation of Newton’s laws. This is what we attempt in this chapter, we seek to craft a mathematically rigorous systematic statement of Newtonian mechanics.

5.1 Euclidean geometry

Note: we abandon the more careful notation of the previous chapters in what follows. In a nutshell we are setting $\mathbb{R}^3 = V^3$, this is usually done in physics. We can identify a given point with a vector that emanates from the origin to the point in question. It will be clear from the context if a point or a vector is intended.

Nowadays Euclidean geometry is imposed on a vector space via an inner product structure. Let $x_1, x_2, x_3, y_1, y_2, y_3, c \in \mathbb{R}$. As we discussed \mathbb{R}^3 is the set of 3-tuples and it is a vector space with respect to the operations,

$$(x_1, x_2, x_3) + (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$$

$$c(x_1, x_2, x_3) = (cx_1, cx_2, cx_3)$$

where $x_1, x_2, x_3, y_1, y_2, y_3, c \in \mathbb{R}$. Also we have the dot-product,

$$(x_1, x_2, x_3) \cdot (y_1, y_2, y_3) = x_1 y_1 + x_2 y_2 + x_3 y_3$$

from which the length of a vector $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ can be calculated,

$$|x| = \sqrt{x \cdot x} = \sqrt{x_1^2 + x_2^2 + x_3^2}$$

meaning $|x|^2 = x \cdot x$. Also if $x, y \in \mathbb{R}^3$ are nonzero vectors then the angle between them is defined by the formula,

$$\theta = \cos^{-1}\left(\frac{x \cdot y}{|x||y|}\right)$$

In particular nonzero vectors x and y are perpendicular or orthogonal iff $\theta = 90^\circ$ which is so iff $\cos(\theta) = 0$ which is turn true iff $x \cdot y = 0$.

Definition 5.1.1.

A function $L : \mathbb{R}^3 \to \mathbb{R}^3$ is said to be a linear transformation if and only if there is a 3×3 matrix A such that $L(x) = Ax$ for all $x \in \mathbb{R}^3$. Here Ax indicates multiplication by the matrix A on the column vector x.

Definition 5.1.2.

An orthogonal transformation is a linear transformation \(L : \mathbb{R}^3 \to \mathbb{R}^3 \) which satisfies
\[
L(x) \cdot L(y) = x \cdot y
\]
for all \(x, y \in \mathbb{R}^3 \). Such a transformation is also called a linear isometry of the Euclidean metric.

The term isometry means the same measure, you can see why that’s appropriate from the following,
\[
|L(x)|^2 = L(x) \cdot L(x) = x \cdot x = |x|^2
\]
for all \(x \in \mathbb{R}^3 \). Taking the square root of both sides yields
\[
|L(x)| = |x|;
\]
thus \(L(x) \) is on a line described by
\[
L(x) = a + tv
\]
thus \(L(x) \) is on a line described by \(x = L(a) + tL(v) \), so we can choose \(a' = L(a) \) and \(v' = L(v) \) it turns out; \(L(l) = \{ x \in \mathbb{R}^3 \mid x = a' + tv' \} \).

Proposition 5.1.4.

If \(L \) is an orthonormal transformation then \(L(l) \) is also a line in \(\mathbb{R}^3 \).

To prove this we simply need to find new \(a' \) and \(v' \) in \(\mathbb{R}^3 \) to demonstrate that \(L(l) \) is a line. Take a point on the line, \(x \in l \)
\[
L(x) = L(a + tv) = L(a) + tL(v)
\]
thus \(L(x) \) is on a line described by \(x = L(a) + tL(v) \), so we can choose \(a' = L(a) \) and \(v' = L(v) \) it turns out; \(L(l) = \{ x \in \mathbb{R}^3 \mid x = a' + tv' \} \).

If one has a coordinate system with unit vectors \(\hat{i}, \hat{j}, \hat{k} \) along three mutually orthogonal axes then an orthogonal transformation will create three new mutually orthogonal unit vectors \(L(\hat{i}) = \hat{i}', L(\hat{j}) = \hat{j}', L(\hat{k}) = \hat{k}' \) upon which one could lay out new coordinate axes. In this way orthogonal transformations give us a way of constructing new “rotated” coordinate systems from a given coordinate system. Moreover, it turns out that Newton’s laws are preserved (have the same form) under orthogonal transformations. Transformations which are not orthogonal can greatly distort the form of Newton’s laws.
Remark 5.1.5.

If we view vectors in \mathbb{R}^3 as column vectors then the dot-product of x with y can be written as $x \cdot y = x^T y$ for all $x, y \in \mathbb{R}^3$. Recall that x^T is the transpose of x, it changes the column vector x to the corresponding row vector x^T.

Let us consider an orthogonal transformation $L : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ where $L(x) = Ax$. What condition on the matrix A follows from the the L being an orthogonal transformation?

\[L(x) \cdot L(y) = x \cdot y \iff (Ax)^T (Ay) = x^T y \]
\[\iff x^T (A^T A) y = x^T y \]
\[\iff x^T (A^T A) y = x^T I y \]
\[\iff x^T (A^T A - I) y = 0. \]
(5.2)

But $x^T (A^T A - I) y = 0$ for all $x, y \in \mathbb{R}^3$ iff $A^T A - I = 0$ or $A^T A = I$. Thus L is orthogonal iff its matrix A satisfies $A^T A = I$. This is in turn equivalent to A having an inverse and $A^{-1} = A^T$.

Proposition 5.1.6.

The set of orthogonal transformations on \mathbb{R}^3 is denoted $O(3)$. The operation of function composition on $O(3)$ makes it a group. Likewise we also denote the set of all orthogonal matrices by $O(3)$,

\[O(3) = \{ A \in \mathbb{R}^{3 \times 3} \mid A^T A = I \} \]

it is also a group under matrix multiplication.

Usually we will mean the matrix version, it should be clear from the context, it’s really just a question of notation since we know that L and A contain the same information thanks to linear algebra. Recall that every linear transformation L on a finite dimensional vector space can be represented by matrix multiplication of some matrix A.

Proposition 5.1.7.

The set of special orthogonal matrices on \mathbb{R}^3 is denoted $SO(3)$,

\[SO(3) = \{ A \in \mathbb{R}^{3 \times 3} \mid A^T A = I \text{ and } \det(A) = 1 \} \]

it is also a group under matrix multiplication and thus it is a subgroup of $O(3)$. It is shown in standard linear algebra course that every special orthogonal matrix rotates \mathbb{R}^3 about some line. Thus, we will often refer to $SO(3)$ as the group of rotations.

There are other transformations that do not change the geometry of \mathbb{R}^3.

Definition 5.1.8.

A translation is a function $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ defined by $T(x) = x + v$ where v is some fixed vector in \mathbb{R}^3 and x is allowed to vary over \mathbb{R}^3.
Clearly translations do not change the distance between two points \(x, y \in \mathbb{R}^3 \),
\[
|T(x) - T(y)| = |x + v - (y - v)| = |x - y| = \text{distance between } x \text{ and } y.
\]

Also if \(x, y, z \) are points in \(\mathbb{R}^3 \) and \(\theta \) is the angle between \(y - x \) and \(z - x \) then \(\theta \) is also the angle between \(T(y) - T(x) \) and \(T(z) - T(x) \). Geometrically this is trivial, if we shift all points by the same vector then the difference vectors between points are unchanged thus the lengths and angles between vectors connecting points in \(\mathbb{R}^3 \) are unchanged.

Definition 5.1.9.

A function \(\phi : \mathbb{R}^3 \to \mathbb{R}^3 \) is called a **rigid motion** if there exists a vector \(r \in \mathbb{R}^3 \) and a rotation matrix \(A \in SO(3) \) such that \(\phi(x) = Ax + r \).

A rigid motion is the composite of a translation and a rotation therefore it will clearly preserve lengths and angles in \(\mathbb{R}^3 \). So rigid motions are precisely those transformations which preserve Euclidean geometry and consequently they are the transformations which will preserve Newton’s laws. If Newton’s laws hold in one coordinate system then we will find Newton’s laws are also valid in a new coordinate system iff it is related to the original coordinate system by a rigid motion. We now proceed to provide a careful exposition of the ingredients needed to give a rigorous formulation of Newton’s laws.

Definition 5.1.10.

We say that \(E \) is an **Euclidean structure** on a set \(S \) iff \(E \) is a family of bijections from \(S \) onto \(\mathbb{R}^3 \) such that,

(1.) \(\mathcal{X}, \mathcal{Y} \in E \) then \(\mathcal{X} \circ \mathcal{Y}^{-1} \) is a rigid motion.
(2.) if \(\mathcal{X} \in E \) and \(\phi \) is a rigid motion then \(\phi \circ \mathcal{X} \in E \).

Also a **Newtonian space** is an ordered pair \((S, E) \) where \(S \) is a set and \(E \) is an Euclidean structure on \(S \).

Notice that if \(\mathcal{X}, \mathcal{Y} \in E \) then there exists an \(A \in SO(3) \) and a vector \(r \in \mathbb{R}^3 \) so that we have \(\mathcal{X}(p) = A \mathcal{Y}(p) + r \) for every \(p \in S \). Explicitly in cartesian coordinates on \(\mathbb{R}^3 \) this means,
\[
[\mathcal{X}_1(p), \mathcal{X}_2(p), \mathcal{X}_3(p)]^T = A[\mathcal{Y}_1(p), \mathcal{Y}_2(p), \mathcal{Y}_3(p)]^T + [r_1, r_2, r_3]^T.
\]

Newtonian space is the mathematical model of space which is needed in order to properly formulate Newtonian mechanics. The first of Newton’s laws states that an object which is subject to no forces must move along a straight line. This means that some observer should be able to show that the object moves along a line in space. We take this to mean that the observer chooses an inertial frame and makes measurements to decide whether or not the object executes straight line motion in the coordinates defined by that frame. If the observations are to be frame independent then the notion of a straight line in space should be independent of which inertial coordinate system is used to make the measurements. We intend to identify inertial coordinate systems as precisely those elements of \(E \). Thus we need to show that if \(l \) is a line as measured by \(\mathcal{X} \in E \) then \(l \) is also a line as measured by \(\mathcal{Y} \in E \).
Definition 5.1.11. Let \((S, \mathcal{E})\) be a Newtonian space. A subset \(l\) of \(S\) is said to be a **line in \(S\)** iff \(X(l)\) is a line in \(\mathbb{R}^3\) for some choice of \(X \in \mathcal{E}\).

The theorem below shows us that the choice made in the definition above is not special. In fact our definition of a line in \(S\) is coordinate independent. Mathematicians almost always work towards formulating geometry in a way which is independent of the coordinates employed, this is known as the coordinate free approach. Physicists in contrast almost always work in coordinates.

Theorem 5.1.12. If \(l\) is a line in a Newtonian space \((S, \mathcal{E})\) then \(Y(l)\) is a line in \(\mathbb{R}^3\) for every \(Y \in \mathcal{E}\).

Proof: Because \(l\) is a line in the \(S\) we know there exists \(X \in \mathcal{E}\) and \(X(l)\) is a line in \(\mathbb{R}^3\). Let \(Y \in \mathcal{E}\) observe that,

\[
(Y \circ X^{-1} \circ X)(l) = (Y \circ X^{-1})(X(l)).
\]

Now since \(X, Y \in \mathcal{E}\) we have that \(Y \circ X^{-1}\) is a rigid motion on \(\mathbb{R}^3\). Thus if we can show that rigid motions take lines to lines in \(\mathbb{R}^3\) the proof will be complete. We know that there exist \(A \in SO(3)\) and \(r \in \mathbb{R}^3\) such that \((Y \circ X^{-1})(x) = Ax + r\). Let \(x \in X(l) = \{x \in \mathbb{R}^3 \mid x = p + tq \ \ t \in \mathbb{R}\ \text{and} \ p,q \text{ are fixed vectors in} \ \mathbb{R}^3\}\), consider

\[
(Y \circ X^{-1})(x) = Ax + r
= A(p + tq) + r
= (Ap + r) + tAq
= p' + tq'
\]

letting \(p' = Ap + r\) and \(q' = Aq\). The above hold for all \(x \in X(l)\), clearly we can see the line has mapped to a new line \(Y(l) = \{x \in \mathbb{R}^3 \mid x = p' + tq', t \in \mathbb{R}\}\). Thus we find what we had hoped for, lines are independent of the frame chosen from \(\mathcal{E}\) in the sense that a line is always a line no matter which element of \(\mathcal{E}\) describes it.

Definition 5.1.13.

An **observer** is a function from an interval \(I \subset \mathbb{R}\) into \(\mathcal{E}\). We think of such a function \(X: I \rightarrow \mathcal{E}\) as being a time-varying coordinate system on \(S\). For each \(t \in I\) we denote \(X(t)\) by \(X_t\); thus \(X_t: S \rightarrow \mathbb{R}^3\) for each \(t \in I\) and \(X_t(p) = [X_{t1}(p), X_{t2}(p), X_{t3}(p)]\) for all \(p \in S\).

Assume that a material particle or more generally a "point particle" moves in space \(S\) in such a way that at time \(t\) the particle is centered at the point \(\gamma(t)\). Then the mapping \(\gamma: I \rightarrow S\) will be called the **trajectory** of the particle.
Definition 5.1.14.

Let us consider a particle with trajectory $\gamma : I \rightarrow S$. Further assume we have an observer $\mathcal{X} : I \rightarrow \mathcal{E}$ with $t \mapsto \mathcal{X}_t$ then:

1. $\mathcal{X}_t(\gamma(t))$ is the **position vector** of the particle at time $t \in I$ relative to the observer \mathcal{X}.

2. $\frac{d}{dt}[\mathcal{X}_t(\gamma(t))]_{|t=t_0}$ is called the **velocity** of the particle at time $t_0 \in I$ relative to the observer \mathcal{X}, it is denoted $v_{\mathcal{X}}(t_0)$.

3. $\frac{d^2}{dt^2}[\mathcal{X}_t(\gamma(t))]_{|t=t_0}$ is called the **acceleration** of the particle at time $t_0 \in I$ relative to the observer \mathcal{X}, it is denoted $a_{\mathcal{X}}(t_0)$.

Notice that position, velocity and acceleration are only defined with respect to an observer. We now will calculate how position, velocity and acceleration of a particle with trajectory $\gamma : I \rightarrow S$ relative to observer $\mathcal{Y} : I \rightarrow \mathcal{E}$ compare to those of another observer $\mathcal{X} : I \rightarrow \mathcal{E}$. To begin we note that each particular $t \in I$ we have $\mathcal{X}_t, \mathcal{Y}_t \in \mathcal{E}$ thus there exists a rotation matrix $A(t) \in SO(3)$ and a vector $v(t) \in \mathbb{R}^3$ such that,

$$\mathcal{Y}_t(p) = A(t)\mathcal{X}_t(p) + r(t)$$

for all $p \in S$. As we let t vary we will in general find that $A(t)$ and $r(t)$ vary, in other words we have A a matrix-valued function of time given by $t \mapsto A(t)$ and r a vector-valued function of time given by $t \mapsto r(t)$. Also note that the origin of the coordinate coordinate system $\mathcal{X}(p) = 0$ moves to $\mathcal{Y}(p) = r(t)$, this shows that the correct interpretation of $r(t)$ is that it is the position of the old coordinate’s origin in the new coordinate system. Consider then $p = \gamma(t)$,

$$\mathcal{Y}_t(\gamma(t)) = A(t)\mathcal{X}_t(\gamma(t)) + r(t) \quad (5.4)$$

this equation shows how the position of the particle in \mathcal{X} coordinates transforms to the new position in \mathcal{Y} coordinates. We should not think that the particle has moved under this transformation, rather we have just changed our viewpoint of where the particle resides. Now move on to the transformation of velocity, (we assume the reader is familiar with differentiating matrix valued functions of a real variable, in short we just differentiate component-wise)

$$v_{\mathcal{Y}}(t) = \frac{d}{dt}[\mathcal{Y}(\gamma(t))]$$

$$= \frac{d}{dt}[A(t)\mathcal{X}_t(\gamma(t)) + r(t)]$$

$$= \frac{d}{dt}[A(t)]\mathcal{X}_t(\gamma(t)) + A(t)\frac{d}{dt}[\mathcal{X}_t(\gamma(t))] + \frac{d}{dt}[r(t)]$$

$$= A'(t)\mathcal{X}_t(\gamma(t)) + A(t)v_{\mathcal{X}}(t) + r'(t). \quad (5.5)$$

Recalling the dot notation for time derivatives and introducing $\gamma_{\mathcal{X}} = \mathcal{X} \circ \gamma$,

$$v_{\mathcal{Y}} = \dot{A}\gamma_{\mathcal{X}} + A\dot{v}_{\mathcal{X}} + \dot{r}. \quad (5.6)$$

We observe that the velocity according to various observes depends not only on the trajectory itself, but also the time evolution of the observer itself. The case $A = I$ is more familiar, since $\dot{A} = 0$ we have,

$$v_{\mathcal{Y}} = Iv_{\mathcal{X}} + \dot{r} = v_{\mathcal{X}} + \dot{r}. \quad (5.7)$$
The velocity according to the observer \mathcal{Y} moving with velocity \dot{r} relative to \mathcal{X} is the sum of the velocity according to \mathcal{X} and the velocity of the observer \mathcal{Y}. Obviously when $A \neq I$ the story is more complicated, but the case $A = I$ should be familiar from freshman mechanics.

Now calculate how the accelerations are connected,

$$a_Y(t) = \frac{d^2}{dt^2}[\mathcal{Y}(\gamma(t))] = \frac{d^2}{dt^2}[\mathcal{X}_t(\gamma(t))] + A(t)v_\mathcal{X}(t) + r'(t)$$

$$= A''(t)\mathcal{X}_t(\gamma(t)) + A'(t)\frac{d}{dt}[\mathcal{X}_t(\gamma(t))] + A'(t)v_\mathcal{X}(t) + A(t)\frac{d}{dt}[v_\mathcal{X}(t)] + r''(t)$$

$$= A''(t)\mathcal{X}_t(\gamma(t)) + 2A'(t)v_\mathcal{X}(t) + A(t)a_\mathcal{X}(t) + r''(t)$$

Therefore we relate acceleration in \mathcal{X} to the acceleration in \mathcal{Y} as follows,

$$a_Y = Aa_\mathcal{X} + \ddot{r} + \dot{A}v_\mathcal{X} + 2\dot{A}v_\mathcal{X}.$$

(5.9)

The equation above explains many things, if you take the junior level classical mechanics course you’ll see what those things are. This equation does not look like the one used in mechanics for noninertial frames, it is nevertheless the same and if you’re interested I’ll show you.

Example 5.1.15. ...

Example 5.1.16. ...
Definition 5.1.17.

If \(\gamma : I \to S \) is the trajectory of a particle then we say the particle and \(\mathcal{X} : I \to \mathcal{E} \) is an observer. We say the particle is in a state of rest relative to the observer \(\mathcal{X} \) iff \(v_\mathcal{X} = \frac{d}{dt}[\mathcal{X}(\gamma(t))] = 0 \). We say the particle experiences uniform rectilinear motion relative to the observer \(\mathcal{X} \) iff \(t \mapsto \mathcal{X}(\gamma(t)) \) is a straight line in \(\mathbb{R}^3 \) with velocity vector some nonzero constant vector.

We now give a rigorous definition for the existence of force, a little later we’ll say how to calculate it.

Definition 5.1.18.

A particle **experiences a force** relative to an observer \(\mathcal{X} \) iff the particle is neither in a state of rest nor is it in uniform rectilinear motion relative to \(\mathcal{X} \). Otherwise we say the particle experiences no force relative to \(\mathcal{X} \).

Definition 5.1.19.

An observer \(\mathcal{X} : I \to \mathcal{E} \) is said to be an **inertial observer** iff there exists \(\mathcal{X}_o \in \mathcal{E} \), \(A \in SO(3) \), \(v, w \in \mathbb{R}^3 \) such that \(\mathcal{X}_t = A\mathcal{X}_o + tv + w \) for all \(t \in I \). A particle is called a **free particle** iff it experiences no acceleration relative to an inertial observer.

Observe that a constant mapping into \(\mathcal{E} \) is an inertial observer and that general inertial observers are observers which are in motion relative to a ”stationary observer” but the motion is ”constant velocity” motion. We will refer to a constant mapping \(\mathcal{X} : I \to \mathcal{E} \) as a **stationary observer**.

Theorem 5.1.20.

If \(\mathcal{X} : I \to \mathcal{E} \) and \(\mathcal{Y} : I \to \mathcal{E} \) are inertial observers then there exists \(A \in SO(3) \), \(v, w \in \mathbb{R}^3 \) such that \(\mathcal{Y}_t = A\mathcal{X}_t + tv + w \) for all \(t \in I \). Moreover if a particle experiences no acceleration relative to \(\mathcal{X} \) then it experiences no acceleration relative to \(\mathcal{Y} \).

Proof: Since \(\mathcal{X} \) and \(\mathcal{Y} \) are inertial we have that there exist \(\mathcal{X}_o \) and \(\mathcal{Y}_o \) in \(\mathcal{E} \) and fixed vectors \(v_x, w_x, v_y, w_y \in \mathbb{R}^3 \) and particular rotation matrices \(A_x, A_y \in SO(3) \) such that

\[
\mathcal{X}_t = A_x\mathcal{X}_o + tv_x + w_x \quad \text{and} \quad \mathcal{Y}_t = A_y\mathcal{Y}_o + tv_y + w_y.
\]

Further note that since \(\mathcal{X}_o, \mathcal{Y}_o \in \mathcal{E} \) there exists fixed \(Q \in SO(3) \) and \(u \in \mathbb{R}^3 \) such that \(\mathcal{Y}_o = Q\mathcal{X}_o + u \). Thus, noting that \(\mathcal{X}_o = A_x^{-1}(\mathcal{X}_t - tv_x - w_x) \) for the fourth line,

\[
\mathcal{Y}_t = A_y\mathcal{Y}_o + tv_y + w_y \\
= A_y(Q\mathcal{X}_o + u) + tv_y + w_y \\
= A_yQA_x^{-1}\mathcal{X}_t + tv_y + A_yu + w_y \\
= A_yQA_x^{-1}(\mathcal{X}_t - tv_x - w_x) + tv_y + A_yu + w_y \\
= A_yQA_x^{-1}\mathcal{X}_t + tv_y + A_yu + w_y
\]

Thus define \(A = A_yQA_x^{-1} \in SO(3), v = v_y - A_yQA_x^{-1}v_x \), and \(w = -A_yQA_x^{-1}w_x + A_yu + w_y \). Clearly \(v, w \in \mathbb{R}^3 \) and it is a short calculation to show that \(A \in SO(3) \), we’ve left it as an exercise.
to the reader but it follows immediately if we already know that $SO(3)$ is a group under matrix multiplication (we have not proved this yet). Collecting our thoughts we have established the first half of the theorem, there exist $A \in SO(3)$ and $v, w \in \mathbb{R}^3$ such that,

$$Y_t = AX_t + tv + w$$

Now to complete the theorem consider a particle with trajectory $\gamma : I \to S$ such that $a_X = 0$. Then by eqn. 5.9 we find, using our construction of A, v, w above,

$$a_Y = Aa_X + \ddot{r} + \ddot{A}Y + 2\dot{A}v_X$$

$$= A0 + 0 + 0 + 2(0)v_X$$

$$= 0. \quad (5.11)$$

Therefore if the acceleration is zero relative to a particular inertial frame then it is zero for all inertial frames.

Consider that if a particle is either in a state of rest or uniform rectilinear motion then we can express it’s trajectory γ relative to an observer $X : I \to S$ by

$$X_t(\gamma(t)) = tv + w$$

for all $t \in I$ and fixed $v, w \in \mathbb{R}^3$. In fact if $v = 0$ the particle is in a state of rest, whereas if $v \neq 0$ the particle is in a state of uniform rectilinear motion. Moreover,

$$\gamma_X(t) = tv + w \iff v_X = v \iff a_X = 0.$$

Therefore we have shown that according to any inertial frame a particle that has zero acceleration necessarily travels in rectilinear motion or stays at rest.

Let us again ponder Newton’s laws.

1. **Newton’s First Law** Every particle persists in its state of rest or of uniform motion in a straight line unless it is compelled to change that state by impressed forces.

2. **Newton’s Second Law** The rate of change of motion is proportional to the motive force impressed; and is made in the direction of the straight line in which that force is impressed.

3. **Newton’s Third Law** To every action there is an equal reaction; or the mutual actions of two bodies upon each other are always equal but oppositely directed.

It is easy to see that if the first law holds relative to one observer then it does not hold relative to another observer which is rotating relative to the first observer. So a more precise formulation of the first law would be that it holds relative to some observer, or some class of observers, but not relative to all observers. We have just shown that if X is an inertial observer then a particle is
either in a state of rest or uniform rectilinear motion relative to \mathcal{X} iff its acceleration is zero. If γ is
the trajectory of the particle the second law says that the force F acting on the body is proportional
to $m(\text{d}v_X/\text{d}t) = ma_X$. Thus the second law says that a body has zero acceleration iff the force
acting on the body is zero (assuming $m \neq 0$). It seems to follow that the first law is a conse-
quence of the second law. What then does the first law say that is not contained in the second law?

The answer is that the first law is not a mathematical axiom but a physical principle. It says
it should be possible to physically construct, at least in principle, a set of coordinate systems at
each instant of time which may be modeled by the mathematical construct we have been calling
an inertial observer. Thus the first law can be reformulated to read:

There exists an inertial observer

The second law is also subject to criticism. When one speaks of the force on a body what is
it that one is describing? Intuitively we think of a force as something which pushes or pulls the
particle off its natural course.

The truth is that a course which seems natural to one observer may not appear natural to
another. One usually models forces as vectors. These vectors provide the push or pull. The
components of a vector in this context are observer dependent. The second law could almost be
relegated to a definition. The force on a particle at time t would be defined to be $ma_X(t)$ relative
to the observer \mathcal{X}. Generally physicists require that the second law hold only for inertial observers.

One reason for this is that if $F_\mathcal{X}$ is the force on a particle according to an inertial observer \mathcal{X} and
$F_\mathcal{Y}$ is the force on the same particle measured relative to the inertial observer \mathcal{Y} then we claim
$F_\mathcal{Y} = AF_\mathcal{X}$ where \mathcal{X} and \mathcal{Y} are related by

$$\mathcal{Y}_t = A\mathcal{X}_t + tv + w$$

for $v, w \in \mathbb{R}^3$ and $A \in SO(3)$ and for all t. Consider a particle traveling the trajectory γ we find
it’s accelerations as measured by \mathcal{X} and \mathcal{Y} are related by,

$$a_\mathcal{Y} = Aa_\mathcal{X}$$

where we have used eqn. 5.9 for the special case that A is a fixed rotation matrix and $r = tv + w$.
Multiply by the mass to obtain that $ma_\mathcal{Y} = A(ma_\mathcal{X})$ thus $F_\mathcal{Y} = AF_\mathcal{X}$. Thus the form of Newton’s
law is maintained under admissible transformations of observer.

Remark 5.1.21.

The invariance of the form of Newton’s laws in any inertial frame is known as the Galilean
relativity principle. It states that no inertial frame is preferred in the sense that the physical
laws are the same no matter which inertial frame you take observations from. This claim
is limited to mechanical or electrostatic forces. The force between to moving charges due
to a magnetic field does not act along the straight line connecting those charges. This
exception was important to Einstein conceptually. Notice that if no frame is preferred then
we can never, taking observations solely within an inertial frame, deduce the velocity of
that frame. Rather we only can deduce relative velocities by comparing observations from
different frames.
In contrast, if one defines the force relative to one observer \(Z \) which is rotating relative to \(X \) by
\[
F_Z = ma_Z
\]
then one obtains a much more complex relation between \(F_X \) and \(F_Z \) which involves the force on the particle due to rotation. Such forces are called fictitious forces as they arise from the choice of noninertial coordinates, not a genuine force.

Example 5.1.22. ...

5.2 noninertial frames, a case study of circular motion

Some argue that any force proportional to mass may be viewed as a fictitious force, for example Hooke’s law is \(F = kx \), so you can see that the spring force is genuine. On the other hand gravity looks like \(F = mg \) near the surface of the earth so some would argue that it is fictitious, however the conclusion of that thought takes us outside the realm of classical mechanics and the mathematics of this course. Anyway, if you are in a noninertial frame then for all intents and purposes fictitious forces are very real. The most familiar of these is probably the centrifugal force. Most introductory physics texts cast aspersion on the concept of centrifugal force (radially outward directed) because it is not a force observed from an inertial frame, rather it is a force due to noninertial motion. They say the centripetal (center seeking) force is really what maintains the motion and that there is no such thing as centrifugal force. I doubt most people are convinced by such arguments because it really feels like there is a force that wants to throw you out of a car when you take a hard turn. If there is no force then how can we feel it? The desire of some to declare this force to be "fictional" stems from there belief that everything should be understood from the perspective of an inertial frame. Mathematically that is a convenient belief, but it certainly doesn’t fit with everyday experience. Ok, enough semantics. Lets examine circular motion in some depth.

For notational simplicity let us take \(\mathbb{R}^3 \) to be physical space and the identity mapping \(X = id \) to give us a stationary coordinate system on \(\mathbb{R}^3 \). Consider then the motion of a particle moving in a circle of radius \(R \) about the origin at a constant angular velocity of \(\omega \) in the counterclockwise direction in the \(xy \)-plane. We will drop the third dimension for the most part throughout since it does not enter the calculations. If we assume that the particle begins at \((R, 0) \) at time zero then it
5.2. NONINERTIAL FRAMES, A CASE STUDY OF CIRCULAR MOTION

follows that we can parametrize its path via the equations,

\[
\begin{align*}
 x(t) &= R\cos(\omega t) \\
 y(t) &= R\sin(\omega t)
\end{align*}
\] (5.12)

this parametrization is geometric in nature and follows from the picture below, remember we took \(\omega \) constant so that \(\theta = \omega t \)

\[
\vec{r}(t) = (x(t), y(t))
\]

Let us derive what the acceleration is for the particle, differentiate twice to obtain

\[
\vec{r}''(t) = (x''(t), y''(t))
\]

\[
= (-R\omega^2\cos(\omega t), -R\omega^2\sin(\omega t))
\]

\[
= -\omega^2\vec{r}(t)
\]

Now for pure circular motion the tangential velocity \(v \) is related to the angular velocity \(\omega \) by \(v = \omega R \). In other words \(\omega = v/R \), radians per second is given by the length per second divided by the length of a radius. Substituting that into the last equation yields that,

\[
\vec{a}(t) = \vec{r}''(t) = -\frac{v^2}{R^2}\vec{r}(t)
\] (5.13)

The picture below summarizes our findings thus far.
Now define a second coordinate system that has its origin based at the rotating particle. We’ll call this new frame \mathcal{Y} whereas we have labeled the standard frame \mathcal{X}. Let $p \in \mathbb{R}^3$ be an arbitrary point then the following picture reveals how the descriptions of \mathcal{X} and \mathcal{Y} are related.

Clearly we find,

$$\mathcal{X}(p) = \mathcal{Y}(p) + \vec{r}(t)$$

(5.14)

note that the frames \mathcal{X} and \mathcal{Y}_t are not related by an rigid motion since \vec{r} is not a constant function. Suppose that γ is the trajectory of a particle in \mathbb{R}^3, lets compare the acceleration of γ in frame \mathcal{X} to that of it in \mathcal{Y}_t.

$$\mathcal{X}(\gamma(t)) = \mathcal{Y}_t(\gamma(t)) + \vec{r}(t)$$

$$\implies a_{\mathcal{X}}(t) = \gamma''(t) = a_{\mathcal{Y}_t}(t) + \vec{r}''(t)$$

(5.15)

If we consider the special case of $\gamma(t) = r(t)$ we find the curious but trivial result that $\mathcal{Y}_t(r(t)) = 0$ and consequently $a_{\mathcal{Y}_t}(t) = 0$. Perhaps a picture is helpful,
We have radically different pictures of the motion of the rotating particle, in the \mathcal{X} picture the particle is accelerated and using our earlier calculation,

$$a_X = r''(t) = -\frac{v^2}{R} \hat{r}$$

on the other hand in the \mathcal{Y} frame the mass just sits at the origin with $a_{Y_{\text{calc}}} = 0$. Since $F = ma$ we would conclude (ignoring our restriction to inertial frames for a moment) that the particle has an external force on it in the \mathcal{X} frame but not in the \mathcal{Y} frame. This clearly throws a wrench in the universality of the force concept, it is for this reason that we must restrict to inertial frames if we are to make nice broad sweeping statements as we have been able to in earlier sections. If we allowed noninertial frames in the basic set-up then it would be difficult to ever figure out what if any forces were in fact genuine. Dwelling on these matters actually led Einstein to his theory of general relativity where noninertial frames play a central role in the theory.

Anyway, lets think more about the circle. The relation we found in the \mathcal{X} frame does not tell us how the particle is remaining in circular motion, rather only that if it is then it must have an acceleration which points towards the center of the circle with precisely the magnitude mv^2/R. I believe we have all worked problems based on this basic relation. An obvious question remains, which force makes the particle go in a circle? Well, we have not said enough about the particle yet to give a definitive answer to that question. In fact many forces could accomplish the task. You might imagine the particle is tethered by a string to the central point, or perhaps it is stuck in a circular contraption and the contact forces with the walls of the contraption are providing the force. A more interesting possibility for us is that the particle carries a charge and it is subject to a magnetic field in the z-direction. Further let us assume that the initial position of the charge q is $(mv/qB, 0, 0)$ and the initial velocity of the charged particle is v in the negative y-direction. I'll work this one out one paper because I can.
We assume that we have a charge \(q \) with mass \(m \) that has
initial position \((m_0, 0, 0, 0)\) with initial velocity \(\vec{v}_0 = (0, -V_0, 0) \).
Then the charge is subject to a constant background magnetic
field of \(\vec{B} = (0, 0, B) \) where \(B > 0 \). We show that the
charge travels a circle of radius \(r = \frac{mV_0}{qB} \). We begin
with Newton's 2nd law paired with the Coulomb force law,

\[
m \frac{d^2 \vec{r}}{dt^2} = q \vec{E} = q \vec{B} \left(\frac{d\vec{v}}{dt} \right)
= \frac{qB}{m} \left(\frac{dx}{dt} \frac{d^2\vec{r}}{dt^2} \right) = \frac{d^2\vec{r}}{dt^2} + \frac{d\vec{v}}{dt} + \frac{d\vec{v}}{dt} \vec{B}
\]

This gives us three 2nd order ODEs to solve, let \(\alpha = \frac{qB}{m} \).

\[
\frac{d^2 z}{dt^2} = 0 \quad \text{has soln:} \quad z(t) = c_1 + c_2 t \quad \Rightarrow z(t) = 0 \quad \text{using initial conditions}
\]

\[
\begin{align*}
\frac{d^2 y}{dt^2} &= -\alpha \frac{dx}{dt} \\
\frac{d^2 x}{dt^2} &= -\alpha \frac{dy}{dt}
\end{align*}
\]

Notice that \(\frac{dy}{dt} = -\alpha \frac{dx}{dt} \Rightarrow \frac{d^2 y}{dt^2} = -\alpha \frac{dx}{dt} \Rightarrow \frac{d^2 x}{dt^2} = -\alpha \frac{dx}{dt} \).

Thus we need to solve \(x'' = -\alpha^2 x \), introduce \(W = x' \), then
our DEqs becomes \(W'' = -\alpha^2 W \) this has well known soln:

\[
W = \frac{dx}{dt} = c_1 \cos(\alpha t) + c_2 \sin(\alpha t)
\]

Then we can calculate everything else from this

\[
\begin{align*}
\frac{dy}{dt} &= -\frac{1}{\alpha} \frac{d^2 x}{dt^2} = -\frac{1}{\alpha} \left(-c_1 \alpha \sin(\alpha t) + c_2 \alpha \cos(\alpha t) \right) \\
\Rightarrow \frac{dy}{dt} &= -c_1 \sin(\alpha t) + c_2 \cos(\alpha t)
\end{align*}
\]
5.2. NONINERTIAL FRAMES, A CASE STUDY OF CIRCULAR MOTION

Continuing,

\[
\begin{align*}
\frac{dx}{dt} &= C_1 \cos(\omega t) + C_2 \sin(\omega t) \\
\frac{dy}{dt} &= -C_1 \sin(\omega t) + C_2 \cos(\omega t)
\end{align*}
\]

Now integrate both to find \(x(t)\) & \(y(t)\)

\[
\begin{align*}
x(t) &= \frac{1}{\omega} (C_1 \sin(\omega t) - C_2 \cos(\omega t)) + C_3 \\
y(t) &= \frac{1}{\omega} (C_1 \cos(\omega t) + C_2 \sin(\omega t)) + C_4
\end{align*}
\]

Finally, apply initial conditions,

\[
\begin{align*}
x'(0) &= 0 = C_1 \Rightarrow C_1 = 0 \\
y'(0) &= -v_0 = C_2 \Rightarrow C_2 = -v_0 \\
x(0) &= \frac{m v_0}{q B} = \frac{v_0}{\alpha} = \frac{1}{\omega} (v_0) + C_3 \Rightarrow C_3 = 0 \\
y(0) &= 0 = \frac{1}{\omega} (0) + C_4 \Rightarrow C_4 = 0
\end{align*}
\]

Thus collecting our results we find, since \(C_2/\alpha = -v_0/\alpha = -m v_0 / q B\)

\[
\begin{align*}
x(t) &= \left(\frac{m v_0}{q B}\right) \cos \left(\frac{q B t}{m}\right) \\
y(t) &= -\left(\frac{m v_0}{q B}\right) \sin \left(\frac{q B t}{m}\right) \\
z(t) &= 0
\end{align*}
\]

This is the circle \(x^2 + y^2 = R^2\) with radius \(R = m v_0 / q B\),

lying in the \(z = 0\) plane.

It is curious that magnetic forces cannot be included in the Galilean relativity. For if the velocity of a charge is zero in one frame but not zero in another then does that mean that the particle has a non-zero force or no force? In the rest frame of the constant velocity charge apparently there is no magnetic force, yet in another inertially related frame where the charge is in motion there would be a magnetic force. How can this be? The problem with our thinking is we have not asked how the magnetic field transforms for one thing, but more fundamentally we will find that you cannot separate the magnetic force from the electric force. Later we’ll come to a better understanding of this, there is no nice way of addressing it in Newtonian mechanics that I know of. It is an inherently relativistic problem, and Einstein attributes it as one of his motivating factors in dreaming up his special relativity.
"What led me more or less directly to the special theory of relativity was the conviction that the electromotive force acting on a body in motion in a magnetic field was nothing else but an electric field"

Albert Einstein, 1952.
Chapter 6

differentiation

In this chapter we define differentiation of mappings. I follow Edwards fairly closely, his approach is efficient and his language clarifies concepts which are easily confused. Susan Colley’s text Vector Calculus is another good introductory text which describes much of the mathematics in this chapter. When I teach calculus III I do touch on the main thrust of this chapter but I shy away from proofs and real use of linear algebra. That is not the case here.

6.1 derivatives and differentials

In this section we motivate the general definition of the derivative for mappings from \mathbb{R}^n to \mathbb{R}^m. Naturally this definition must somehow encompass the differentiation concepts we’ve already discussed in the calculus sequence: let’s recall a few examples to set the stage,

1. derivatives of functions of \mathbb{R}, for example $f(x) = x^2$ has $f'(x) = 2x$

2. derivatives of mappings of \mathbb{R}, for example $f(t) = (t, t^2, t^3)$ has $f'(t) = <1, 2t, 3t^2>$.

3. $f : dom(f) \subseteq \mathbb{R}^2 \to \mathbb{R}$ has directional derivative $(D_u f)(p) = (\nabla f)(p) \cdot u$

 where $\nabla f = \text{grad}(f) = <\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}>$

4. $X : U \subseteq \mathbb{R}^2_{uv} \to \mathbb{R}^3_{xyz}$ parametrizes a surface $X(U)$ and $N(u, v) = \frac{\partial X}{\partial u} \times \frac{\partial X}{\partial v}$ gives the normal vector field to the surface.

We’d like to understand how these derivatives may be connected in some larger context. If we could find such a setting then that gives us a way to state theorems about derivatives in an efficient and general manner. We also should hope to gain a deeper insight into the geometry of differentiation.
6.1.1 derivatives of functions of a real variable

Let’s revisit the start of Calculus I. We begin by defining the change in a function \(f \) between the point \(a \) and \(a + h \):

\[
\Delta f = f(a + h) - f(a).
\]

We can approximate this change for small values of \(h \) by replacing the function with a line. Recall that the line closest to the function at that point is the tangent line which has slope \(f'(a) \) which we define below.

Definition 6.1.1.

Suppose \(f : \mathbb{U} \subseteq \mathbb{R} \rightarrow \mathbb{R} \) then we say that \(f \) has derivative \(f'(a) \) defined by the limit below (if the limit exists, otherwise we say \(f \) is not differentiable at \(a \))

\[
f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}
\]

If \(f \) has a derivative at \(a \) then it also has a differential \(df_a : \mathbb{R} \rightarrow \mathbb{R} \) at \(a \) which is a function defined by \(df_a(h) = hf'(a) \). Finally, if \(f \) has derivative \(f'(a) \) at \(a \) then the tangent line to the curve has equation \(y = f(a) + f'(a)(x - a) \).

Notice that the derivative at a point is a number whereas the differential at a point is a linear map\(^1\). Also, the tangent line is a "parallel translate" of the line through the origin with slope \(f'(a) \).

Example 6.1.2.

\(^1\)We will maintain a similar distinction in the higher dimensional cases so I want to draw your attention to the distinction in terminology from the outset.
Proposition 6.1.4.

Suppose \(a \in \text{dom}(f) \) where \(f : \text{dom}(f) \subseteq \mathbb{R} \to \mathbb{R} \) and \(a \in \text{dom}(f') \) then \(df_a \) is a linear transformation from \(\mathbb{R} \) to \(\mathbb{R} \).

Proof: Let \(c, h, k \in \mathbb{R} \) and \(a \in \text{dom}(f') \) which simply means \(f'(a) \) is well-defined. Note that:

\[
df_a(ch + k) = (ch + k)f'(a) = cf'(a) + kf'(a) = cdf_a(h) + df_a(k)
\]

for all \(c, h, k \) thus \(df_a \) is linear transformation. \(\square \)

The **differential** is likewise defined to be the differential form \(df : \text{dom}(f) \to L(\mathbb{R}, \mathbb{R}) = \mathbb{R}^* \) where \(df(a) = df_a \) and \(df_a \) is a linear function from \(\mathbb{R} \) to \(\mathbb{R} \). We’ll study differential forms in more depth in a later section.

6.1.2 derivatives of vector-valued functions of a real variable

A **vector-valued function of a real variable** is a mapping from a subset of \(\mathbb{R} \) to some subset \(\mathbb{R}^n \). In this section we discuss how to differentiate such functions as well as a few interesting theorems which are known for the various vector products.

We can revisit the start of Calculus III. We begin by defining the change in a vector-valued function \(f \) between the inputs \(a \) and \(a + h \):

\[
\Delta f = f(a + h) - f(a).
\]

This is a vector. We can approximate this change for small values of \(h \) by replacing the space curve \(a \mapsto f(a) \) with a line \(t \mapsto f(a) + tf'(a) \) in \(\mathbb{R}^n \). The direction vector of the tangent line is \(f'(a) \) which we define below.

Definition 6.1.5.

Suppose \(f : U \subseteq \mathbb{R} \to \mathbb{R} \) then we say that \(f \) has **derivative** \(f'(a) \) defined by the limit below (if the limit exists, otherwise we say \(f \) is not differentiable at \(a \))

\[
f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}
\]

We define \(f' \) to be the function defined pointwise by the limit above for all such values as the limit converges. If \(f \) has a derivative at \(a \) then it also has a **differential** \(df_a : \mathbb{R} \to \mathbb{R}^n \) at \(a \) which is a mapping defined by \(df_a(h) = hf'(a) \). The vector-valued-differential form \(df \) is defined pointwise by \(df(a) = df_a \) for all \(a \in \text{dom}(f') \).

The tangent line is a "parallel translate" of the line through the origin with direction-vector \(f'(a) \). In particular, if \(f \) has a derivative of \(f'(a) \) at \(a \) then the tangent line to the curve has parametric equation \(\vec{r}(t) = f(a) + tf'(a) \).
Proposition 6.1.6.

Suppose \(a \in \text{dom}(f)\) where \(f : \text{dom}(f) \subseteq \mathbb{R} \rightarrow \mathbb{R}^n\) and \(a \in \text{dom}(f')\) then the differential \(df_a\) is a linear transformation from \(\mathbb{R}\) to \(\mathbb{R}^n\).

The proof is almost identical to the proof for real-valued functions of a real variable. Note:

\[df_a (ch + k) = (ch + k)f'(a) = chf'(a) + kf'(a) = cdf_a(h) + df_a(k) \]

for all \(h, k, c \in \mathbb{R}\) hence \(df_a\) is a linear transformation.

6.1.3 directional derivatives

Let \(m \geq n\), the image of a injective continuous mapping \(F : \text{dom}(F) \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m\) gives an \(n\)-dimensional continuous surface in \(\mathbb{R}^m\) provided the mapping \(F\) satisfy the topological requirement \(\text{dom}(F) \approx \mathbb{R}^n\). This topological fine print is just a way to avoid certain pathological cases like space filling curves. We proved in Example 3.4.7 that the unit-sphere is a continuous surface. The proof that the sphere of radius 2 is a continuous surface is similar. In the example that follows we’ll see how curves on the surface provide a definition for the tangent plane.

Example 6.1.7. The sphere of radius 2 centered at the origin has equation \(x^2 + y^2 + z^2 = 4\). We can view the top-half of the sphere as the image of the mapping \(F : \mathbb{R}^2 \rightarrow \mathbb{R}^3\) where

\[F(x, y) = (x, y, \sqrt{4 - x^2 - y^2}) \]

The tangent plane to the sphere at some point on the sphere can be defined as the set of all tangent vectors to curves on the sphere which pass through the point: let \(S\) be the sphere and \(p \in S\) then the tangent space to \(p\) is intuitively defines as follows:

\[T_pS = \{ \gamma'(0) | \gamma : \mathbb{R} \rightarrow S, \text{ a smooth curve with } \gamma(0) = p \} \]

A line in the direction of \(<a, b>\) through \((1, 1)\) in \(\mathbb{R}^2\) has parametric representation \(\vec{r}(t) = (1 + at, 1 + bt)\). We can construct curves on the sphere that pass through \(F(1, 1) = (1, 1, \sqrt{2})\) by simply mapping the lines in the plane to curves on the sphere; \(\gamma(t) = F(\vec{r}(t))\) which gives

\[\gamma(t) = \left(1 + at, 1 + bt, \sqrt{4 - (1 + at)^2 - (1 + bt)^2} \right) \]

Now, not all curves through \(p\) have the same form as \(\gamma(t)\) above but it is fairly clear that if we allow \((a, b)\) to trace out all possible directions in \(\mathbb{R}^2\) then we should cover \(T_pS\). A short calculation reveals that

\[\gamma'(0) = <a, b, \frac{-1}{\sqrt{2}}(a + b)> \]

These are vectors we should envision as attached to the point \((1, 1, \sqrt{2})\). A generic point in the tangent plane to the point should have the form \(p + \gamma'(0)\). This gives equations:

\[x = 1 + a, \quad y = 1 + b, \quad z = \sqrt{2} - \frac{1}{\sqrt{2}}(a + b) \]
we can find the Cartesian equation for the plane by eliminating \(a, b \)

\[a = x - 1, \quad b = y - 1 \Rightarrow z = \sqrt{2} - \frac{1}{\sqrt{2}} (x + y - 2) \Rightarrow x + y + \sqrt{2}z = 4. \]

We find the tangent plane to the sphere \(x^2 + y^2 + z^2 = 4 \) has normal \(<1, 1, \sqrt{2}> \) at the point \((1, 1, \sqrt{2})\).

Of course there are easier ways to calculate the equation for a tangent plane. The directional derivative of a mapping \(F \) at a point \(a \in \text{dom}(F) \) along \(v \) is defined to be the derivative of the curve \(\gamma(t) = F(a + tv) \). In other words, the directional derivative gives you the instantaneous vector-rate of change in the mapping \(F \) at the point \(a \) along \(v \). In the case that \(m = 1 \) then \(F: \text{dom}(F) \subseteq \mathbb{R}^n \to \mathbb{R} \) and the directional derivative gives the instantaneous rate of change of the function \(F \) at the point \(a \) along \(v \). You probably insisted that \(||v|| = 1 \) in calculus III but we make no such demand here. We define the directional derivative for mappings and vectors of non-unit length.

Definition 6.1.8.

Let \(F: \text{dom}(F) \subseteq \mathbb{R}^n \to \mathbb{R}^m \) and suppose the limit below exists for \(a \in \text{dom}(F) \) and \(v \in \mathbb{R}^n \) then we define the **directional derivative of \(F \) at \(a \) along \(v \)** to be \(D_v F(a) \in \mathbb{R}^m \) where

\[
D_v F(a) = \lim_{h \to 0} \frac{F(a + hv) - F(a)}{h}
\]
CHAPTER 6. DIFFERENTIATION

The directional derivative $D_v F(a)$ is homogenous in v.

Proposition 6.1.9.

Let $F : \text{dom}(F) \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ then if $D_v F(a)$ exists in \mathbb{R}^m then $D_{cv} F(a) = c D_v F(a)$

See Edwards pg. 66 the proof is not hard. Let $F : U \rightarrow \mathbb{R}^m$ define a continuous surface S with dimension n. The tangent space of S at $p \in S$ should be the parallel translate of a n-dimensional subspace of \mathbb{R}^m. Moreover, we would like for the tangent space at a point $p \in S$ to be very close to the surface near that point. The change of F near $p = F(a)$ along the curve $\gamma(t) = F(a + tv)$ is given by

$$\Delta F = F(a + hv) - F(a).$$

It follows that $F(a + hv) \approx F(a) + h D_v F(a)$ for $h \approx 0$. We'd like for the the set of all directional derivatives at p to form a subspace of \mathbb{R}^m. Recall(or learn) that in linear algebra we learn that every subspaces of \mathbb{R}^m is the range of some linear operator. This means that if $D_v F(a)$ was a linear operator with respect to v then we would know the set of all directional derivatives formed a subspace of \mathbb{R}^m. Note that directional derivative almost gives us linearity since its homogeneous but we also need the condition of additivity:

$$D_{v+w} F(a) = D_v F(a) + D_w F(a)$$

This condition is familiar. Recall that Propositions 6.1.4 and 6.1.6 showed the differential df_a was linear for $f : \text{dom}(f) \subseteq \mathbb{R} \rightarrow \mathbb{R}^m$. In fact the differential is the directional derivative in these special cases if we let $v = 1$; $D_1 F(a) = dF_a(1)$ for $F : \text{dom}(F) \subseteq \mathbb{R} \rightarrow \mathbb{R}^m$ where $a \in \text{dom}(F')$. So we have already proved the directional derivative is linear in those special cases. Fortunately it’s not so simple for a general mapping. We have to make an additional assumption if we wish for the tangent space to be well-defined.

Definition 6.1.10.

Suppose that U is open and $F : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a mapping the we say that F is differentiable at $a \in U$ iff there exists a linear mapping $L : \mathbb{R}^n \rightarrow \mathbb{R}^m$ such that

$$\lim_{h \rightarrow 0} \frac{F(a + h) - F(a) - L(h)}{||h||} = 0.$$

In such a case we call the linear mapping L the differential at a and we denote $L = dF_a$. The matrix of the differential is called the **derivative of F at a** and we denote $[dF_a] = F'(a) \in \mathbb{R}^{m \times n}$ which means that $dF_a(v) = F'(a)v$ for all $v \in \mathbb{R}^n$.

2 don’t believe it? Let $W \subseteq \mathbb{R}^m$ and choose a basis $\beta = \{f_1, \ldots, f_n\}$ for W. You can verify that $L(v) = [f_1|f_2|\cdots|f_n|f_{a1}|\cdots|f_{an}]v$ defines a linear transformation with $\text{range}(L) = \text{Col}[\beta] = W$.

The preceding definition goes hand in hand with the definition of the tangent space given below.

Definition 6.1.11.

Suppose that \(U \approx \mathbb{R}^n \) is open and \(F : U \subseteq \mathbb{R}^n \to \mathbb{R}^m \) is a mapping which is differentiable on \(U \). If \(\text{rank}(F'(a)) = n \) at each \(a \in U \) then we say that \(F(U) \) is a **differentiable surface of dimension** \(n \). Also, a map such as \(F \) is said to be **regular**. Moreover, we define the tangent space to \(S = F(U) \) at \(p \in S \) to be the parallel translate of the subspace \(\text{Col}(F'(a)) \leq \mathbb{R}^m \).

A typical point in the tangent space at \(p \in S \) has the form \(p + F'(a)v \) for some \(v \in \mathbb{R}^n \).

The condition that \(\text{rank}(F'(a)) = n \) is the higher-dimensional analogue of the condition that the direction vector of a line must be nonzero for a line. If we want a genuine \(n \)-dimensional surface then there must be \(n \)-linearly independent vectors in the columns in the derivative matrix. If there were two columns which were linearly dependent then the subspace \(W = \{ F'(a)v \mid v \in \mathbb{R}^n \} \) would not be \(n \)-dimensional.

Remark 6.1.12.

If this all seems a little abstract, relax, the examples are in the next section. I want to wrap up the mostly theoretical aspects in this section then turn to more calculational ideas such as partial derivatives and the Jacobian matrix in the next section. We’ll see that partial differentiation gives us an easy straight-forward method to calculate all the theoretical constructs of this section. Edwards has the calculations mixed with the theory, I’ve ripped them apart for better or worse. Also, we will discuss surfaces and manifolds independently in the next chapter. I wouldn’t expect you to entirely understand them from the discussion in this chapter.

Example 6.1.13. Let \(F : \mathbb{R}^n \to \mathbb{R}^m \) be defined by \(F(v) = p + Av \) for all \(v \in \mathbb{R}^n \) where the matrix \(A \in \mathbb{R}^{m \times n} \) such that \(\text{rank}(A) = n \) and \(p \in \mathbb{R}^m \). We can calculate that \([dF_a] = A \). Observe that for \(x \in \mathbb{R}^n \),

\[
\lim_{h \to 0} \frac{F(x + h) - F(x) - A(h)}{||h||} = \lim_{h \to 0} \frac{Ax + Ah - Ax - Ah}{||h||} = 0.
\]

Therefore, \(dF_x(h) = Ah \) for each \(x \in \mathbb{R}^n \) and we find \(F(\mathbb{R}^n) \) is an differentiable surface of dimensional \(n \). Moreover, we find that \(F(\mathbb{R}^n) \) is its own tangent space, the tangent space is the parallel translate of \(\text{Col}(A) \) to the point \(p \in \mathbb{R}^m \). This is the higher dimensional analogue of finding the tangent line to a line, it’s just the line again.
The directional derivative helped us connect the definition of the derivative of mapping with the derivative of a function of \(\mathbb{R} \). We now turn it around. If we’re given the derivative of a mapping then the directional derivative exists. The converse is not true, see Example 4 on page 69 of Edwards.

Proposition 6.1.14.

If \(F : U \subseteq \mathbb{R}^n \to \mathbb{R}^m \) is differentiable at \(a \in U \) then the directional derivative \(D_v F(a) \) exists for each \(v \in \mathbb{R}^n \) and \(D_v F(a) = dF_a(v) \).

Proof: Suppose \(a \in U \) such that \(dF_a \) is well-defined then we are given that

\[
\lim_{h \to 0} \frac{F(a + h) - F(a) - dF_a(h)}{||h||} = 0.
\]

This is a limit in \(\mathbb{R}^n \), when it exists it follows that the limits that approach the origin along particular paths also exist and are zero. In particular we can consider the path \(t \mapsto tv \) for \(v \neq 0 \) and \(t > 0 \), we find

\[
\lim_{tv \to 0, t>0} \frac{F(a + tv) - F(a) - dF_a(tv)}{||tv||} = \frac{1}{||v||} \lim_{t \to 0^+} \frac{F(a + tv) - F(a) - tdF_a(v)}{t} = 0.
\]

Hence, as \(|t| = t \) for \(t > 0 \) we find

\[
\lim_{t \to 0^+} \frac{F(a + tv) - F(a)}{t} = \lim_{t \to 0} \frac{tdF_a(v)}{t} = dF_a(v).
\]

Likewise we can consider the path \(t \mapsto tv \) for \(v \neq 0 \) and \(t < 0 \)

\[
\lim_{tv \to 0, t<0} \frac{F(a + tv) - F(a) - dF_a(tv)}{||tv||} = \frac{1}{||v||} \lim_{t \to 0^-} \frac{F(a + tv) - F(a) - tdF_a(v)}{t} = 0.
\]

Note \(|t| = -t \) thus the limit above yields

\[
\lim_{t \to 0^-} \frac{F(a + tv) - F(a)}{-t} = \lim_{t \to 0^-} \frac{tdF_a(v)}{-t} \Rightarrow \lim_{t \to 0^-} \frac{F(a + tv) - F(a)}{t} = dF_a(v).
\]

Therefore,

\[
\lim_{t \to 0} \frac{F(a + tv) - F(a)}{t} = dF_a(v)
\]

and we conclude that \(D_v F(a) = dF_a(v) \) for all \(v \in \mathbb{R}^n \) since the \(v = 0 \) case follows trivially. \(\square \)
6.2 partial derivatives and the existence of the derivative

Definition 6.2.1.

Suppose that $F : U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is a mapping the we say that F is **has partial derivative** $\frac{\partial F}{\partial x_i}(a)$ at $a \in U$ iff the directional derivative in the e_i direction exists at a. In this case we denote,

$$\frac{\partial F}{\partial x_i}(a) = D_{e_i}F(a).$$

Also we may use the notation $D_{e_i}F(a) = D_iF(a)$ or $\partial_iF = \frac{\partial F}{\partial x_i}$ when convenient. We also construct the partial derivative mapping $\partial_iF : V \subseteq \mathbb{R}^n \to \mathbb{R}^m$ as the mapping defined pointwise for each $v \in V$ where $\partial_iF(v)$ exists.

Let’s expand this definition a bit. Note that if $F = (F_1, F_2, \ldots, F_m)$ then

$$D_{e_i}F(a) = \lim_{h \to 0} \frac{F(a + he_i) - F(a)}{h} \Rightarrow [D_{e_i}F(a)] \cdot e_j = \lim_{h \to 0} \frac{F_j(a + he_i) - F_j(a)}{h}$$

for each $j = 1, 2, \ldots, m$. But then the limit of the component function F_j is precisely the directional derivative at a along e_i hence we find the result

$$\frac{\partial F}{\partial x_i} \cdot e_j = \frac{\partial F_j}{\partial x_i} \quad \text{in other words,} \quad \partial_iF = (\partial_iF_1, \partial_iF_2, \ldots, \partial_iF_m).$$

Proposition 6.2.2.

If $F : U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $a \in U$ then the directional derivative $D_vF(a)$ can be expressed as a sum of partial derivative maps for each $v = \langle v_1, v_2, \ldots, v_n \rangle \in \mathbb{R}^n$:

$$D_vF(a) = \sum_{j=1}^{n} v_j \partial_jF(a)$$

Proof: since F is differentiable at a the differential dF_a exists and $D_vF(a) = dF_a(v)$ for all $v \in \mathbb{R}^n$. Use linearity of the differential to calculate that

$$D_vF(a) = dF_a(v_1e_1 + \cdots + v_ne_n) = v_1dF_a(e_1) + \cdots + v_ndF_a(e_n).$$

Note $dF_a(e_j) = D_{e_j}F(a) = \partial_jF(a)$ and the prop. follows. □

Proposition 6.2.3.

If $F : U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $a \in U$ then the differential dF_a has derivative matrix $F'(a)$ and it has components which are expressed in terms of partial derivatives of the component functions:

$$[dF_a]_{ij} = \partial_jF_i$$

for $1 \leq i \leq m$ and $1 \leq j \leq n$.
Perhaps it is helpful to expand the derivative matrix explicitly for future reference:

\[F'(a) = \begin{bmatrix} \frac{\partial F_1(a)}{\partial a} & \frac{\partial F_2(a)}{\partial a} & \cdots & \frac{\partial F_n(a)}{\partial a} \\ \frac{\partial F_1(a)}{\partial b} & \frac{\partial F_2(a)}{\partial b} & \cdots & \frac{\partial F_n(a)}{\partial b} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_1(a)}{\partial m} & \frac{\partial F_2(a)}{\partial m} & \cdots & \frac{\partial F_n(a)}{\partial m} \end{bmatrix} \]

Let’s write the operation of the differential for a differentiable mapping at some point \(a \in \mathbb{R} \) in terms of the explicit matrix multiplication by \(F'(a) \). Let \(v = (v_1, v_2, \ldots, v_n) \in \mathbb{R}^n \),

\[dF_a(v) = F'(a)v = \begin{bmatrix} \frac{\partial F_1(a)}{\partial a} & \frac{\partial F_2(a)}{\partial a} & \cdots & \frac{\partial F_n(a)}{\partial a} \\ \frac{\partial F_1(a)}{\partial b} & \frac{\partial F_2(a)}{\partial b} & \cdots & \frac{\partial F_n(a)}{\partial b} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_1(a)}{\partial m} & \frac{\partial F_2(a)}{\partial m} & \cdots & \frac{\partial F_n(a)}{\partial m} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \]

You may recall the notation from calculus III at this point, omitting the \(a \)-dependence,

\[\nabla F_j = \text{grad}(F_j) = [\frac{\partial F_j}{\partial x_1}, \frac{\partial F_j}{\partial x_2}, \cdots, \frac{\partial F_j}{\partial x_n}]^T \]

So if the derivative exists we can write it in terms of a stack of gradient vectors of the component functions: (I used a transpose to write the stack side-ways),

\[F' = [\nabla F_1 \mid \nabla F_2 \mid \cdots \mid \nabla F_n]^T \]

Finally, just to collect everything together,

\[F' = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots & \frac{\partial F_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1} & \frac{\partial F_m}{\partial x_2} & \cdots & \frac{\partial F_m}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \frac{\partial F}{\partial x_1} \\ \frac{\partial F}{\partial x_2} \\ \vdots \\ \frac{\partial F}{\partial x_n} \end{bmatrix} \]

Example 6.2.4. Suppose \(f : \mathbb{R}^3 \to \mathbb{R} \) then \(\nabla f = [\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}]^T \) and we can write the directional derivative in terms of

\[D_v f = [\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}]^T v = \nabla f \cdot v \]

if we insist that \(||v|| = 1 \) then we recover the standard directional derivative we discuss in calculus III. Naturally the \(||\nabla f(a)|| \) yields the maximum value for the directional derivative at a if we limit the inputs to vectors of unit-length. If we did not limit the vectors to unit length then the directional derivative at a can become arbitrarily large as \(D_v f(a) \) is proportional to the magnitude of \(v \). Since our primary motivation in calculus III was describing rates of change along certain directions for some multivariate function it made sense to specialize the directional derivative to vectors of unit-length. The definition used in these notes better serves the theoretical discussion. If you read my calculus III notes you’ll find a derivation of how the directional derivative in Stewart’s calculus arises from the general definition of the derivative as a linear mapping. Look up page 305g. Incidentally, those notes may well be better than these in certain respects.
6.2.1 examples of derivatives

Our goal here is simply to exhibit the Jacobian matrix and partial derivatives for a few mappings. At the base of all these calculations is the observation that partial differentiation is just ordinary differentiation where we treat all the independent variable not being differentiated as constants. The criteria of independence is important. We’ll study the case the variables are not independent in a later section.

Remark 6.2.5.

I have put remarks about the rank of the derivative in the examples below. Of course this has nothing to do with the process of calculating Jacobians. It’s something to think about once we master the process of calculating the Jacobian. Ignore the red comments for now if you wish.

Example 6.2.6. Let \(f(t) = (t, t^2, t^3) \) then \(f'(t) = (1, 2t, 3t^2) \). In this case we have

\[
\begin{pmatrix}
1 \\
2t \\
3t^2
\end{pmatrix}
\]

The Jacobian here is a single column vector. It has rank 1 provided the vector is nonzero. We see that \(f'(t) \neq (0, 0, 0) \) for all \(t \in \mathbb{R} \). This corresponds to the fact that this space curve has a well-defined tangent line for each point on the path.

Example 6.2.7. Let \(f(\vec{x}, \vec{y}) = \vec{x} \cdot \vec{y} \) be a mapping from \(\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R} \). I’ll denote the coordinates in the domain by \((x_1, x_2, x_3, y_1, y_2, y_3)\) thus \(f(\vec{x}, \vec{y}) = x_1y_1 + x_2y_2 + x_3y_3 \). Calculate,

\[
\begin{pmatrix}
y_1 \\
y_2 \\
y_3 \\
x_1 \\
x_2 \\
x_3
\end{pmatrix}
\]

The Jacobian here is a single row vector. It has rank 6 provided all entries of the input vectors are nonzero.

Example 6.2.8. Let \(f(\vec{x}, \vec{y}) = \vec{x} \cdot \vec{y} \) be a mapping from \(\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \). I’ll denote the coordinates in the domain by \((x_1, \ldots, x_n, y_1, \ldots, y_n)\) thus \(f(\vec{x}, \vec{y}) = \sum_{i=1}^{n} x_iy_i \). Calculate,

\[
\frac{\partial}{\partial x_j} \left[\sum_{i=1}^{n} x_iy_i \right] = \sum_{i=1}^{n} \frac{\partial x_i}{\partial x_j} y_i = \sum_{i=1}^{n} \delta_{ij} y_i = y_j
\]

Likewise,

\[
\frac{\partial}{\partial y_j} \left[\sum_{i=1}^{n} x_iy_i \right] = \sum_{i=1}^{n} x_i \frac{\partial y_i}{\partial y_j} = \sum_{i=1}^{n} x_i \delta_{ij} = x_j
\]

Therefore, noting that \(\nabla f = (\partial_{x_1} f, \ldots, \partial_{x_n} f, \partial_{y_1} f, \ldots, \partial_{y_n} f) \),

\[
[\text{df}_{(\vec{x}, \vec{y})}]^T = (\nabla f)(\vec{x}, \vec{y}) = \vec{y} \times \vec{x} = (y_1, \ldots, y_n, x_1, \ldots, x_n)
\]

The Jacobian here is a single row vector. It has rank \(2n \) provided all entries of the input vectors are nonzero.
Example 6.2.9. Suppose \(F(x,y,z) = (xyz, y, z) \) we calculate,

\[
\begin{align*}
\frac{\partial F}{\partial x} &= (yz, 0, 0) \\
\frac{\partial F}{\partial y} &= (xz, 1, 0) \\
\frac{\partial F}{\partial z} &= (xy, 0, 1)
\end{align*}
\]

Remember these are actually column vectors in my sneaky notation; \((v_1, \ldots, v_n) = [v_1, \ldots, v_n]^T\). This means the derivative or Jacobian matrix of \(F \) at \((x, y, z)\) is

\[
F'(x, y, z) = [dF_{(x,y,z)}] = \begin{bmatrix}
yz & xz & xy \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Note, \(\text{rank}(F'(x, y, z)) = 3 \) for all \((x, y, z) \in \mathbb{R}^3 \) such that \(y, z \neq 0 \). There are a variety of ways to see that claim, one way is to observe \(\det(F'(x, y, z)) = yz \) and this determinant is nonzero so long as neither \(y \) nor \(z \) is zero. In linear algebra we learn that a square matrix is invertible iff it has nonzero determinant iff it has linearly independent column vectors.

Example 6.2.10. Suppose \(F(x, y, z) = (x^2 + z^2, yz) \) we calculate,

\[
\begin{align*}
\frac{\partial F}{\partial x} &= (2x, 0) \\
\frac{\partial F}{\partial y} &= (0, z) \\
\frac{\partial F}{\partial z} &= (2z, y)
\end{align*}
\]

The derivative is a \(2 \times 3 \) matrix in this example,

\[
F'(x, y, z) = [dF_{(x,y,z)}] = \begin{bmatrix}
2x & 0 & 2z \\
0 & z & y
\end{bmatrix}
\]

The maximum rank for \(F' \) is 2 at a particular point \((x, y, z)\) because there are at most two linearly independent vectors in \(\mathbb{R}^2 \). You can consider the three square submatrices to analyze the rank for a given point. If any one of these is nonzero then the rank (dimension of the column space) is two.

\[
M_1 = \begin{bmatrix}
2x & 0 \\
0 & z
\end{bmatrix} \quad M_2 = \begin{bmatrix}
2x & 2z \\
0 & y
\end{bmatrix} \quad M_3 = \begin{bmatrix}
0 & 2z \\
z & y
\end{bmatrix}
\]

We’ll need either \(\det(M_1) = 2xz \neq 0 \) or \(\det(M_2) = 2xy \neq 0 \) or \(\det(M_3) = -2x^2 \neq 0 \). I believe the only point where all three of these fail to be true simultaneously is when \(x = y = z = 0 \). This mapping has maximal rank at all points except the origin.

Example 6.2.11. Suppose \(F(x, y) = (x^2 + y^2, xy, x + y) \) we calculate,

\[
\begin{align*}
\frac{\partial F}{\partial x} &= (2x, y, 1) \\
\frac{\partial F}{\partial y} &= (2y, x, 1)
\end{align*}
\]

The derivative is a \(3 \times 2 \) matrix in this example,

\[
F'(x, y) = [dF_{(x,y)}] = \begin{bmatrix}
2x & 2y \\
y & x \\
1 & 1
\end{bmatrix}
\]
The maximum rank is again 2, this time because we only have two columns. The rank will be two if the columns are not linearly dependent. We can analyze the question of rank a number of ways but I find determinants of submatrices a comforting tool in these sort of questions. If the columns are linearly dependent then all three sub-square-matrices of F' will be zero. Conversely, if even one of them is nonvanishing then it follows the columns must be linearly independent. The submatrices for this problem are:

$$M_1 = \begin{bmatrix} 2x & 2y \\ y & x \end{bmatrix} \quad M_2 = \begin{bmatrix} 2x & 2y \\ 1 & 1 \end{bmatrix} \quad M_3 = \begin{bmatrix} y & x \\ 1 & 1 \end{bmatrix}$$

You can see $\det(M_1) = 2(x^2 - y^2)$, $\det(M_2) = 2(x - y)$ and $\det(M_3) = y - x$. Apparently we have $\text{rank}(F'(x,y,z)) = 2$ for all $(x,y) \in \mathbb{R}^2$ with $y \neq x$. In retrospect this is not surprising.

Example 6.2.12. Suppose $P(x,v,m) = (P_0, P_1) = (\frac{1}{2}mv^2 + \frac{1}{2}kx^2, mv)$ for some constant k. Let’s calculate the derivative via gradients this time,

$$\nabla P_0 = (\partial P_0/\partial x, \partial P_0/\partial v, \partial P_0/\partial m) = (kx, mv, \frac{1}{2}v^2)$$

$$\nabla P_1 = (\partial P_1/\partial x, \partial P_1/\partial v, \partial P_1/\partial m) = (0, m, v)$$

Therefore,

$$P'(x,v,m) = \begin{bmatrix} kx & mv & \frac{1}{2}v^2 \\ 0 & m & v \end{bmatrix}$$

Example 6.2.13. Let $F(r, \theta) = (r \cos \theta, r \sin \theta)$. We calculate,

$$\partial_r F = (\cos \theta, \sin \theta) \quad \text{and} \quad \partial_\theta F = (-r \sin \theta, r \cos \theta)$$

Hence,

$$F'(r, \theta) = \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix}$$

We calculate $\det(F'(r, \theta)) = r$ thus this mapping has full rank everywhere except the origin.

Example 6.2.14. Let $G(x,y) = (\sqrt{x^2 + y^2}, \tan^{-1}(y/x))$. We calculate,

$$\partial_x G = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{-y}{x^2 + y^2} \right) \quad \text{and} \quad \partial_y G = \left(\frac{-y}{\sqrt{x^2 + y^2}}, \frac{x}{x^2 + y^2} \right)$$

Hence,

$$G'(x,y) = \begin{bmatrix} \frac{x}{\sqrt{x^2 + y^2}} & \frac{-y}{x^2 + y^2} \\ \frac{-y}{\sqrt{x^2 + y^2}} & \frac{x}{x^2 + y^2} \end{bmatrix} = \begin{bmatrix} \frac{x}{r} & \frac{y}{r} \\ \frac{-y}{r} & \frac{x}{r} \end{bmatrix} \quad (\text{using } r = \sqrt{x^2 + y^2})$$

We calculate $\det(G'(x,y)) = 1/r$ thus this mapping has full rank everywhere except the origin.
Example 6.2.15. Let \(F(x, y) = (x, y, \sqrt{R^2 - x^2 - y^2}) \) for a constant \(R \). We calculate,

\[
\nabla \sqrt{R^2 - x^2 - y^2} = \left(\frac{-x}{\sqrt{R^2 - x^2 - y^2}}, \frac{-y}{\sqrt{R^2 - x^2 - y^2}} \right)
\]

Also, \(\nabla x = (1, 0) \) and \(\nabla y = (0, 1) \) thus

\[
F'(x, y) = \begin{bmatrix}
1 & 0 \\
0 & 1 \\
\frac{-x}{\sqrt{R^2 - x^2 - y^2}} & \frac{-y}{\sqrt{R^2 - x^2 - y^2}}
\end{bmatrix}
\]

This matrix clearly has rank 2 where it is well-defined. Note that we need \(R^2 - x^2 - y^2 > 0 \) for the derivative to exist. Moreover, we could define \(G(y, z) = (\sqrt{R^2 - y^2 - z^2}, y, z) \) and calculate,

\[
G'(y, z) = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{-y}{\sqrt{R^2 - y^2 - z^2}} & \frac{-z}{\sqrt{R^2 - y^2 - z^2}} & 1
\end{bmatrix}
\]

Observe that \(G'(y, z) \) exists when \(R^2 - y^2 - z^2 > 0 \). Geometrically, \(F \) parametrizes the sphere above the equator at \(z = 0 \) whereas \(G \) parametrizes the right-half of the sphere with \(x > 0 \). These parametrizations overlap in the first octant where both \(x \) and \(z \) are positive. In particular, \(\text{dom}(F') \cap \text{dom}(G') = \{(x, y) \in \mathbb{R}^2 \mid x, y > 0 \text{ and } x^2 + y^2 < R^2\} \)

Example 6.2.16. Let \(F(x, y, z) = (x, y, z, \sqrt{R^2 - x^2 - y^2 - z^2}) \) for a constant \(R \). We calculate,

\[
\nabla \sqrt{R^2 - x^2 - y^2 - z^2} = \left(\frac{-x}{\sqrt{R^2 - x^2 - y^2 - z^2}}, \frac{-y}{\sqrt{R^2 - x^2 - y^2 - z^2}}, \frac{-z}{\sqrt{R^2 - x^2 - y^2 - z^2}} \right)
\]

Also, \(\nabla x = (1, 0, 0) \), \(\nabla y = (0, 1, 0) \) and \(\nabla z = (0, 0, 1) \) thus

\[
F'(x, y, z) = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{-x}{\sqrt{R^2 - x^2 - y^2 - z^2}} & \frac{-y}{\sqrt{R^2 - x^2 - y^2 - z^2}} & \frac{-z}{\sqrt{R^2 - x^2 - y^2 - z^2}}
\end{bmatrix}
\]

This matrix clearly has rank 3 where it is well-defined. Note that we need \(R^2 - x^2 - y^2 - z^2 > 0 \) for the derivative to exist. This mapping gives us a parametrization of the 3-sphere \(x^2 + y^2 + z^2 + w^2 = R^2 \) for \(w > 0 \). (drawing this is a little trickier)
Example 6.2.17. Let \(f(x, y, z) = (x + y, y + z, x + z, xyz) \). You can calculate,

\[
\begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
yz & xz & xy
\end{bmatrix}
\]

This matrix clearly has rank 3 and is well-defined for all of \(\mathbb{R}^3 \).

Example 6.2.18. Let \(f(x, y, z) = xyz \). You can calculate,

\[
\begin{bmatrix}
yz & xz & xy
\end{bmatrix}
\]

This matrix fails to have rank 3 if \(x, y \) or \(z \) are zero. In other words, \(f'(x, y, z) \) has rank 3 in \(\mathbb{R}^3 \) provided we are at a point which is not on some coordinate plane. (the coordinate planes are \(x = 0, y = 0 \) and \(z = 0 \) for the \(yz, zx \) and \(xy \) coordinate planes respective)

Example 6.2.19. Let \(f(x, y, z) = (xyz, 1 - x - y) \). You can calculate,

\[
\begin{bmatrix}
yz & xz & xy \\
-1 & -1 & 0
\end{bmatrix}
\]

This matrix has rank 3 if either \(xy \neq 0 \) or \((x - y)z \neq 0 \). In contrast to the preceding example, the derivative does have rank 3 on certain points of the coordinate planes. For example, \(f'(1,1,0) \) and \(f'(0,1,1) \) both give rank \(f' = 3 \).

Example 6.2.20. Let \(f: \mathbb{R}^3 \times \mathbb{R}^3 \) be defined by \(f(x) = x \times v \) for a fixed vector \(v \neq 0 \). We denote \(x = (x_1, x_2, x_3) \) and calculate,

\[
\frac{\partial}{\partial x_a} (x \times v) = \frac{\partial}{\partial x_a} \left(\sum_{i,j,k} \epsilon_{ijk} x_i v_j e_k \right) = \sum_{i,j,k} \epsilon_{ijk} \frac{\partial x_i}{\partial x_a} v_j e_k = \sum_{i,j,k} \epsilon_{ijk} \delta_{ia} v_j e_k = \sum_{i} \epsilon_{ajk} v_j e_k
\]

It follows,

\[
\begin{align*}
\frac{\partial}{\partial x_1}(x \times v) &= \sum_{j,k} \epsilon_{1jk} v_j e_k = v_2 e_3 - v_3 e_2 = (0, -v_3, v_2) \\
\frac{\partial}{\partial x_2}(x \times v) &= \sum_{j,k} \epsilon_{2jk} v_j e_k = v_3 e_1 - v_1 e_3 = (v_3, 0, -v_1) \\
\frac{\partial}{\partial x_3}(x \times v) &= \sum_{j,k} \epsilon_{3jk} v_j e_k = v_1 e_2 - v_2 e_1 = (-v_2, v_1, 0)
\end{align*}
\]

Thus the Jacobian is simply,

\[
\begin{bmatrix}
0 & v_3 & -v_2 \\
-v_3 & 0 & -v_1 \\
v_2 & v_1 & 0
\end{bmatrix}
\]

In fact, \(df_p(h) = f(h) = h \times v \) for each \(p \in \mathbb{R}^3 \). The given mapping is linear so the differential of the mapping is precisely the mapping itself.
Example 6.2.21. Let $f(x, y) = (x, y, 1 - x - y)$. You can calculate,

$$[df(x,y,z)] = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & -1 \end{bmatrix}$$

Example 6.2.22. Let $X(u, v) = (x, y, z)$ where x, y, z denote functions of u, v and I prefer to omit the explicit dependence to reduce clutter in the equations to follow.

$$\frac{\partial X}{\partial u} = X_u = (x_u, y_u, z_u) \quad \text{and} \quad \frac{\partial X}{\partial v} = X_v = (x_v, y_v, z_v)$$

Then the Jacobian is the 3×2 matrix

$$[dX_{(u,v)}] = \begin{bmatrix} x_u & x_v \\ y_u & y_v \\ z_u & z_v \end{bmatrix}$$

The matrix $[dX_{(u,v)}]$ has rank 2 if at least one of the determinants below is nonzero,

$$\det \begin{bmatrix} x_u & x_v \\ y_u & y_v \end{bmatrix} \quad \det \begin{bmatrix} x_u & x_v \\ z_u & z_v \end{bmatrix} \quad \det \begin{bmatrix} y_u & y_v \\ z_u & z_v \end{bmatrix}$$

Example 6.2.23. . .

Example 6.2.24. . .
6.2. PARTIAL DERIVATIVES AND THE EXISTENCE OF THE DERIVATIVE

6.2.2 sick examples and continuously differentiable mappings

We have noted that differentiability on some set U implies all sorts of nice formulas in terms of the partial derivatives. Curiously the converse is not quite so simple. It is possible for the partial derivatives to exist on some set and yet the mapping may fail to be differentiable. We need an extra topological condition on the partial derivatives if we are to avoid certain pathological examples.

Example 6.2.25. I found this example in Hubbard’s advanced calculus text (see Ex. 1.9.4, pg. 123). It is a source of endless odd examples, notation and bizarre quotes. Let $f(x) = 0$ and $f(x) = x^2 + x^2 \sin \frac{1}{x}$ for all $x \neq 0$. I can be shown that the derivative $f'(0) = 1/2$. Moreover, we can show that $f'(x)$ exists for all $x \neq 0$, we can calculate:

$$f'(x) = \frac{1}{2} + 2x \sin \frac{1}{x} - \cos \frac{1}{x}$$

Notice that $\text{dom}(f') = \mathbb{R}$. Note then that the tangent line at $(0, 0)$ is $y = x/2$. You might be tempted to say then that this function is increasing at a rate of $1/2$ for x near zero. But this claim would be false since you can see that $f'(x)$ oscillates wildly without end near zero. We have a tangent line at $(0, 0)$ with positive slope for a function which is not increasing at $(0, 0)$ (recall that increasing is a concept we must define in a open interval to be careful). This sort of thing cannot happen if the derivative is continuous near the point in question.

The one-dimensional case is quite special, even though we had discontinuity of the derivative we still had a well-defined tangent line to the point. However, many interesting theorems in calculus of one-variable require the function to be continuously differentiable near the point of interest. For example, to apply the 2nd-derivative test we need to find a point where the first derivative is zero and the second derivative exists. We cannot hope to compute $f''(x_o)$ unless f' is continuous at x_o.

The next example is sick.

Example 6.2.26. Let us define $f(0, 0) = 0$ and

$$f(x, y) = \frac{x^2y}{x^2 + y^2}$$

for all $(x, y) \neq (0, 0)$ in \mathbb{R}^2. It can be shown that f is continuous at $(0, 0)$. Moreover, since $f(x, 0) = f(0, y) = 0$ for all x and all y it follows that f vanishes identically along the coordinate axis. Thus the rate of change in the e_1 or e_2 directions is zero. We can calculate that

$$\frac{\partial f}{\partial x} = \frac{2xy^3}{(x^2 + y^2)^2} \quad \text{and} \quad \frac{\partial f}{\partial y} = \frac{x^4 - x^2y^2}{(x^2 + y^2)^2}$$

Consider the path to the origin $t \mapsto (t, t)$ gives $f_x(t, t) = 2t^4/(t^2 + t^2)^2 = 1/2$ hence $f_x(x, y) \to 1/2$ along the path $t \mapsto (t, t)$, but $f_x(0, 0) = 0$ hence the partial derivative f_x is not continuous at $(0, 0)$. In this example, the discontinuity of the partial derivatives makes the tangent plane fail to exist.

Definition 6.2.27.

A mapping $F : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ is **continuously differentiable** at $a \in U$ iff the partial derivative mappings D_jF exist on an open set containing a and are continuous at a.

The definition above is interesting because of the proposition below. The import of the proposition is that we can build the tangent plane from the Jacobian matrix provided the partial derivatives are all continuous. This is a very nice result because the concept of the linear mapping is quite abstract but partial differentiation of a given mapping is easy.

Proposition 6.2.28.

If F is continuously differentiable at a then F is differentiable at a

We’ll follow the proof in Edwards on pages 72-73.
6.3 properties of the derivative

Of course much of what we discover in this section should be old news to you if you understood differentiation in calculus III. However, in our current context we have efficient methods of proof and the language of linear algebra allows us to summarize pages of calculations in a single line.

6.3.1 additivity and homogeneity of the derivative

Suppose \(F_1 : U \subseteq \mathbb{R}^n \to \mathbb{R}^m \) and \(F_2 : U \subseteq \mathbb{R}^n \to \mathbb{R}^m \). Furthermore, suppose both of these are differentiable at \(a \in \mathbb{R}^n \). It follows that \((dF_1)_a = L_1 \) and \((dF_2)_a = L_2 \) are linear operators from \(\mathbb{R}^n \) to \(\mathbb{R}^m \) which approximate the change in \(F_1 \) and \(F_2 \) near \(a \), in particular,

\[
\lim_{h \to 0} \frac{F_1(a + h) - F_1(a) - L_1(h)}{||h||} = 0 \quad \lim_{h \to 0} \frac{F_2(a + h) - F_2(a) - L_2(h)}{||h||} = 0
\]

To prove that \(H = F_1 + F_2 \) is differentiable at \(a \in \mathbb{R}^n \) we need to find a differential at \(a \) for \(H \). Naturally, we expect \(dH_a = d(F_1 + F_2)_a = (dF_1)_a + (dF_2)_a \). Let \(L = (dF_1)_a + (dF_2)_a \) and consider,

\[
\lim_{h \to 0} \frac{H(a+h) - H(a) - L(h)}{||h||} = \lim_{h \to 0} \frac{F_1(a+h) + F_2(a+h) - F_1(a) - F_2(a) - L_1(h) - L_2(h)}{||h||} \\
= \lim_{h \to 0} \frac{F_1(a+h) - F_1(a) - L_1(h)}{||h||} + \lim_{h \to 0} \frac{F_2(a+h) - F_2(a) - L_2(h)}{||h||} \\
= 0 + 0 \\
= 0
\]

Note that breaking up the limit was legal because we knew the subsequent limits existed and were zero by the assumption of differentiability of \(F_1 \) and \(F_2 \) at \(a \). Finally, since \(L = L_1 + L_2 \) we know \(L \) is a linear transformation since the sum of linear transformations is a linear transformation. Moreover, the matrix of \(L \) is the sum of the matrices for \(L_1 \) and \(L_2 \). Let \(c \in \mathbb{R} \) and suppose \(G = cF_1 \) then we can also show that \(dG_a = d(cF_1)_a = c(dF_1)_a \), the calculation is very similar except we just pull the constant \(c \) out of the limit. I’ll let you write it out. Collecting our observations:

Proposition 6.3.1.

Suppose \(F_1 : U \subseteq \mathbb{R}^n \to \mathbb{R}^m \) and \(F_2 : U \subseteq \mathbb{R}^n \to \mathbb{R}^m \) are differentiable at \(a \in U \) then \(F_1 + F_2 \) is differentiable at \(a \) and

\[
d(F_1 + F_2)_a = (dF_1)_a + (dF_2)_a \quad \text{or} \quad (F_1 + F_2)'(a) = F_1'(a) + F_2'(a)
\]

Likewise, if \(c \in \mathbb{R} \) then

\[
d(cF_1)_a = c(dF_1)_a \quad \text{or} \quad (cF_1)'(a) = c(F_1'(a))
\]
6.3.2 product rules?

What sort of product can we expect to find among mappings? Remember two mappings have vector outputs and there is no way to multiply vectors in general. Of course, in the case we have two mappings that have equal-dimensional outputs we could take their dot-product. There is a product rule for that case: if \(\vec{A}, \vec{B} : \mathbb{R}^n \to \mathbb{R}^m \) then

\[
\partial_j (\vec{A} \cdot \vec{B}) = (\partial_j \vec{A}) \cdot \vec{B} + \vec{A} \cdot (\partial_j \vec{B})
\]

Or in the special case of \(m = 3 \) we could even take their cross-product and there is another product rule in that case:

\[
\partial_j (\vec{A} \times \vec{B}) = (\partial_j \vec{A}) \times \vec{B} + \vec{A} \times (\partial_j \vec{B})
\]

What other case can we “multiply” vectors? One very important case is \(\mathbb{R}^2 = \mathbb{C} \) where is is customary to use the notation \((x, y) = x + iy\) and \(f = u + iv\). If our range is complex numbers then we again have a product rule: if \(f : \mathbb{R}^n \to \mathbb{C}\) and \(g : \mathbb{R}^n \to \mathbb{C}\) then

\[
\partial_j (fg) = (\partial_j f)g + f(\partial_j g)
\]

I have relegated the proof of these product rules to the end of this chapter. One other object worth differentiating is a matrix-valued function of \(\mathbb{R}^n\). If we define the partial derivative of a matrix to be the matrix of partial derivatives then partial differentiation will respect the sum and product of matrices (we may return to this in depth if need be later on):

\[
\partial_j (A + B) = \partial_j B + \partial_j B \quad \partial_j (AB) = (\partial_j A)B + A(\partial_j B)
\]

Moral of this story? If you have a pair mappings whose ranges allow some sort of product then it is entirely likely that there is a corresponding product rule\(^4\). There is one product rule which we can state for arbitrary mappings, note that we can always sensibly multiply a mapping by a function. Suppose then that \(G : U \subseteq \mathbb{R}^n \to \mathbb{R}^m\) and \(f : U \subseteq \mathbb{R}^n \to \mathbb{R}\) are differentiable at \(a \in U\). It follows that there exist linear transformations \(L_G : \mathbb{R}^n \to \mathbb{R}^m\) and \(L_f : \mathbb{R}^n \to \mathbb{R}\) where

\[
\lim_{h \to 0} \frac{G(a + h) - G(a) - L_G(h)}{\|h\|} = 0 \quad \lim_{h \to 0} \frac{f(a + h) - f(a) - L_f(h)}{h} = 0
\]

Since \(G(a + h) \approx G(a) + L_G(h)\) and \(f(a + h) \approx f(a) + L_f(h)\) we expect

\[
fG(a + h) \approx (f(a) + L_f(h))(G(a) + L_G(h))
\]

\[
\approx (fG(a) + G(a)L_f(h) + f(a)L_G(h) + L_f(h)L_G(h))
\]

\(\text{linear in } h \quad 2\text{nd order in } h\)

\(^4\)In my research I consider functions on supernumbers, these also can be multiplied. Naturally there is a product rule for super functions, the catch is that super numbers \(z, w\) do not necessarily commute. However, if they’re homogeneous \(zw = (-1)^w z\ w\). Because of this the super product rule is \(\partial_M(fg) = (\partial_M f)g + (-1)^{f+M} f(\partial_M g)\)
Thus we propose: \(L(h) = G(a)L_f(h) + f(a)L_G(h)\) is the best linear approximation of \(fG\).

\[
\lim_{h \to 0} \frac{(fG)(a + h) - (fG)(a) - L(h)}{||h||} = \\
\lim_{h \to 0} \frac{f(a + h)G(a + h) - f(a)G(a) - G(a)L_f(h) - f(a)L_G(h)}{||h||} \\
= \lim_{h \to 0} \frac{f(a)G(a + h) - G(a) + G(a)L_f(h)}{||h||} + \\
\lim_{h \to 0} \frac{f(a + h)G(a) - G(a) + f(a)L_G(h)}{||h||} \\
= \lim_{h \to 0} \left[f(a) \frac{G(a + h) - G(a) - L_G(h)}{||h||} + \frac{f(a + h) - f(a) - L_f(h)}{||h||} \right] G(a) \\
= 0
\]

Where we have made use of the differentiability and the consequent continuity of both \(f\) and \(G\) at \(a\). Furthermore, note

\[
L(h + ck) = G(a)L_f(h + ck) + f(a)L_G(h + ck) \\
= G(a)(L_f(h) + cL_f(k)) + f(a)(L_G(h) + cL_G(k)) \\
= G(a)L_f(h) + f(a)(L_G(h) + cG(a)L_f(k) + f(a)L_G(k)) \\
= L(h) + cL(k)
\]

for all \(h, k \in \mathbb{R}^n\) and \(c \in \mathbb{R}\) hence \(L = G(a)L_f + f(a)L_G\) is a linear transformation. We have proved (most of) the following proposition:

Proposition 6.3.2.

If \(G : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m\) and \(f : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}\) are differentiable at \(a \in U\) then \(fG\) is differentiable at \(a\) and

\[
d(fG)_a = (df)_aG(a) + f(a)dG_a \quad (fG)'(a) = f'(a)G(a) + f(a)G'(a)
\]

The argument above covers the ordinary product rule and a host of other less common rules. Note again that \(G(a)\) and \(G'(a)\) are vectors.
6.4 chain rule

The proof in Edwards is on 77-78. I’ll give a heuristic proof here which captures the essence of the argument. The simplicity of this rule continues to amaze me.

Proposition 6.4.1.

If $F : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^p$ is differentiable at a and $G : V \subseteq \mathbb{R}^p \rightarrow \mathbb{R}^m$ is differentiable at $F(a) \in V$ then $G \circ F$ is differentiable at a and

\[d(G \circ F)_a = (dG)_{F(a)} \circ dF_a \]

or, in matrix notation,

\[(G \circ F)'(a) = G'(F(a))F'(a) \]

Proof Sketch:

In calculus III you may have learned how to calculate partial derivatives in terms of tree-diagrams and intermediate variable etc... We now have a way of understanding those rules and all the other chain rules in terms of one over-arching calculation: matrix multiplication of the constituent Jacobians in the composite function. Of course once we have this rule for the composite of two functions we can generalize to n-functions by a simple induction argument. For example, for three suitably defined mappings F, G, H,

\[(F \circ G \circ H)'(a) = F'(G(H(a)))G'(H(a))H'(a) \]

Example 6.4.2. . .
Example 6.4.3.

Example 6.4.4.

Example 6.4.5.
Example 6.4.6. . .

Example 6.4.7. . .
6.4. CHAIN RULE

6.4.1 theorems

The goal of this section is to prove the partial derivatives commute for nice functions. Of course some of the results we discuss on the way to that goal are interesting in their own right as well.

Definition 6.4.8.

We say \(U \subseteq \mathbb{R}^n \) is **path connected** iff any two points in \(U \) can be connected by a path which is contained within the set.

For example, \(\mathbb{R}^n \) is connected since given any two points \(a, b \in \mathbb{R}^n \) we can construct the path \(\phi(t) = a + t(b - a) \) from \(a \) to \(b \) and naturally the path is within the set. You can easily verify that open and closed balls are also path connected. Even a donut is path connected. However, a pair donuts is not path connected unless it’s one of those artsy figure-8 deals.

Proposition 6.4.9.

If \(U \) is a connected open subset of \(\mathbb{R}^n \) then a differentiable mapping \(F : U \to \mathbb{R}^m \) is constant iff \(F'(u) = 0 \) for all \(u \in U \).

Proposition 6.4.10.

If \(U \) is a connected open subset of \(\mathbb{R}^n \) and the differentiable mappings \(F, G : U \to \mathbb{R} \) such that \(F'(x) = G'(x) \) for all \(x \in U \) then there exists a constant vector \(c \in \mathbb{R}^m \) such that \(F(x) = G(x) + c \) for all \(x \in U \).
There is no mean value theorem for mappings since counter-examples exist. For example, Exercise 1.12 on page 63 shows the mean value theorem fails for the helix. In particular, you can find average velocity vector over a particular time interval such that the velocity vector never matches the average velocity over that time period. Fortunately, if we restrict our attention to mappings with one-dimensional codomains we still have a nice theorem:

Proposition 6.4.11. (Mean Value Theorem)

Suppose that $f : U \to \mathbb{R}$ is a differentiable function and U is an open set. Furthermore, suppose U contains the line segment from a to b in U;

$$L_{a,b} = \{a + t(b - a) \mid t \in [0, 1]\} \subset U.$$

It follows that there exists some point $c \in L_{a,b}$ such that

$$f(b) - f(a) = f'(c)(b - a).$$

Definition 6.4.12. (higher derivatives)

We define nested directional derivatives in the natural way:

$$D_k D_h f(x) = D_k(D_h f(x)) = \lim_{t \to 0} \frac{D_h f(x + tk) - D_h f(x)}{t}.$$

Furthermore, the **second difference** is defined by

$$\Delta^2 f_a(h, k) = f(a + h + k) - f(a + h) - f(a + k) + f(a)$$
This is Lemma 3.5 on page 86 of Edwards.

Proposition 6.4.13.

Suppose \(U \) is an open set and \(f : U \to \mathbb{R} \) which is differentiable on \(U \) with likewise differentiable directional derivative function on \(U \). Suppose that \(a, a + h, a + k, a + h + k \) are all in \(U \) then there exist \(\alpha, \beta \in (0, 1) \) such that

\[
\Delta^2(h, k) = D_k D_h f(a + \alpha h + \beta k).
\]

The proof is rather neat. The \(\alpha \) and \(\beta \) stem from two applications of the MVT, once for the function then once for its directional derivative.

Proposition 6.4.14.

Let \(U \) be an open subset of \(\mathbb{R}^n \). If \(f : U \to \mathbb{R} \) is a function with continuous first and second partial derivatives on \(U \) then for all \(i, j = 1, 2, \ldots, n \) we have \(D_i D_j f = D_j D_i f \) on \(U \);

\[
\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}.
\]
6.5 differential forms and differentials

Definition 6.5.1. A form field on \mathbb{R} is a function from \mathbb{R} to the space of all linear maps from \mathbb{R} to \mathbb{R}. In other words, a form field assigns a dual vector at each point in \mathbb{R}. Remember that $\mathbb{R}^* = \{f: \mathbb{R} \to \mathbb{R} \mid f$ is a linear function$\}$. We call α a differential one-form or differential form if α can be written as $\alpha = \alpha_1dx$ for some smooth function α_1.

The definition above is probably unnecessary for this section. I give it primarily for the sake of making a larger trend easier to grasp later on. Feel free to ignore it for now.

6.5.1 differential form notation

Let $g(x) = x$ for all $x \in \mathbb{R}$. Note that $g'(x) = 1$ and it follows that $dg_a(x) = 1 \cdot x = x$ for all $x \in \mathbb{R}$. Therefore, $dg = g$. If we denote $g = x$ so that $dx = x$ in this notation. Note then we can write the differential in terms of the derivative function:

$$df(a)(h) = df_a(h) = f'(a)h = f'(a)dx_a(h) \quad \text{for all } h \in \mathbb{R}$$

Hence $df(a) = f'(a)dx_a$ for all $a \in \mathbb{R}$ hence $df = f'dx$ or we could denote this by the deceptively simple formula $df = \frac{df}{dx}dx$. Thus the differential notation introduced in this section is in fact consistent with our usual notation for the derivative from calculus I. However, df and dx are actually differential forms in this viewpoint so I’m not so sure that df/dx really makes sense anymore. In retrospect, the main place we shift differentials around as if they are tiny real numbers is in the calculations of u-substitution or separation of variables. In both of those cases the differential notation serves as a shorthand for the application of a particular theorem. Just as in calculus III the differentials dx, dy, dz in the line integral $\int_C p\,dx + q\,dy + r\,dz$ provide a notational shorthand for the rigorous definition in terms of a path covering the curve C.

Differentials are notational devices in calculus, one should be careful not to make more of them then is appropriate for a given context. That said, if you adopt the view point that dx, dy, dz are differential forms and their product is properly defined via a wedge product then the wedge product together with the total differential (to be discussed in the next section) will generate the formulas for coordinate change. Let me give you a taste:

$$dx \wedge dy = d(r \cos(\theta)) \wedge d(r \sin(\theta))$$
$$= [\cos(\theta)dr - r \sin(\theta)d\theta] \wedge [\sin(\theta)dr + r \cos(\theta)d\theta]$$
$$= r \cos^2(\theta)dr \wedge d\theta - r \sin^2(\theta)d\theta \wedge dr$$
$$= rdr \wedge d\theta$$

where I used that $dr \wedge d\theta = -d\theta \wedge dr$, $dr \wedge dr = 0$ and $d\theta \wedge d\theta = 0$ because of the antisymmetry of the wedge product \wedge. In calculus III we say for polar coordinates the Jacobian is $\frac{\partial(x,y)}{\partial(r,\theta)} = r$. The determinant in the Jacobian is implicitly contained in the algebra of the wedge product. If you want to change coordinates in differential form notation you just substitute in the coordinate change formulas and take a few total differentials then the wedge product does the rest. In other words, the Jacobian change of coordinates formula is naturally encoded in the language of differential forms.
6.5. DIFFERENTIAL FORMS AND DIFFERENTIALS

6.5.2 linearity properties of the derivative

Proposition 6.5.2.

Suppose that \(f, g \) are functions such that their derivative functions \(f' \) and \(g' \) share the same domain \(U \) then \((f + g)' = f' + g' \) and \((cf)' = cf' \). Moreover, the differentials of those functions have

\[
\frac{df}{dx} + \frac{dg}{dx} \quad \text{and} \quad \frac{d(cf)}{dx} = cdf
\]

Proof: The proof that \((f + g)' = f' + g' \) and \((cf)' = cf' \) follows from earlier general arguments in this chapter. Consider that,

\[
d((f + g)) = h(f + g)'(a) \quad \text{def. of differential for } f + g
\]

\[
= h(f'(a) + g'(a)) \quad \text{using linearity of derivative.}
\]

\[
= df_a(h) + dg_a(h) \quad \text{algebra and def. of differential for } f \text{ and } g.
\]

\[
= (df + dg)_a(h) \quad \text{def. of sum of functions.}
\]

thus \(df + dg\) and the proof that \(d(cf) = cdf\) is similar. \(\Box \).

We see that properties of the derivative transfer over to corresponding properties for the differential. Problem 1.7 on pg 62-63 of Edwards asks you to work out the product and chain rule for differentials.

6.5.3 the chain rule revisited

Proposition 6.5.3.

Suppose that \(f : dom(f) \rightarrow range(f) \) and \(g : dom(g) \rightarrow range(g) \) are functions such that \(g \) is differentiable on \(U \) and \(f \) differentiable on \(g(U) \) then

\[
(f \circ g)'(a) = g'(a)f'(g(a))
\]

for each \(a \in U \) and it follows \(df \circ g) = df_{g(a)} \circ dg_a \).

An intuitive proof is this: the derivative of a composite is the slope of the tangent line to the composite. However, if \(f_1 \) and \(f_2 \) are linear functions with slopes \(m_1 \) and \(m_2 \) then \(f_1 \circ f_2 \) is a linear function with slope \(m_1 m_2 \). Therefore, the derivative of a composite is the product of the derivatives of the inside and outside function and we are forced to evaluate the outside function at \(g(a) \) since that’s the only thing that makes sense\(^5\). Finally,

\[
d(f \circ g)(a)(h) = h(f \circ g)'(a) = h g'(a) f'(g(a)) = df_{g(a)}(hg'(a)) = df_{g(a)}(dh_a(h)) = (df_{g(a)} \circ dg_a)(h)
\]

Therefore we find \(df \circ g = df_{g(a)} \circ dg_a \).

Proof: Let \(a \in U \) then \(g'(a) = \lim_{h \to 0} \frac{g(a + h) - g(a)}{h} \) thus \(\lim_{h \to 0} g(a + h) = \lim_{h \to 0} g(a) + hg'(a) \). In other words, the function \(g \) and its tangent line are equal in the limit you approach the point

\(^5\)this is argument by inevitability, see Agent Smith for how this turns out as a pattern of deduction.
of tangency. Likewise, \(f'(g(a)) = \lim_{\delta \to 0} \frac{f(g(a)+\delta)-f(g(a))}{\delta} \) hence \(\lim_{\delta \to 0} f(g(a) + \delta) = f(g(a)) + \delta f'(g(a)) \). Calculate then,

\[
(f \circ g)'(a) = \lim_{h \to 0} \frac{(f \circ g)(a+h)-(f \circ g)(a)}{h} \quad \text{defn. of derivative}
\]
\[
= \lim_{h \to 0} \frac{f(g(a+h))-f(g(a))}{h} \quad \text{defn. of } f \circ g
\]
\[
= \lim_{h \to 0} \frac{f(g(a)+hg'(a))-f(g(a))}{h} \quad \text{since } g(a + h) \approx g(a) + hg'(a)
\]
\[
= g'(a) \lim_{\delta \to 0} \frac{f(g(a)+\delta)-f(g(a))}{\delta} \quad \text{made subst. } \delta = g'(a)h
\]
\[
= g'(a) f'(g(a)) \quad \text{as } f(g(a) + \delta) \approx f(g(a)) + \delta f'(g(a))
\]
\[
= g'(a) f'(g(a)) \quad \text{limit of constant is just the constant.}
\]

I have used the notation \(\approx \) to indicate that those equations were not precisely true. However, the error is small when \(h \) or \(\delta \) are close to zero and that is precisely the case which we were faced with in those calculations. Admittably we could give a more rigorous proof in terms of \(\epsilon \) and \(\delta \) but this proof suffices for our purposes here. The main thing I wanted you to take from this is that the chain rule is a consequence of the tangent line approximation. □

Notice that most of the work I am doing here is to prove the result for the derivative. The same was true in the last subsection. In your homework I say you can assume the product and quotient rules for functions so that problem shouldn’t be too hard. You just have to pay attention to how I defined the differential and how it is related to the derivative.
6.6 special product rules

In this section I gather together a few results which are commonly needed in applications of calculus.

6.6.1 calculus of paths in \mathbb{R}^3

A path is a mapping from \mathbb{R} to \mathbb{R}^m. We use such mappings to model position, velocity and acceleration of particles in the case $m = 3$. Some of these things were proved in previous sections of this chapter but I intend for this section to be self-contained so that you can read it without digging through the rest of this chapter.

Proposition 6.6.1.

If $F, G : U \subseteq \mathbb{R} \to \mathbb{R}^m$ are differentiable vector-valued functions and $\phi : U \subseteq \mathbb{R} \to \mathbb{R}$ is a differentiable real-valued function then for each $t \in U$,

1. $(F + G)'(t) = F'(t) + G'(t)$.
2. $(cF)'(t) = cF'(t)$.
3. $(\phi F)'(t) = \phi'(t) F(t) + \phi(t) F'(t)$.
4. $(F \cdot G)'(t) = F'(t) \cdot G(t) + F(t) \cdot G'(t)$.
5. provided $m = 3$, $(F \times G)'(t) = F'(t) \times G(t) + F(t) \times G'(t)$.
6. provided $\phi(U) \subset \text{dom}(F')$, $(F \circ \phi)'(t) = \phi'(t) F(\phi(t))$.

We have to insist that $m = 3$ for the statement with cross-products since we only have a standard cross-product in \mathbb{R}^3. We prepare for the proof of the proposition with a useful lemma. Notice this lemma tells us how to actually calculate the derivative of paths in examples. The derivative of component functions is nothing more than calculus I and one of our goals is to reduce things to those sort of calculations whenever possible.

Lemma 6.6.2.

If $F : U \subseteq \mathbb{R} \to \mathbb{R}^m$ is differentiable vector-valued function then for all $t \in U$,

$$F'(t) = (F_1'(t), F_2'(t), \ldots, F_m'(t))$$

We are given that the following vector limit exists and is equal to $F'(t)$,

$$F'(t) = \lim_{h \to 0} \frac{F(t + h) - F(t)}{h}$$

then by Proposition 3.2.10 the limit of a vector is related to the limits of its components as follows:

$$F'(t) \cdot e_j = \lim_{h \to 0} \frac{F_j(t + h) - F_j(t)}{h}.$$
Thus \((F'(t))_j = F'_j(t)\) and the lemma follows. \(\Box\)

Proof of proposition: We use the notation \(F = \sum F_j e_j = (F_1, \ldots, F_m)\) and \(G = \sum G_i e_i = (G_1, \ldots, G_m)\) throughout the proofs below. The \(\sum\) is understood to range over \(1, 2, \ldots, m\). Begin with (1.),

\[
[(F + G)']_j = \frac{d}{dt}[(F + G)_j] \quad \text{using the lemma}
\]

\[
= \frac{d}{dt}[F_j + G_j] \quad \text{using def. } (F + G)_j = F_j + G_j
\]

\[
= \frac{d}{dt}[F_j] + \frac{d}{dt}[G_j] \quad \text{by calculus I, } (f + g)' = f' + g'.
\]

\[
= [F' + G']_j \quad \text{def. of vector addition for } F' \text{ and } G'
\]

Hence \((F \times G)' = F' \times G + F \times G'\). The proofs of 2, 3, 5 and 6 are similar. I'll prove (5.),

\[
[(F \times G)']_k = \frac{d}{dt}[(F \times G)_k] \quad \text{using the lemma}
\]

\[
= \frac{d}{dt}\left[\sum \epsilon_{ijk} F_i G_j \right] \quad \text{using def. } F \times G
\]

\[
= \sum \epsilon_{ijk} \frac{d}{dt}[F_i G_j] \quad \text{repeatedly using, } (f + g)' = f' + g'
\]

\[
= \sum \epsilon_{ijk}\left[\frac{dF_i}{dt} G_j + F_i \frac{dG_j}{dt}\right] \quad \text{repeatedly using, } (fg)' = f'g + fg'
\]

\[
= \sum \epsilon_{ijk}\left[\frac{dF_i}{dt} G_j \sum \epsilon_{ijk} F_i \frac{dG_j}{dt}\right] \quad \text{property of finite sum } \sum
\]

\[
= (\frac{dF}{dt} \times G)_k + (F \times \frac{dG}{dt})_k \quad \text{def. of cross product}
\]

\[
= \left(\frac{dF}{dt} \times G + F \times \frac{dG}{dt} \right)_k \quad \text{def. of vector addition}
\]

Notice that the calculus step really just involves calculus I applied to the components. The ordinary product rule was the crucial factor to prove the product rule for cross-products. We’ll see the same for the dot product of mappings. Prove (4.)

\[
(F \cdot G)'(t) = \frac{d}{dt}\left[\sum F_k G_k\right] \quad \text{using def. } F \cdot G
\]

\[
= \sum \frac{d}{dt}[F_k G_k] \quad \text{repeatedly using, } (f + g)' = f' + g'
\]

\[
= \sum \left[\frac{dF_k}{dt} G_k + F_k \frac{dG_k}{dt}\right] \quad \text{repeatedly using, } (fg)' = f'g + fg'
\]

\[
= \frac{dF}{dt} \cdot G + F \cdot \frac{dG}{dt} \quad \text{def. of dot product}
\]

The proof of (3.) follows from applying the product rule to each component of \(\phi(t)F(t)\). The proof of (2.) follow from (3.) in the case that \(\text{phi}(t) = c\) so \(\phi'(t) = 0\). Finally the proof of (6.) follows from applying the chain-rule to each component. \(\square\)

\[\text{this notation I first saw in a text by Marsden, it means the proof is partially completed but you should read on to finish the proof}\]
6.6.2 calculus of matrix-valued functions of a real variable

Definition 6.6.3.

A matrix-valued function of a real variable is a function from $I \subseteq \mathbb{R}$ to $\mathbb{R}^{m \times n}$. Suppose $A : I \subseteq \mathbb{R} \to \mathbb{R}^{m \times n}$ is such that $A_{ij} : I \subseteq \mathbb{R} \to \mathbb{R}$ is differentiable for each i,j then we define

$$\frac{dA}{dt} = \begin{bmatrix} \frac{dA_{ij}}{dt} \end{bmatrix}$$

which can also be denoted $(A')_{ij} = A'_{ij}$. We likewise define $\int A dt = \int [A_{ij} dt]$ for A with integrable components. Definite integrals and higher derivatives are also defined componentwise.

Example 6.6.4. Suppose $A(t) = \begin{bmatrix} 2t & 3t^2 \\ 4t^3 & 5t^4 \end{bmatrix}$. I'll calculate a few items just to illustrate the definition above. Calculate; to differentiate a matrix we differentiate each component one at a time:

$$A'(t) = \begin{bmatrix} 2 & 6t \\ 12t^2 & 20t^3 \end{bmatrix} \quad A''(t) = \begin{bmatrix} 0 & 6 \\ 24t & 60t^2 \end{bmatrix} \quad A'(0) = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

Integrate by integrating each component:

$$\int A(t)dt = \begin{bmatrix} t^2 + c_1 & t^3 + c_2 \\ t^4 + c_3 & t^5 + c_4 \end{bmatrix} \quad \int_0^2 A(t)dt = \begin{bmatrix} t^2|_0^2 & t^3|_0^2 \\ t^4|_0^2 & t^5|_0^2 \end{bmatrix} = \begin{bmatrix} 4 & 8 \\ 16 & 32 \end{bmatrix}$$

Proposition 6.6.5.

Suppose A, B are matrix-valued functions of a real variable, f is a function of a real variable, c is a constant, and C is a constant matrix then

1. $(AB)' = A'B + AB'$ (product rule for matrices)
2. $(AC)' = A'C$
3. $(CA)' = CA'$
4. $(fA)' = f'A + fA'$
5. $(cA)' = cA'$
6. $(A + B)' = A' + B'$

where each of the functions is evaluated at the same time t and I assume that the functions and matrices are differentiable at that value of t and of course the matrices A, B, C are such that the multiplications are well-defined.
CHAPTER 6. DIFFERENTIATION

Proof: Suppose \(A(t) \in \mathbb{R}^{m \times n} \) and \(B(t) \in \mathbb{R}^{n \times p} \) consider,

\[
(AB)'_{ij} = \frac{d}{dt}((AB)_{ij}) \quad \text{defn. derivative of matrix}
\]

\[
= \frac{d}{dt} \left(\sum_k A_{ik} B_{kj} \right) \quad \text{defn. of matrix multiplication}
\]

\[
= \sum_k \frac{d}{dt} \left(A_{ik} B_{kj} \right) \quad \text{linearity of derivative}
\]

\[
= \sum_k \left[\frac{dA_{ik}}{dt} B_{kj} + A_{ik} \frac{dB_{kj}}{dt} \right] \quad \text{ordinary product rules}
\]

\[
= \sum_k \frac{dA_{ik}}{dt} B_{kj} + \sum_k A_{ik} \frac{dB_{kj}}{dt} \quad \text{algebra}
\]

\[
= (A'B)_{ij} + (AB')_{ij} \quad \text{defn. of matrix multiplication}
\]

\[
= (A'B + AB')_{ij} \quad \text{defn. matrix addition}
\]

this proves (1.) as \(i,j \) were arbitrary in the calculation above. The proof of (2.) and (3.) follow quickly from (1.) since \(C \) constant means \(C' = 0 \). Proof of (4.) is similar to (1):

\[
(fA)'_{ij} = \frac{d}{dt}((fA)_{ij}) \quad \text{defn. derivative of matrix}
\]

\[
= \frac{d}{dt} \left(fA_{ij} \right) \quad \text{defn. of scalar multiplication}
\]

\[
= \frac{df}{dt} A_{ij} + f \frac{dA_{ij}}{dt} \quad \text{ordinary product rule}
\]

\[
= \left(\frac{df}{dt} A + f \frac{dA}{dt} \right)_{ij} \quad \text{defn. matrix addition}
\]

\[
= \left(\frac{df}{dt} A + f \frac{dA}{dt} \right)_{ij} \quad \text{defn. scalar multiplication}.
\]

The proof of (5.) follows from taking \(f(t) = c \) which has \(f' = 0 \). I leave the proof of (6.) as an exercise for the reader. □.

To summarize: the calculus of matrices is the same as the calculus of functions with the small qualifier that we must respect the rules of matrix algebra. The noncommutativity of matrix multiplication is the main distinguishing feature.

6.6.3 calculus of complex-valued functions of a real variable

Differentiation of functions from \(\mathbb{R} \) to \(\mathbb{C} \) is defined by splitting a given function into its real and imaginary parts then we just differentiate with respect to the real variable one component at a time. For example:

\[
\frac{d}{dt} \left(e^{2t} \cos(t) + ie^{2t} \sin(t)\right) = \frac{d}{dt} \left(e^{2t} \cos(t)\right) + i \frac{d}{dt} \left(e^{2t} \sin(t)\right)
\]

\[
= (2e^{2t} \cos(t) - e^{2t} \sin(t)) + i(2e^{2t} \sin(t) + e^{2t} \cos(t)) \quad (6.1)
\]

\[
= e^{2t}(2 + i)(\cos(t) + i \sin(t))
\]

\[
= (2 + i)e^{(2+i)t}
\]

where I have made use of the identity \(e^{x+iy} = e^x(\cos(y) + i \sin(y)) \). We just saw that \(\frac{d}{dt} e^\lambda = \lambda e^\lambda \) which seems obvious enough until you appreciate that we just proved it for \(\lambda = 2 + i \).

\[\text{or definition, depending on how you choose to set-up the complex exponential, I take this as the definition in calculus II}\]
Chapter 7

local extrema for multivariate functions

In this chapter I show how the multivariate Taylor series and the theory of quadratic forms give a general form of the second derivative test. In particular we recover the second derivative tests of calculus I and III as special cases. There are technical concerns about remainders and convergence that I set aside for this chapter. The techniques developed here are not entirely general, there are exceptional cases but that is not surprising, we had the same trouble in calculus I. If you read the fine print you’ll find we really only have nice theorems for continuously differentiable functions. When functions have holes or finite jump discontinuities we have to treat those separately.

7.1 Taylor series for functions of two variables

Our goal here is to find an analogue for Taylor’s Theorem for function from \mathbb{R}^n to \mathbb{R}. Recall that if $g : U \subseteq \mathbb{R} \to \mathbb{R}$ is smooth at $a \in \mathbb{R}$ then we can compute as many derivatives as we wish, moreover we can generate the Taylor’s series for g centered at a:

$$g(a + h) = g(a) + g'(a)h + \frac{1}{2}g''(a)h^2 + \frac{1}{3!}g'''(a)h^3 + \cdots = \sum_{n=0}^{\infty} \frac{g^{(n)}(a)}{n!}h^n$$

The equation above assumes that g is analytic at a. In other words, the function actually matches it’s Taylor series near a. This concept can be made rigorous by discussing the remainder. If one can show the remainder goes to zero then that proves the function is analytic. (read p117-127 of Edwards for more on these concepts, I did cover some of that in class this semester, Theorem 6.3 is particularly interesting).

7.1.1 deriving the two-dimensional Taylor formula

The idea is fairly simple: create a function on \mathbb{R} with which we can apply the ordinary Taylor series result. Much like our discussion of directional derivatives we compose a function of two variables
Thus, making explicit the point dependence, g may construct the Taylor series for $g(x)$ of all orders. Furthermore, let $(a, b) \in U$ and construct a line through (a, b) with direction vector (h_1, h_2) as usual:

$$\phi(t) = (a, b) + t(h_1, h_2) = (a + th_1, b + th_2)$$

for $t \in \mathbb{R}$. Note $\phi(0) = (a, b)$ and $\phi'(t) = (h_1, h_2) = \phi'(0)$. Construct $g = f \circ \phi : \mathbb{R} \to \mathbb{R}$ and differentiate, note we use the chain rule for functions of several variables in what follows:

$$g'(t) = (f \circ \phi)'(t) = f'(\phi(t))\phi'(t) = \nabla f(\phi(t)) \cdot (h_1, h_2) = h_1 f_x(a + th_1, b + th_2) + h_2 f_y(a + th_1, b + th_2)$$

Note $g'(0) = h_1 f_x(a, b) + h_2 f_y(a, b)$. Differentiate again (I omit $(\phi(t))$ dependence in the last steps),

$$g''(t) = h_1 f'_x(a + th_1, b + th_2) + h_2 f'_y(a + th_1, b + th_2) = h_1 \nabla f_x(\phi(t)) \cdot (h_1, h_2) + h_2 \nabla f_y(\phi(t)) \cdot (h_1, h_2) = h_1^2 f_{xx} + h_1 h_2 f_{xy} + h_2 h_1 f_{yx} + h_2^2 f_{yy} = h_1^2 f_{xx} + 2h_1 h_2 f_{xy} + h_2^2 f_{yy}$$

Thus, making explicit the point dependence, $g''(0) = h_1^2 f_{xx}(a, b) + 2h_1 h_2 f_{xy}(a, b) + h_2^2 f_{yy}(a, b)$. We may construct the Taylor series for g up to quadratic terms:

$$g(0 + t) = g(0) + tg'(0) + \frac{1}{2}g''(0) + \cdots = f(a, b) + t[h_1 f_x(a, b) + h_2 f_y(a, b)] + \frac{t^2}{2} [h_1^2 f_{xx}(a, b) + 2h_1 h_2 f_{xy}(a, b) + h_2^2 f_{yy}(a, b)] + \cdots$$

Note that $g(t) = f(a + th_1, b + th_2)$ hence $g(1) = f(a + h_1, b + h_2)$ and consequently,

$$f(a + h_1, b + h_2) = f(a, b) + h_1 f_x(a, b) + h_2 f_y(a, b) + \frac{1}{2} \left[h_1^2 f_{xx}(a, b) + 2h_1 h_2 f_{xy}(a, b) + h_2^2 f_{yy}(a, b) \right] + \cdots$$

Omitting point dependence on the 2nd derivatives,

$$f(a + h_1, b + h_2) = f(a, b) + h_1 f_x(a, b) + h_2 f_y(a, b) + \frac{1}{2} [h_1^2 f_{xx} + 2h_1 h_2 f_{xy} + h_2^2 f_{yy}] + \cdots$$

Sometimes we'd rather have an expansion about (x, y). To obtain that formula simply substitute $x - a = h_1$ and $y - b = h_2$. Note that the point (a, b) is fixed in this discussion so the derivatives are not modified in this substitution,

$$f(x, y) = f(a, b) + (x - a)f_x(a, b) + (y - b)f_y(a, b) + \frac{1}{2} [(x - a)^2 f_{xx}(a, b) + 2(x - a)(y - b)f_{xy}(a, b) + (y - b)^2 f_{yy}(a, b)] + \cdots$$
At this point we ought to recognize the first three terms give the tangent plane to \(z = f(z, y) \) at \((a, b, f(a, b))\). The higher order terms are nonlinear corrections to the linearization, these quadratic terms form a quadratic form. If we computed third, fourth or higher order terms we’d find that, using \(a = a_1 \) and \(b = a_2 \) as well as \(x = x_1 \) and \(y = x_2 \),

\[
f(x, y) = \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=1}^{n} \partial(x_{i_1} - a_{i_1})(x_{i_2} - a_{i_2}) \cdots (x_{i_n} - a_{i_n})
\]

Let me expand the third order case just for fun:

\[
\sum_{i_1+i_2+i_3=3 \atop i_1, i_2, i_3 \geq 0} \left(\frac{\partial^3 f(a, b)}{\partial x_{i_1} \partial x_{i_2} \partial x_{i_3}} \right) (x_{i_1} - a_{i_1})(x_{i_2} - a_{i_2})(x_{i_3} - a_{i_3})
\]

Thus,

\[
f(x, y) = f(a, b) + f_x(x-a) + f_y(y-b) + \frac{1}{2} \left(f_{xx}(x-a)^2 + f_{xy}(x-a)(y-b) + f_{yy}(y-b)^2 \right) \\
+ \frac{1}{6} \left(f_{xxx}(x-a)^3 + 3 f_{xxy}(x-a)(y-b) + 3 f_{xyy}(x-a)(y-b)^2 + f_{yyy}(y-b)^3 \right) \\
+ \ldots
\]
Fortunately we’re only really interested in the $n = 0, 1, 2$ order terms. Conceptually, $n = 0$ tells us where to base the tangent plane, $n = 1$ tell us how to build the tangent plane. We will soon discuss how $n = 2$ show us if the tangent plane is at the top or bottom of a hill if we’re at a critical point. We pause to play with multivariate series:

Example 7.1.1.

\[
\text{Example: } f(x, y) = \sin(x) \cos(y) \\
= \left(x - \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \cdots \right) \left(1 - \frac{1}{2!} y^2 + \frac{1}{4!} y^4 - \frac{1}{6!} y^6 + \cdots \right) \\
= x - \frac{1}{2} xy^2 + \frac{1}{4!} xy^3 - \frac{1}{3!} x^3 + \frac{1}{3! 2!} x^2 y^2 + \frac{1}{6!} x^5 + \cdots \\
\text{terms up to } 5^{th} \text{ order} \\
= x + \frac{1}{3!} \left(-\frac{3}{2} x y^2 - x^3 \right) + \frac{1}{5!} \left(x^5 + \frac{5}{4!} x y^4 + \frac{5}{3! 2!} x^2 y^2 \right) \\
= f(x, 0) + f_x(x, 0) x + f_y(x, 0) y + \frac{1}{2} f_{xx}(x, 0) x^2 + 2 f_{xy}(x, 0) xy + f_{yy}(x, 0) y^2 \\
+ \frac{1}{3!} \left(f_{xxx}(x, 0) x^3 + 3 f_{xxy}(x, 0) x^2 y + 3 f_{xyy}(x, 0) xy^2 + f_{yyy}(x, 0) y^3 \right) + \cdots
\]

Note:
- $f_y(x, 0) = 0$
- $f_{yy}(x, 0) = 0$
- $f_{xxx}(x, 0) = -1$
- $f_{xxy}(x, 0) = -1$ (sine $\frac{3}{2} = \frac{3 \cdot 2}{2} = 3$)
- $f_{xxx}(x, 0) = \frac{3!}{3! 2! 5} = \frac{6 \cdot 5 \cdot 3 \cdot 2 \cdot 1}{4 \cdot 2 \cdot 2 \cdot 5} = \frac{3}{5}$

* You can use the Cauchy-Product for series to calculate much higher orders w/o doing the whole series multiplication.
Of course many functions of two variables cannot be separated into a product of a function of x and a function of y. In those cases we’d have to calculate the Taylor series directly.

Example 7.1.2.

\[
\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (x+y)^{2n+1} = x+y - \frac{1}{3!} (x+y)^3 + \frac{1}{5!} (x+y)^5 + \ldots
\]

\[
\sin (x+y) = \sin x \cos y + \sin y \cos x
\]

which is better? are they the same?

(YES! thank you absolute convergence ⇒ rearrangements ok)

generally you can’t just shift terms w/o charging

I.O.C. ... there be dragons.
Example 7.1.3.

Example: center $f(x, y) = xy$ about $(1, 1)$.

\[
\begin{align*}
 f(1, 1) &= 1 \\
 f_x(1, 1) &= y_{1,1} = 1 \\
 f_y(1, 1) &= x_{1,1} = 1 \\
 f_{xx}(1, 1) &= 0 \\
 f_{yy}(1, 1) &= 0 \\
 f_{xy}(1, 1) &= 1 \\
 \text{Higher derivatives are all dead.}
\end{align*}
\]

$\sqrt{f(x, y) = 1 + 1(x-1) + 1(y-1) + \frac{1}{2}(x-1)(y-1)}$

centered at $(1, 1)$.

Ideas: use Taylor's Theorem to do sneaky algebra.
7.2 Taylor series for functions of many variables

Consider \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) and denote \(x \mapsto f(x) \) where \(x = (x_1, x_2, \ldots, x_n) \) then consider point \(p = (a_1, a_2, \ldots, a_n) \) and construct path \(\varphi : \mathbb{R} \rightarrow \mathbb{R}^n \)
via the rule:

\[
\varphi(t) = (a_1 + th_1, a_2 + th_2, \ldots, a_n + th_n)
\]

Note \(\varphi(1) = (a_1, \ldots, a_n) = p \) and \(\varphi'(0) = (h_1, \ldots, h_n) = h \).

Form the composite \(g = f \circ \varphi : \mathbb{R} \rightarrow \mathbb{R} \) and assume \(f \) has continuous partial derivatives of all orders. The Taylor series for \(g \) centered at zero has form \(g(a + h) = g(a) + g'(a)h + \frac{1}{2}h^2 g''(a) + \ldots \).

We only intend to calculate up to this order. Focus on \(g'(a) \) since \(g(x) = f(\varphi(t)) = f(p) \) is easy.

\[
g'(t) = \frac{d}{dt} \left[f(x_1, x_2, \ldots, x_n) \right] \quad \text{where} \quad x_j = a_j + th_j \\
= \sum_{j=1}^{n} \frac{\partial f}{\partial x_j} (a_1 + th_1) \frac{d}{dt} (a_j + th_j) \\
= \sum_{j=1}^{n} \frac{\partial f}{\partial x_j} (a_1 + th_1) \cdot h_j
\]

Likewise,

\[
g''(t) = \frac{d}{dt} \left(\sum_{j=1}^{n} h_j \frac{\partial f}{\partial x_j} (a_1 + th_1) \right) \\
= \sum_{j=1}^{n} h_j \frac{\partial^2 f}{\partial x_j^2} (a_1 + th_1) \frac{d}{dt} (a_j + th_j) \\
= \sum_{j=1}^{n} h_j h_k \frac{\partial^2 f}{\partial x_j \partial x_k} (a_1 + th_1)
\]

Using continuous shift to eliminate partials!
CHAPTER 7. LOCAL EXTREMA FOR MULTIVARIATE FUNCTIONS

Continuing:
\[g''(0) = \sum_{i,k=1}^{n} h_i h_k \frac{2^2 f}{\partial x_i \partial x_k} (a) \]

Put it all together,
\[g(0 + h) = g(0) + h \cdot g'(0) + \frac{1}{2} h^2 g''(0) + \cdots \]
\[= f(a) + h \sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i} (a) + \frac{1}{2!} h^2 \sum_{i,j=1}^{n} h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j} (a) + \cdots \]

Finally,
\[g(0 + h) = f(0) = f(a + h) = f(a + h, a_2 + h_2, \ldots, a_n + h_n) \]

\[f(a + h) = f(a) + \sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i} (a) + \sum_{i,j=1}^{n} \frac{h_i h_j}{2!} \frac{\partial^2 f}{\partial x_i \partial x_j} (a) + \cdots \]

We can substitute \(x = a + h \rightarrow h = x - a \)
which means \(h_1 = x_1 - a, \ldots, h_n = x_n - a_n \) and then

\[f(x) = f(a) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (a) (x_i - a_i) + \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j} (a) \frac{1}{2!} (x_i - a_i)(x_j - a_j) + \cdots \]

Summary: We can approximate \(f(x) \) locally by a polynomial in \(x, y \) with terms up to order two by stringing together partial derivatives of orders 1 and 2 appropriately. Generally a 2nd order polynomial in \(\mathbb{R} [x_1, x_2, \ldots, x_n] \) is called a quadratic form on \(\mathbb{R}^n \).
7.3 quadratic forms, conic sections and quadric surfaces

Conic sections and quadratic surfaces are common examples in calculus. For example:

\[x^2 + y^2 = 4 \quad \text{level curve; generally has form } f(x, y) = k \]

\[x^2 + 4y^2 + z^2 = 1 \quad \text{level surface; generally has form } F(x, y, z) = k \]

Our goal is to see what linear algebra and multivariate calculus have to say about conic sections and quadric surfaces. (these notes borrowed from my linear algebra notes)

7.3.1 quadratic forms and their matrix

We are primarily interested in the application of this discussion to \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \), however, these concepts equally well apply to arbitrarily high finite dimensional problems where the geometry is not easily pictured.

Definition 7.3.1.

Generally, a **quadratic form** \(Q \) is a function \(Q : \mathbb{R}^n \to \mathbb{R} \) whose formula can be written \(Q(\vec{x}) = \vec{x}^T A \vec{x} \) for all \(\vec{x} \in \mathbb{R}^n \) where \(A \in \mathbb{R}^{n \times n} \) such that \(A^T = A \). In particular, if \(\vec{x} = [x, y]^T \) and \(A = \begin{bmatrix} a & b \\ b & c \end{bmatrix} \) then

\[\vec{x}^T A \vec{x} = ax^2 + bxy + cy^2 = ax^2 + 2bxy + y^2. \]

The \(n = 3 \) case is similar, denote \(A = [A_{ij}] \) and \(\vec{x} = [x, y, z]^T \) so that

\[\vec{x}^T A \vec{x} = A_{11}x^2 + 2A_{12}xy + 2A_{13}xz + A_{22}y^2 + 2A_{23}yz + A_{33}z^2. \]

Generally, if \([A_{ij}] \in \mathbb{R}^{n \times n} \) and \(\vec{x} = [x_i]^T \) then the quadratic form

\[\vec{x}^T A \vec{x} = \sum_{i,j} A_{ij}x_i x_j = \sum_{i=1}^n A_{ii}x_i^2 + \sum_{i<j} 2A_{ij}x_i x_j. \]

In case you wondering, yes you could write a given quadratic form with a different matrix which is not symmetric, but we will find it convenient to insist that our matrix is symmetric since that choice is always possible for a given quadratic form.

You should notice can write a given quadratic form in terms of a dot-product:

\[\vec{x}^T A \vec{x} = \vec{x} \cdot (A \vec{x}) = (A \vec{x}) \cdot \vec{x} = \vec{x}^T A^T \vec{x} \]

Some texts actually use the middle equality above to define a symmetric matrix.
Example 7.3.2.
\[2x^2 + 2xy + 2y^2 = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}\]

Example 7.3.3.
\[2x^2 + 2xy + 3xz - 2y^2 - z^2 = \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 2 & 1 & 3/2 \\ 1 & -2 & 0 \\ 3/2 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}\]

Proposition 7.3.4.

The values of a quadratic form on \(\mathbb{R}^n - \{0\}\) is completely determined by its values on the \((n-1)\)-sphere \(S_{n-1} = \{ \vec{x} \in \mathbb{R}^n \mid ||\vec{x}|| = 1 \}\). In particular, \(Q(\vec{x}) = ||\vec{x}||^2 Q(\hat{x})\) where \(\hat{x} = \frac{1}{||\vec{x}||} \vec{x}\).

Proof: Let \(Q(\vec{x}) = \vec{x}^T A \vec{x}\). Notice that we can write any nonzero vector as the product of its magnitude \(||\vec{x}||\) and its direction \(\hat{x} = \frac{1}{||\vec{x}||} \vec{x}\),

\[Q(\vec{x}) = Q(||\vec{x}|| \hat{x}) = (||\vec{x}|| \hat{x})^T A (||\vec{x}|| \hat{x}) = ||\vec{x}||^2 \hat{x}^T A \hat{x} = ||\vec{x}||^2 Q(\hat{x}).\]

Therefore \(Q(\vec{x})\) is simply proportional to \(Q(\hat{x})\) with proportionality constant \(||\vec{x}||^2\). □

The proposition above is very interesting. It says that if we know how \(Q\) works on unit-vectors then we can extrapolate its action on the remainder of \(\mathbb{R}^n\). If \(f : S \to \mathbb{R}\) then we could say \(f(S) > 0\) iff \(f(s) > 0\) for all \(s \in S\). Likewise, \(f(S) < 0\) iff \(f(s) < 0\) for all \(s \in S\). The proposition below follows from the proposition above since \(||\vec{x}||^2\) ranges over all nonzero positive real numbers in the equations above.

Proposition 7.3.5.

If \(Q\) is a quadratic form on \(\mathbb{R}^n\) and we denote \(\mathbb{R}^n_* = \mathbb{R}^n - \{0\}\)

1. (negative definite) \(Q(\mathbb{R}^n_*) < 0\) iff \(Q(S_{n-1}) < 0\)
2. (positive definite) \(Q(\mathbb{R}^n_*) > 0\) iff \(Q(S_{n-1}) > 0\)
3. (non-definite) \(Q(\mathbb{R}^n_*) = \mathbb{R} - \{0\}\) iff \(Q(S_{n-1})\) has both positive and negative values.

7.3.2 almost an introduction to eigenvectors

Eigenvectors and eigenvalues play an important role in theory and application. In particular, eigenvalues and eigenvectors allow us to (if possible) diagonalize a matrix. This essentially is the problem of choosing coordinates for a particular system which most clearly reveals the true nature of the system. For example, the fact that \(2xy = 1\) is a hyperbola is clearly seen once we change to coordinates whose axes point along the eigenvectors for the quadratic form \(Q(x, y) = 2xy\).
Likewise, in the study of rotating rigid bodies the eigenvectors of the inertia tensor give the so-called principle axes of inertia. When a body is set to spin about such an axes through its center of mass the motion is natural, smooth and does not wobble. The inertia tensor gives a quadratic form in the angular velocity which represents the rotational kinetic energy. I’ve probably assigned a homework problem so you can understand this paragraph. In any event, there are many motivations for studying eigenvalues and vectors. I explain much more theory for e-vectors in the linear course.

Definition 7.3.6.

Let $A \in \mathbb{R}^{n \times n}$. If $v \in \mathbb{R}^{n \times 1}$ is nonzero and $Av = \lambda v$ for some $\lambda \in \mathbb{C}$ then we say v is an **eigenvector** with eigenvalue λ of the matrix A.

Proposition 7.3.7.

Let $A \in \mathbb{R}^{n \times n}$ then λ is an eigenvalue of A iff $\det(A - \lambda I) = 0$. We say $P(\lambda) = \det(A - \lambda I)$ the **characteristic polynomial** and $\det(A - \lambda I) = 0$ is the **characteristic equation**.

Proof: Suppose λ is an eigenvalue of A then there exists a nonzero vector v such that $Av = \lambda v$ which is equivalent to $Av - \lambda v = 0$ which is precisely $(A - \lambda I)v = 0$. Notice that $(A - \lambda I)0 = 0$ thus the matrix $(A - \lambda I)$ is singular as the equation $(A - \lambda I)x = 0$ has more than one solution. Consequently $\det(A - \lambda I) = 0$.

Conversely, suppose $\det(A - \lambda I) = 0$. It follows that $(A - \lambda I)$ is singular. Clearly the system $(A - \lambda I)x = 0$ is consistent as $x = 0$ is a solution hence we know there are infinitely many solutions. In particular there exists at least one vector $v \neq 0$ such that $(A - \lambda I)v = 0$ which means the vector v satisfies $Av = \lambda v$. Thus v is an eigenvector with eigenvalue λ for A.

Example 7.3.8. Let $A = \begin{bmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix}$ find the e-values and e-vectors of A.

$$\det(A - \lambda I) = \det \begin{bmatrix} 3 - \lambda & 1 \\ 3 & 1 - \lambda \end{bmatrix} = (3 - \lambda)(1 - \lambda) - 3 = \lambda^2 - 4\lambda = \lambda(\lambda - 4) = 0$$

We find $\lambda_1 = 0$ and $\lambda_2 = 4$. Now find the e-vector with e-value $\lambda_1 = 0$, let $u_1 = [u, v]^T$ denote the e-vector we wish to find. Calculate,

$$(A - 0I)u_1 = \begin{bmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 3u + v \\ 3u + v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Obviously the equations above are redundant and we have infinitely many solutions of the form $3u + v = 0$ which means $v = -3u$ so we can write, $u_1 = \begin{bmatrix} u \\ -3u \end{bmatrix} = u \begin{bmatrix} 1 \\ -3 \end{bmatrix}$. In applications we often make a choice to select a particular e-vector. Most modern graphing calculators can calculate e-vectors. It is customary for the e-vectors to be chosen to have length one. That is a useful choice for certain applications as we will later discuss. If you use a calculator it would likely give
CHAPTER 7. LOCAL EXTREMA FOR MULTIVARIATE FUNCTIONS

$u_1 = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ although the $\sqrt{10}$ would likely be approximated unless your calculator is smart.

Continuing we wish to find eigenvectors $u_2 = [u, v]^T$ such that $(A - 4I)u_2 = 0$. Notice that u, v are disposable variables in this context, I do not mean to connect the formulas from the $\lambda = 0$ case with the case considered now.

$$(A - 4I)u_1 = \begin{bmatrix} -1 & 1 \\ 3 & -3 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -u + v \\ 3u - 3v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Again the equations are redundant and we have infinitely many solutions of the form $v = u$. Hence, $u_2 = \begin{bmatrix} u \\ u \end{bmatrix} = u \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector for any $u \in \mathbb{R}$ such that $u \neq 0$.

Theorem 7.3.9.

A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric iff there exists an orthonormal eigenbasis for A.

There is a geometric proof of this theorem in Edwards\(^1\) (see Theorem 8.6 pgs 146-147). I prove half of this theorem in my linear algebra notes by a non-geometric argument (full proof is in Appendix C of Insel, Spence and Friedberg). It might be very interesting to understand the connection between the geometric verse algebraic arguments. We’ll content ourselves with an example here:

Example 7.3.10. Let $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$. Observe that $\det(A - \lambda I) = -\lambda(\lambda + 1)(\lambda - 3)$ thus $\lambda_1 = 0, \lambda_2 = -1, \lambda_3 = 3$. We can calculate orthonormal e-vectors of $v_1 = [1, 0, 0]^T$, $v_2 = \frac{1}{\sqrt{2}}[0, 1, -1]^T$ and $v_3 = \frac{1}{\sqrt{2}}[0, 1, 1]^T$. I invite the reader to check the validity of the following equation:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Its really neat that to find the inverse of a matrix of orthonormal e-vectors we need only take the transpose; note

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

7.3.3 quadratic form examples

Example 7.3.11. Consider the quadric form $Q(x, y) = x^2 + y^2$. You can check for yourself that $z = Q(x, y)$ is a cone and Q has positive outputs for all inputs except $(0, 0)$. Notice that $Q(v) = ||v||^2$.

\(^1\)think about it, there is a 1-1 correspondance between symmetric matrices and quadratic forms
so it is clear that \(Q(S_1) = 1 \). We find agreement with the preceding proposition.

Next, think about the application of \(Q(x, y) \) to level curves; \(x^2 + y^2 = k \) is simply a circle of radius \(\sqrt{k} \) or just the origin.

Finally, let’s take a moment to write \(Q(x, y) = [x, y] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \) in this case the matrix is diagonal and we note that the e-values are \(\lambda_1 = \lambda_2 = 1 \).

Example 7.3.12. Consider the quadric form \(Q(x, y) = x^2 - 2y^2 \). You can check for yourself that \(z = Q(x, y) \) is a hyperboloid and \(Q \) has non-definite outputs since sometimes the \(x^2 \) term dominates whereas other points have \(-2y^2\) as the dominant term. Notice that \(Q(1,0) = 1 \) whereas \(Q(0,1) = -2 \) hence we find \(Q(S_1) \) contains both positive and negative values and consequently we find agreement with the preceding proposition.

Next, think about the application of \(Q(x, y) \) to level curves; \(x^2 - 2y^2 = k \) yields either hyperbolas which open vertically \((k > 0) \) or horizontally \((k < 0) \) or a pair of lines \(y = \pm \frac{x}{\sqrt{2}} \) in the \(k = 0 \) case.

Finally, let’s take a moment to write \(Q(x, y) = [x, y] \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \) in this case the matrix is diagonal and we note that the e-values are \(\lambda_1 = 1 \) and \(\lambda_2 = -2 \).

Example 7.3.13. Consider the quadric form \(Q(x, y) = 3x^2 \). You can check for yourself that \(z = Q(x, y) \) is parabola-shaped trough along the \(y \)-axis. In this case \(Q \) has positive outputs for all inputs except \((0, y) \), we would call this form **positive semi-definite**. A short calculation reveals that \(Q(S_1) = [0,3] \) thus we again find agreement with the preceding proposition (case 3).

Next, think about the application of \(Q(x, y) \) to level curves; \(3x^2 = k \) is a pair of vertical lines: \(x = \pm \sqrt{k/3} \) or just the \(y \)-axis.

Finally, let’s take a moment to write \(Q(x, y) = [x, y] \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \) in this case the matrix is diagonal and we note that the e-values are \(\lambda_1 = 3 \) and \(\lambda_2 = 0 \).

Example 7.3.14. Consider the quadric form \(Q(x, y, z) = x^2 + 2y^2 + 3z^2 \). Think about the application of \(Q(x, y, z) \) to level surfaces; \(x^2 + 2y^2 + 3z^2 = k \) is an ellipsoid.

Finally, let’s take a moment to write \(Q(x, y, z) = [x, y, z] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \) in this case the matrix is diagonal and we note that the e-values are \(\lambda_1 = 1 \) and \(\lambda_2 = 2 \) and \(\lambda_3 = 3 \).

The examples given thus far are the simplest cases. We don’t really need linear algebra to understand them. In contrast, e-vectors and e-values will prove a useful tool to unravel the later examples.
CHAPTER 7. LOCAL EXTREMA FOR MULTIVARIATE FUNCTIONS

Proposition 7.3.15.

If \(Q \) is a quadratic form on \(\mathbb{R}^n \) with matrix \(A \) and e-values \(\lambda_1, \lambda_2, \ldots, \lambda_n \) with orthonormal e-vectors \(v_1, v_2, \ldots, v_n \) then

\[
Q(v_i) = \lambda_i^2
\]

for \(i = 1, 2, \ldots, n \). Moreover, if \(P = [v_1 | v_2 | \cdots | v_n] \) then

\[
Q(\vec{x}) = (P^T \vec{x})^T P^T A P P^T \vec{x} = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \cdots + \lambda_n y_n^2
\]

where we defined \(\vec{y} = P^T \vec{x} \).

Let me restate the proposition above in simple terms: we can transform a given quadratic form to a diagonal form by finding orthonormalized e-vectors and performing the appropriate coordinate transformation. Since \(P \) is formed from orthonormal e-vectors we know that \(P \) will be either a rotation or reflection. This proposition says we can remove ”cross-terms” by transforming the quadratic forms with an appropriate rotation.

Example 7.3.16. Consider the quadric form \(Q(x, y) = 2x^2 + 2xy + 2y^2 \). It’s not immediately obvious (to me) what the level curves \(Q(x, y) = k \) look like. We’ll make use of the preceding proposition to understand those graphs. Notice \(Q(x, y) = (x, y) \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \). Denote the matrix of the form by \(A \) and calculate the e-values/vectors:

\[
\det(A - \lambda I) = \det \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} = (\lambda - 2)^2 - 1 = \lambda^2 - 4\lambda + 3 = (\lambda - 1)(\lambda - 3) = 0
\]

Therefore, the e-values are \(\lambda_1 = 1 \) and \(\lambda_2 = 3 \).

\[
(A - I)\vec{u}_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \vec{u}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}
\]

I just solved \(u + v = 0 \) to give \(v = -u \) choose \(u = 1 \) then normalize to get the vector above. Next,

\[
(A - 3I)\vec{u}_2 = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \vec{u}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}
\]

I just solved \(u - v = 0 \) to give \(v = u \) choose \(u = 1 \) then normalize to get the vector above. Let \(P = [\vec{u}_1 | \vec{u}_2] \) and introduce new coordinates \(\vec{y} = [\vec{x}, \vec{y}]^T \) defined by \(\vec{y} = P^T \vec{x} \). Note these can be inverted by multiplication by \(P \) to give \(\vec{x} = P\vec{y} \). Observe that

\[
P = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \Rightarrow \begin{aligned}
x &= \frac{1}{2}(\vec{x} + \vec{y}) \\
y &= \frac{1}{2}(-\vec{x} + \vec{y})
\end{aligned}
or \begin{aligned}
\vec{x} &= \frac{1}{2}(x - y) \\
\vec{y} &= \frac{1}{2}(x + y)
\end{aligned}
\]

The proposition preceding this example shows that substitution of the formulas above into \(Q \) yield:

\[Q(\vec{x}, \vec{y}) = \vec{x}^2 + 3\vec{y}^2\]

\[2\text{technically } Q(\vec{x}, \vec{y}) \text{ is } Q(x(\vec{x}, \vec{y}), y(\vec{x}, \vec{y}))\]
It is clear that in the barred coordinate system the level curve \(Q(x, y) = k \) is an ellipse. If we draw the barred coordinate system superposed over the xy-coordinate system then you’ll see that the graph of \(Q(x, y) = 2x^2 + 2xy + 2y^2 = k \) is an ellipse rotated by 45 degrees.

Example 7.3.17. Consider the quadric form \(Q(x, y) = x^2 + 2xy + y^2 \). It’s not immediately obvious (to me) what the level curves \(Q(x, y) = k \) look like. We’ll make use of the preceding proposition to understand those graphs. Notice \(Q(x, y) = [x, y] \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \). Denote the matrix of the form by \(A \) and calculate the e-values/vectors:

\[
\det(A - \lambda I) = \det \begin{bmatrix} 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{bmatrix} = (\lambda - 1)^2 - 1 = \lambda^2 - 2\lambda = \lambda(\lambda - 2) = 0
\]

Therefore, the e-values are \(\lambda_1 = 0 \) and \(\lambda_2 = 2 \).

\[
(A - 0)\vec{u}_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \vec{u}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}
\]

I just solved \(u + v = 0 \) to give \(v = -u \) choose \(u = 1 \) then normalize to get the vector above. Next,

\[
(A - 2I)\vec{u}_2 = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \vec{u}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}
\]

I just solved \(u - v = 0 \) to give \(v = u \) choose \(u = 1 \) then normalize to get the vector above. Let \(P = [\vec{u}_1 | \vec{u}_2] \) and introduce new coordinates \(\vec{y} = [\vec{x}, \vec{y}]^T \) defined by \(\vec{y} = P^T \vec{x} \). Note these can be inverted by multiplication by \(P \) to give \(\vec{x} = P\vec{y} \). Observe that

\[
P = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \implies \begin{cases} x = \frac{1}{2}(\vec{x} + \vec{y}) \\ y = \frac{1}{2}(-\vec{x} + \vec{y}) \end{cases} \quad \text{or} \quad \begin{cases} \vec{x} = \frac{1}{2}(x - y) \\ \vec{y} = \frac{1}{2}(x + y) \end{cases}
\]

The proposition preceding this example shows that substitution of the formulas above into \(Q \) yield:

\[
\tilde{Q}(\vec{x}, \vec{y}) = 2\vec{y}^2
\]

It is clear that in the barred coordinate system the level curve \(Q(x, y) = k \) is a pair of parallel lines. If we draw the barred coordinate system superposed over the xy-coordinate system then you’ll see that the graph of \(Q(x, y) = x^2 + 2xy + y^2 = k \) is a line with slope \(-1\). Indeed, with a little algebraic insight we could have anticipated this result since \(Q(x, y) = (x + y)^2 \) so \(Q(x, y) = k \) implies \(x + y = \sqrt{k} \) thus \(y = \sqrt{k} - x \).

Example 7.3.18. Consider the quadric form \(Q(x, y) = 4xy \). It’s not immediately obvious (to me) what the level curves \(Q(x, y) = k \) look like. We’ll make use of the preceding proposition to understand those graphs. Notice \(Q(x, y) = [x, y] \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \). Denote the matrix of the form by \(A \) and calculate the e-values/vectors:

\[
\det(A - \lambda I) = \det \begin{bmatrix} -\lambda & 2 \\ 2 & -\lambda \end{bmatrix} = \lambda^2 - 4 = (\lambda + 2)(\lambda - 2) = 0
\]
Therefore, the e-values are $\lambda_1 = -2$ and $\lambda_2 = 2$.

\[
(A + 2I)\vec{u}_1 = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \vec{u}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}
\]

I just solved $u + v = 0$ to give $v = -u$ choose $u = 1$ then normalize to get the vector above. Next,

\[
(A - 2I)\vec{u}_2 = \begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \vec{u}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}
\]

I just solved $u - v = 0$ to give $v = u$ choose $u = 1$ then normalize to get the vector above. Let $P = [\vec{u}_1 | \vec{u}_2]$ and introduce new coordinates $\vec{y} = [\bar{x}, \bar{y}]^T$ defined by $\vec{y} = P^T \vec{x}$. Note these can be inverted by multiplication by P to give $\vec{x} = P \vec{y}$. Observe that

\[
P = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \Rightarrow \begin{cases} x = \frac{1}{2}(\bar{x} + \bar{y}) \\ y = \frac{1}{2}(\bar{x} - \bar{y}) \end{cases} \text{ or } \begin{cases} \bar{x} = \frac{1}{2}(x - y) \\ \bar{y} = \frac{1}{2}(x + y) \end{cases}
\]

The proposition preceding this example shows that substitution of the formulas above into Q yield:

\[
\tilde{Q}(\bar{x}, \bar{y}) = -2\bar{x}^2 + 2\bar{y}^2
\]

It is clear that in the barred coordinate system the level curve $Q(x, y) = k$ is a hyperbola. If we draw the barred coordinate system superposed over the xy-coordinate system then you’ll see that the graph of $Q(x, y) = 4xy = k$ is a hyperbola rotated by 45 degrees.

Remark 7.3.19.

I made the preceding triple of examples all involved the same rotation. This is purely for my lecturing convenience. In practice the rotation could be by all sorts of angles. In addition, you might notice that a different ordering of the e-values would result in a redefinition of the barred coordinates.

We ought to do at least one 3-dimensional example.

Example 7.3.20. Consider the quadric form defined below:

\[
Q(x, y, z) = [x, y, z] \begin{bmatrix} 6 & -2 & 0 \\ -2 & 6 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}
\]

Denote the matrix of the form by A and calculate the e-values/vectors:

\[
det(A - \lambda I) = det \begin{bmatrix} 6 - \lambda & -2 & 0 \\ -2 & 6 - \lambda & 0 \\ 0 & 0 & 5 - \lambda \end{bmatrix} = [(\lambda - 6)^2 - 4](5 - \lambda)
\]

\[
= (5 - \lambda)[\lambda^2 - 12\lambda + 32](5 - \lambda)
\]

\[
= (\lambda - 4)(\lambda - 8)(5 - \lambda)
\]
Therefore, the e-values are $\lambda_1 = 4$, $\lambda_2 = 8$ and $\lambda_3 = 5$. After some calculation we find the following orthonormal e-vectors for A:

$$\vec{u}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \vec{u}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad \vec{u}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Let $P = [\vec{u}_1|\vec{u}_2|\vec{u}_3]$ and introduce new coordinates $\vec{y} = [\bar{x}, \bar{y}, \bar{z}]^T$ defined by $\vec{y} = P^T \vec{x}$. Note these can be inverted by multiplication by P to give $\vec{x} = P\vec{y}$. Observe that

$$P = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{bmatrix} \Rightarrow \begin{array}{ll} x &= \frac{1}{\sqrt{2}}(\bar{x} + \bar{y}) \\ y &= \frac{1}{\sqrt{2}}(\bar{x} - \bar{y}) & \text{or} \quad \bar{y} &= \frac{1}{\sqrt{2}}(x + y) \\ z &= \bar{z} & \text{or} \quad \bar{x} &= \frac{1}{\sqrt{2}}(x - y) \end{array}$$

The proposition preceding this example shows that substitution of the formulas above into Q yield:

$$Q(\bar{x}, \bar{y}, \bar{z}) = 4\bar{x}^2 + 8\bar{y}^2 + 5\bar{z}^2$$

It is clear that in the barred coordinate system the level surface $Q(x, y, z) = k$ is an ellipsoid. If we draw the barred coordinate system superposed over the xyz-coordinate system then you’ll see that the graph of $Q(x, y, z) = k$ is an ellipsoid rotated by 45 degrees around the $z - \text{axis}$.

Remark 7.3.21.

There is a connection between the shape of level curves $Q(x_1, x_2, \ldots, x_n) = k$ and the graph $x_{n+1} = f(x_1, x_2, \ldots, x_n)$ of f. I’ll discuss $n = 2$ but these comments equally well apply to $w = f(x, y, z)$ or higher dimensional examples. Consider a critical point (a, b) for $f(x, y)$ then the Taylor expansion about (a, b) has the form

$$f(a + h, b + k) = f(a, b) + Q(h, k)$$

where $Q(h, k) = \frac{1}{2}h^2 f_{xx}(a, b) + hk f_{xy}(a, b) + \frac{1}{2}k^2 f_{yy}(a, b) = [h, k][Q](h, k)$. Since $[Q]^T = [Q]$ we can find orthonormal e-vectors \vec{u}_1, \vec{u}_2 for $[Q]$ with e-values λ_1 and λ_2 respective. Using $U = [\vec{u}_1|\vec{u}_2]$ we can introduce rotated coordinates $(\bar{h}, \bar{k}) = U(h, k)$. These will give

$$Q(\bar{h}, \bar{k}) = \lambda_1 \bar{h}^2 + \lambda_2 \bar{k}^2$$

Clearly if $\lambda_1 > 0$ and $\lambda_2 > 0$ then $f(a, b)$ yields the local minimum whereas if $\lambda_1 < 0$ and $\lambda_2 < 0$ then $f(a, b)$ yields the local maximum. Edwards discusses these matters on pgs. 148-153. In short, supposing $f \approx f(p) + Q$, if all the e-values of Q are positive then f has a local minimum of $f(p)$ at p whereas if all the e-values of Q are negative then f reaches a local maximum of $f(p)$ at p. Otherwise Q has both positive and negative e-values and we say Q is non-definite and the function has a saddle point. If all the e-values of Q are positive then Q is said to be **positive-definite** whereas if all the e-values of Q are negative then Q is said to be **negative-definite**. Edwards gives a few nice tests for ascertaining if a matrix is positive definite without explicit computation of e-values.
7.4 local extrema from eigenvalues and quadratic forms

We have all the tools we need, let’s put them to use now.

Example 7.4.1.

\[f(x, y) = x^2 - 2xy + y^2 \]

\[\nabla f = \begin{pmatrix} 2x - 2y \\ 2y - 2x \end{pmatrix} \Rightarrow \nabla f = 0 \Rightarrow y = x. \]

Infinitely many critical points have the form \((a, a)\).

\[f_{xx}(a, a) = 2 \quad f_{xy}(a, a) = -2 \quad f_{yy}(a, a) = 2 \]

Hence, expanding about \((a, a)\),

\[f(x, y) = f(a, a) + Q_{a,a}(x, y) \]

\[= a^2 - 2ax + x^2 + \frac{1}{2} \left(2a^2 - 4y(a-x) + 2(y-a)^2 \right) \]

\[= (x-a)^2 - 2(x-a)(y-a) + (y-a)^2 \]

Note that

\[[Q_{a, a}] = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \]

\[\det \left[[Q_{a, a}] - \lambda I \right] = \det \begin{bmatrix} 1 - \lambda & -1 \\ -1 & 1 - \lambda \end{bmatrix} \]

\[= (\lambda - 1)^2 - 1 \]

\[= \lambda^2 - 2\lambda \]

\[= \lambda(\lambda - 2) \quad \therefore \lambda_1 = 0, \lambda_2 = 2 \]

This is a semi-definite form. Each point along \(y = x\) gives local min. Note that

\[f(x, y) = (x-y)^2 \quad \text{thus } f(x, y) \geq 0 \quad \text{hence} \]

\[f(a, a) = 0 \quad \text{is the global min. for } f \text{ as well.} \]

\[\text{(Zero e-values for } Q) \]

\[\text{indicate this type of behaviour.} \]
Example 7.4.2.

\[
\begin{align*}
 f(x, y) &= \exp \left(-x^2 - y^2 \right) \\
 f_x(x, y) &= -2x \exp \left(-x^2 - y^2 \right) \\
 f_y(x, y) &= -2y \exp \left(-x^2 - y^2 \right) \\
 f_{xx}(x, y) &= -2 \exp \left(-x^2 - y^2 \right) + 4x^2 \exp \left(-x^2 - y^2 \right) \\
 f_{xy}(x, y) &= 4xy \exp \left(-x^2 - y^2 \right) \\
 f_{yy}(x, y) &= \left(4y^2 - 2 \right) \exp \left(-x^2 - y^2 \right)
\end{align*}
\]

Note \(\nabla f(x, y) = 0 = \langle -2x, -2y \rangle \exp \left(-x^2 - y^2 \right) \Rightarrow x = y = 0 \)

Only critical pt. is \((0,0)\), We find

\[
Q(x, y) = \frac{1}{2} f_{xx}(0,0)x^2 + f_{xy}(0,0)xy + \frac{1}{2} f_{yy}(0,0)y^2
\]

\[= \frac{1}{2} (-2)x^2 + 0 + \frac{1}{2} (-2)y^2\]

Thus, we find \((0,0)\) gives local max since \(Q\) is negative definite.

\[
f(x, y) = f(0,0) + Q(x, y) = 1 - x^2 - y^2 + \ldots
\]

Note,

\[
\begin{pmatrix} Q \\ \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \lambda_1 = \lambda_2 = -1 < 0
\]

:** negative definite**: local maximum.

Remarks: This is actually a global max. since \(-x^2 - y^2 \leq 0\) and \(\exp(-\infty, 0] = (0, 1]\).
Example 7.4.3.

Let \(f(x,y) = 2x^2 - xy - 3y^2 - 3x + 7y \) find all critical points and analyze these pts. Find local extrema.

\[
\nabla f = \begin{pmatrix} 4x - y - 3 \\ -x - 6y + 7 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

\[
4x - y - 3 = 0
\rightarrow y = 4x - 3
\]

\[-x - 6y + 7 = 0
\rightarrow -x - 6(4x - 3) + 7 = 0
\]

\[-25x + 18 + 7 = 0
\Rightarrow -25x = -25
\]

\[x = 1
\Rightarrow y = 4 - 3 = 1
\]

We find a single critical point; \((1, 1)\).

\[
f_x (x, y) = 4x - y - 3 \quad \text{note} \quad f_x(1, 1) = 4 - 3 = 1
\]

\[
f_y (x, y) = -x - 6y + 7 \quad \text{and} \quad f_y(1, 1) = -1 - 6 + 7 = 0
\]

\[
f_{xx} (x, y) = 4
\]

\[
f_{xy} (x, y) = -1
\]

\[
f_{yy} (x, y) = -6
\]

We find \(Q(x, y) = 2(x-1)^2 - 2(x-1)(y-1) - 3(y-1)^2\) hence,

\[
f(x, y) = f(1, 1) + Q(x, y)
\]

\[
f(1, 1) = 2 - 3 + 7 = 6
\]

\[
f(x, y) = 6 + 2(x-1)^2 - 2(x-1)(y-1) - 3(y-1)^2
\]

Note this is not an approximation since higher terms all vanish.

It seems likely this is a saddle point, but we need not guess. The matrix of \(Q\) is

\[
[Q] = \begin{bmatrix} a & -1 \\ -1 & -3 \end{bmatrix}
\]

\[
0 = \det([Q] - \lambda I) = \det \begin{pmatrix} 2 - \lambda & -1 \\ -1 & -3 - \lambda \end{pmatrix}
\]

\[
= (\lambda + 3)(\lambda - 2) - 1
\]

\[
= \lambda^2 + \lambda - 6
\]

\[
= (\lambda + 3)(\lambda - 2) \Rightarrow \lambda_1 = -3, \lambda_2 = 2
\]

Thus \(f(1, 1)\) is neither max nor min near \((1, 1)\). It is at the saddle point \((1, 1, 2)\).
Example 7.4.4.

\[\nabla f = \langle \cos x \cosh y, \sin x \sinh y \rangle \]

Thus critical pts must have

1. \(\cos (x) \cosh y = 0 \)
2. \(\sin x \sinh y = 0 \)

Note \(\cosh y = \frac{1}{2} (e^y + e^{-y}) \neq 0 \) for all \(y \in \mathbb{R} \) hence we need \(\cos (x) = 0 \). But then \(\cos (x) = 0 \Rightarrow \sin x \neq 0 \) hence we also need \(\sinh y = \frac{1}{2} (e^y - e^{-y}) = 0 \). Note \(\sinh y = \frac{1}{2} (e^y - e^{-y}) = 0 \Rightarrow e^y = e^{-y} \Rightarrow y = -y \Rightarrow y = 0 \).

We find a whole family of critical points. Namely \((x, y) \in \mathbb{R}^2 \) such that \(\cos (x) = 0 \) and \(y = 0 \)

That gives critical pts \(f(x, y) = f(n\pi + \frac{\pi}{2}, 0), n \in \mathbb{Z} \).

Thus \(f_{xx} (x, 0) = -\sin x \), \(f_{yy} (x, 0) = 0 \) and \(f_{xy} (x, 0) = \sin x \).

If \(x = n\pi + \frac{\pi}{2} \) then \(\sin (x) = 1 \) whereas if \(x = (2k+1)\pi + \frac{\pi}{2} \) then \(\sin (x) = -1 \) for all \(k \in \mathbb{Z} \).

To summarize, \(f_{xx} (n\pi + \frac{\pi}{2}, 0) = (-1)^n \) and \(f_{yy} (n\pi + \frac{\pi}{2}, 0) = (-1)^n \).

We can approximate \(f(x, y) = \sin x \cosh y \) by

\[f(x, y) \approx (-1)^n + \frac{1}{2} (-1)^n (x-n\pi-\frac{\pi}{2}) - \frac{1}{2} (-1)^n y^2 \]

This is again a saddle-type for each \(n \in \mathbb{Z} \).

\[
\begin{bmatrix}
Q
\end{bmatrix} = \begin{bmatrix}
\frac{1}{2}(-1)^n & 0 \\
0 & -\frac{1}{2}(-1)^n
\end{bmatrix}
\]

\[\lambda_1 = \pm \frac{1}{2}, \quad \lambda_2 = \mp \frac{1}{2} \]
Chapter 8

on manifolds and multipliers

In this chapter we show the application of the most difficult results in this course, namely the implicit and inverse mapping theorems. Our first application is in the construction of manifolds as graphs or level sets. Then once we have a convenient concept of a manifold we discuss the idea of Lagrange multipliers. The heart of the method combines orthogonal complements from linear algebra along side the construction of tangent spaces in this course. Hopefully this chapter will help you understand why the implicit and inverse mapping theorems are so useful and also why we need manifolds to make sense of our problems. The patching definition for a manifold is not of much use in this chapter although we will mention how it connects to the other two formulations of a manifold in \mathbb{R}^m in the context of a special case.

8.1 surfaces in \mathbb{R}^3

Manifolds or surfaces play a role similar to functions in this course. Our goal is not the study of manifolds alone but it’s hard to give a complete account of differentiation unless we have some idea of what is a tangent plane. This subsection does break from the larger pattern of thought in this chapter. I include it here to try to remind how surfaces and tangent planes are described in \mathbb{R}^3. We need some amount of generalization beyond this section because the solution of max/min problems with constraints will take us into higher dimensional surfaces even for problems that only involve two or three spatial dimensions. We treat those questions in the next chapter.

There are three main methods to describe surfaces:

1. As a graph: $S = \{(x, y, z) \mid z = f(x, y) \text{ where } (x, y) \in \text{dom}(f)\}$.
2. As a level surface: $S = \{(x, y, z) \mid F(x, y, z) = 0\}$
3. As a parametrized surface: $S = \{X(u, v) \mid (u, v) \in \text{dom}(X)\}$
Let me remind you we found the tangent plane at \((x_o, y_o, z_o) \in S\) for each of these formalisms as follows (continuing to use the same notation as above):

1. For the **graph**: \(z = z_o + f(x_o, y_o) + f_x(x_o, y_o)(x - x_o) + f_y(x_o, y_o)(y - y_o)\).

2. For the **level surface**: plane through \((x_o, y_o, z_o)\) with normal \(\nabla F(x_o, y_o, z_o)\).

3. For the **parametrized surface**: find \((u_o, v_o)\) with \(X(u_o, v_o) = (x_o, y_o, z_o)\), the tangent plane goes through \(X(u_o, v_o)\) and has normal \(N(u_o, v_o) = X_u(u_o, v_o) \times X_v(u_o, v_o)\).

Perhaps you recall that the normal vector field to the surface \(S\) was important in the formulation of surface integrals to calculate the flux of vector fields.

Example 8.1.1. The plane through the point \(\vec{r}_o\) with normal \(\vec{n} = <a, b, c>\) can be described as:

1. all \(\vec{r} \in \mathbb{R}^3\) such that \((\vec{r} - \vec{r}_o) \cdot \vec{n} = 0\).

2. all \((x, y, z) \in \mathbb{R}^3\) such that \(a(x - x_o) + b(y - y_o) + c(z - z_o) = 0\).

3. if \(c \neq 0\), the graph \(z = f_3(x, y)\) where \(f_3(x, y) = z_o + \frac{a}{c}(x - x_o) + \frac{b}{c}(y - y_o)\).

4. if \(b \neq 0\), the graph \(y = f_2(x, z)\) where \(f_2(x, z) = y_o + \frac{a}{b}(x - x_o) + \frac{c}{b}(z - z_o)\).

5. if \(a \neq 0\), the graph \(x = f_1(y, z)\) where \(f_1(y, z) = x_o + \frac{b}{a}(y - y_o) + \frac{c}{a}(z - z_o)\).

6. given any two linearly independent vectors \(\vec{a}, \vec{b}\) in the plane, the plane is the image of the mapping \(X : \mathbb{R}^2 \to \mathbb{R}^3\) defined by \(X(u, v) = \vec{r}_o + u\vec{a} + v\vec{b}\).

Example 8.1.2. The sphere of radius \(R\) centered about the origin can be described as:

1. all \((x, y, z) \in \mathbb{R}^3\) such that \(F(x, y, z) = x^2 + y^2 + z^2 = R^2\).

2. the graphs of \(z = f_{\pm}(x, y)\) where \(f_{\pm}(x, y) = \pm \sqrt{R^2 - x^2 - y^2}\).

3. for \((u, v) \in [0, 2\pi] \times [0, \pi]\), \(X(u, v) = (R \cos u \sin v, R \sin u \sin v, R \cos v)\).

You may recall that the level surface concept allowed by far the easiest computation of the normal of the tangent plane for a particular point. For example, \(\nabla F = <2x, 2y, 2z>\) in the preceding example. Contrast that to calculation of \(X_u \times X_v\) where the \(\times\) denotes the dreaded cross-product. Of course each formalism has its place in calculus III.
8.2 MANIFOLDS AS LEVEL SETS

Remark 8.1.3.

In this warm-up section we have hopefully observed this much about surfaces in \mathbb{R}^3:

1. the tangent plane is always 2-dimensional, it is really a plane in the traditional sense of the term.
2. the normal to the tangent plane is always 1-dimensional, the normal through a particular point on the surface is just a line which is orthogonal to all possible tangents through the point.
3. the dimension of the tangent plane and normal give the total dimension of the ambient space; $2 + 1 = 3$.

8.2 manifolds as level sets

We will focus almost exclusively on the level surface formulation of a manifold in the remainder of this chapter. We say $M \subseteq \mathbb{R}^n$ is a manifold of dimension $p \leq n$ if M has a p-dimensional tangent plane for each point on M. In other words, M is a p-dimensional manifold if it can be locally approximated by \mathbb{R}^p at each point on M. Moreover, the set of all vectors normal to the tangent space will be $n-p$ dimensional.

These are general concepts which encompasses lines, planes volumes and much much more. Let me illustrate by example:

Example 8.2.1. Let $g : \mathbb{R}^2 \to \mathbb{R}$ be defined by $g(x,y) = y - x - 1$ note that $g(x,y) = 0$ gives the line $y - x - 1 = 0$ commonly written as $y = x + 1$; note that the line has direction vector $<-1, 1>$. Furthermore, $\nabla g = <1, -1>$ which is orthogonal to $<-1, 1>$.

Example 8.2.2. Let $g : \mathbb{R}^3 \to \mathbb{R}$ be defined by $g(x,y,z) = y - x - 1$ note that $g(x,y,z) = 0$ gives the plane $y - x - 1 = 0$. Furthermore, $\nabla g = <1, -1, 0>$ which gives the normal to the plane $g = 0$.

Example 8.2.3. Let $g : \mathbb{R}^4 \to \mathbb{R}$ be defined by $g(x,y,z,t) = y - x - 1$ note that $g(x,y,z,t) = 0$ gives the hyperplane $y - x - 1 = 0$. What does that mean? It means that if I take any vector in the hyperplane it is orthogonal to $<1, -1, 0, 0>$. Let \vec{r}_1, \vec{r}_2 be points in the solution set of $g(x,y,z,t) = 0$. Denote $\vec{r}_1 = (x_1, y_1, z_1, t_1)$ and $\vec{r}_1 = (x_2, y_2, z_2, t_2)$, we have $y_1 = x_1 + 1$ and $y_2 = x + 1$. The vector in the hyperplane is found from the difference of these points:

$$\vec{v} = \vec{r}_2 - \vec{r}_1 = (x_2, x_2 + 1, z_2, t_2) - (x_1, x_1 + 1, z_1, t_1) = (x_2 - x_1, x_2 - x_1, z_2 - z_1, t_2 - t_1).$$

It’s easy to see that $\vec{v} \cdot \nabla g = 0$ hence ∇g is perpendicular to an arbitrary vector in the hyperplane.
If you’ve begun to develop an intuition for the story we’re telling this last example ought to bug you a bit. Why is the difference of points a tangent vector? What happened to the set of all tangent vectors pasted together or the differential or the column space of the derivative? All those concepts still apply but since we were looking at a linear space the space itself matched the tangent hyperplane. The point of the triple of examples above is just to constraint the nature of the equation \(g = 0 \) in various contexts. We find the dimension of the ambient space changes the dimension of the level set. Basically, we have one equation \(g = 0 \) and \(n \)-unknowns then the inverse image of zero gives us a \((n-1)\)-dimensional manifold. If we wanted to obtain a \(n-2 \) dimensional manifold then we would need two equations which were independent. Before we get to that perhaps I should give a curvy example.

Example 8.2.4. Let \(g : \mathbb{R}^4 \to \mathbb{R} \) be defined by \(g(x, y, z, t) = t + x^2 + y^2 - 2z^2 \) note that \(g(x, y, z, t) = 0 \) gives a three dimensional subset of \(\mathbb{R}^4 \), let’s call it \(M \). Notice \(\nabla g = < 2x, 2y, -4z, 1 > \) is nonzero everywhere. Let’s focus on the point \((2, 2, 1, 0)\) note that \(g(2, 2, 1, 0) = 0 \) thus the point is on \(M \). The tangent plane at \((2, 2, 1, 0)\) is formed from the union of all tangent vectors to \(g = 0 \) at the point \((2, 2, 1, 0)\). To find the equation of the tangent plane we suppose \(\gamma : \mathbb{R} \to M \) is a curve with \(\gamma' \neq 0 \) and \(\gamma(0) = (2, 2, 1, 0) \). By assumption \(g(\gamma(s)) = 0 \) since \(\gamma(s) \in M \) for all \(s \in \mathbb{R} \). Define \(\gamma'(0) = < a, b, c, d > \), we find a condition from the chain-rule applied to \(g \circ \gamma = 0 \) at \(s = 0 \),

\[
\frac{d}{ds} \left(g \circ \gamma(s) \right) = (\nabla g)(\gamma(s)) \cdot \gamma'(s) = 0 \quad \Rightarrow \quad \nabla g(2, 2, 1, 0) \cdot < a, b, c, d > = 0
\]

\[
\Rightarrow \quad < 4, 4, -4, 1 > \cdot < a, b, c, d > = 0
\]

\[
\Rightarrow \quad 4a + 4b - 4c + d = 0
\]

Thus the equation of the tangent plane is \(4(x - 2) + 4(y - 2) - 4(z - 1) + t = 0 \). In invite the reader to find a vector in the tangent plane and check it is orthogonal to \(\nabla g(2, 2, 1, 0) \). However, this should not be surprising, the condition the chain rule just gave us is just the statement that \(< a, b, c, d > \in \text{Null}(\nabla g(2, 2, 1, 0)^T) \) and that is precisely the set of vector orthogonal to \(\nabla g(2, 2, 1, 0) \).

One more example before we dive into the theory of Lagrange multipliers. (which is little more than this section applied to word problems plus the powerful orthogonal complement theorem from linear algebra)

Example 8.2.5. Let \(G : \mathbb{R}^4 \to \mathbb{R}^2 \) be defined by \(G(x, y, z, t) = (z + x^2 + y^2 - 2, z + y^2 + t^2 - 2) \). In this case \(G(x, y, z, t) = (0, 0) \) gives a two-dimensional manifold in \(\mathbb{R}^4 \) let’s call it \(M \). Notice that \(G_1 = 0 \) gives \(z + x^2 + y^2 = 2 \) and \(G_2 = 0 \) gives \(z + y^2 + t^2 = 2 \) thus \(G = 0 \) gives the intersection of both of these three dimensional manifolds in \(\mathbb{R}^4 \) (no I can’t "see" it either). Note,

\[
\nabla G_1 = < 2x, 2y, 1, 0 > \quad \nabla G_2 = < 0, 2y, 1, 2t >
\]

It turns out that the inverse mapping theorem says \(G = 0 \) describes a manifold of dimension 2 if the gradient vectors above form a linearly independent set of vectors. For the example considered here the gradient vectors are linearly dependent at the origin since \(\nabla G_1(0) = \nabla G_2(0) = (0, 0, 1, 0) \).
In fact, these gradient vectors are colinear along along the plane \(x = t = 0 \) since \(\nabla G_1(0, y, z, 0) = \nabla G_2(0, y, z, 0) = \langle 0, 2y, 1, 0 \rangle \). We again seek to contrast the tangent plane and its normal at some particular point. Choose \((1, 1, 0, 1)\) which is in \(M \) since \(G(1, 1, 0, 1) = (0 + 1 + 1 - 2, 0 + 1 + 1 - 2) = (0, 0) \). Suppose that \(\gamma : \mathbb{R} \to M \) is a path in \(M \) which has \(\gamma(0) = (1, 1, 0, 1) \) whereas \(\gamma'(0) = \langle a, b, c, d \rangle \). Note that \(\nabla G_1(1, 1, 0, 1) = \langle 2, 2, 1, 0 \rangle \) and \(\nabla G_2(1, 1, 0, 1) = \langle 0, 2, 1, 1 \rangle \).

Applying the chain rule to both \(G_1 \) and \(G_2 \) yields:

\[
(G_1 \circ \gamma)'(0) = \nabla G_1(\gamma(0)) \cdot \langle a, b, c, d \rangle = 0 \quad \Rightarrow \quad \langle 2, 2, 1, 0 \rangle \cdot \langle a, b, c, d \rangle = 0
\]

\[
(G_2 \circ \gamma)'(0) = \nabla G_2(\gamma(0)) \cdot \langle a, b, c, d \rangle = 0 \quad \Rightarrow \quad \langle 0, 2, 1, 1 \rangle \cdot \langle a, b, c, d \rangle = 0
\]

This is two equations and four unknowns, we can solve it and write the vector in terms of two free variables correspondant to the fact the tangent space is two-dimensional. Perhaps it’s easier to use matrix techiques to organize the calculation:

\[
\begin{bmatrix}
2 & 2 & 1 & 0 \\
0 & 2 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
a \\
b \\
c \\
d
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0
\end{bmatrix}
\]

We calculate, \(\text{rref} \begin{bmatrix}
2 & 2 & 1 & 0 \\
0 & 2 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & -1/2 \\
0 & 1 & 1/2 & 1/2
\end{bmatrix} \). It’s natural to chose \(c, d \) as free variables then we can read that \(a = d/2 \) and \(b = -c/2 - d/2 \) hence

\[
\langle a, b, c, d \rangle = \langle d/2, -c/2 - d/2, c, d \rangle = \frac{d}{2} < 0, -1, 2, 0 > + \frac{d}{2} < 1, -1, 0, 2 >
\]

We can see a basis for the tangent space. In fact, I can give parametric equations for the tangent space as follows:

\[
X(u, v) = (1, 1, 0, 1) + u < 0, -1, 2, 0 > + v < 1, -1, 0, 2 >
\]

Not surprisingly the basis vectors of the tangent space are perpendicular to the gradient vectors \(\nabla G_1(1, 1, 0, 1) = \langle 2, 2, 1, 0 \rangle \) and \(\nabla G_2(1, 1, 0, 1) = \langle 0, 2, 1, 1 \rangle \) which span the normal plane \(N_p \) to the tangent plane \(T_p \) at \(p = (1, 1, 0, 1) \). We find that \(T_p \) is orthogonal to \(N_p \). In summary \(T_p^\perp = N_p \) and \(T_p \oplus N_p = \mathbb{R}^4 \). This is just a fancy way of saying that the normal and the tangent plane only intersect at zero and they together span the entire ambient space.

Remark 8.2.6.

The reason I am bothering with these seemingly bizarre examples is that the method of Lagrange multipliers comes down to the observation that both the constraint and objective function’s gradient vectors should be normal to the tangent plane of the constraint surface. This means they must both reside in the normal to the tangent plane and hence they will either be colinear or for several constraints they will be linearly dependent. The geometry we consider here justifies the method. Linear algebra supplies the harder part which is that if two vectors are both orthogonal to the tangent plane then they must both be in the orthogonal complement to the tangent plane. The heart of the method of Lagrange multipliers is the orthogonal complement theory from linear algebra. Of course, you can be heartless and still successfully apply the method of Lagrange.
8.3 Lagrange multiplier method for one constraint
8.4 Lagrange multiplier method for several constraints
Chapter 9

theory of differentiation

In the last chapter I began by announcing I would apply the central theorems of this course to solve interesting applied problems. If you remembered that I said that you may be a bit perplexed after completing the preceding chapter. Where did we use these theorems? It would seem we mostly just differentiated and pulled a magic λ from the thin air. Where did we use the inverse or implicit mapping theorems? It’s subtle. These theorems go to the existence of a mapping, or the solution of a system of equations. Often we do not even care about finding the inverse or solving the system. The mere existence justifies other calculations we do make explicit. In this chapter I hope to state the inverse and implicit function theorems carefully. I leave the complete proofs for Edward’s text, we will just discuss portions of the proof. In particular, I think it’s worthwhile to discuss Newton’s method and the various generalizations which reside at the heart of Edward’s proof. In contrast, I will take it easy on the analysis. The arguments given in Edward’s generalize easily to the infinite dimensional case. I do think there are easy arguments but part of his game-plan is set-up the variational calculus chapter which is necessarily infinite-dimensional. Finally, I conclude this chapter by examining a few examples of constrained partial differentiation.

9.1 Newton’s method for solving the insolvable

I’ll begin with a quick review of Newton’s method for functions.

Problem: given a function $f: \mathbb{R} \to \mathbb{R}$ which is continuously differentiable on $[a, b]$ and $f(a) < 0 < f(b)$ with $f'(x) > 0$ for each $x \in [a, b]$ **how** can we find the solution to $f(x) = 0$ w.r.t. the interval $[a, b]$?

Solution: Newton’s Method. In a nutshell, the idea is to guess some point in $x_o \in [a, b]$ and then replace the function with the tangent line to $(x_o, f(x_o))$. Then we can easily calculate the zero of the tangent line through elementary algebra.

$$y = L_f^x(x) = f(x_o) + f'(x_o)(x - x_o) = 0 \quad \Rightarrow \quad x = x_o - \frac{f(x_o)}{f'(x_o)}$$
Now, this is just the first approximation, we can apply the idea again to our new guess \(x_1 = x_o \); that is define \(x_1 = x_o - \frac{f(x_o)}{f'(x_o)} \) and think of \(x_1 \) as our new "\(x_o \)". The zero of the tangent line to \((x_1, f(x_1))\) is called \(x_2 \) and we can calculate,

\[
y = L^{x_1}_{f'}(x) = f(x_1) + f'(x_1)(x - x_1) = 0 \Rightarrow x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}
\]

Notice that if \(f(x_1) = 0 \) then we found the zero and the method just gives \(x_2 = x_1 \). The idea then is to continue in this fashion and define the \(n \)-th guess iteratively by

\[
\text{Newton’s Method:} \quad x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
\]

If for some particular \(n \) we actually find the exact value of the zero then the iteration just stays on that value. Otherwise, it can be shown that \(\lim_{n \to \infty} x_n = x^* \) where \(f(x^*) = 0 \).

This is the simplest form of Newton’s method but it is also perhaps the hardest to code. We’d have to calculate a new value for the derivative for each step. Edwards gives two modifications of the method and proves convergence for each.

\[
\text{Modified Newton Methods:} \quad
\begin{align*}
1. \quad x_{n+1} &= x_n - \frac{f(x_n)}{M} \quad \text{where we know } 0 < m < f'(x) < M. \\
2. \quad x_{n+1} &= x_n - \frac{f(x_n)}{f'(a)} \quad \text{where we know } f'(a) \neq 0.
\end{align*}
\]

In case (1.) Edwards uses the concept of a contraction mapping to prove that the sequence converges and he even gives an estimate to bound the error of the guess (see Theorem 1.2 on pg. 164). Then he cautions against (2.) because it is possible to have Fig. 3.2 on pg. 162 occur, in other words if we guess badly to begin we might never find the root \(x^* \). The remedy is fairly simple, you just look on smaller intervals. For (2.) he states the result concretely only in a local case (see Theorem 1.3 on pg. 165). I actually have only stated a particular case of his Theorem since I have made \(b = 0 \). The proof of the inverse function theorem builds from method (2.) but I’ll give an example of (1.) because it’s interesting and it should help make this whole discussion a little more tangible.
Example 9.1.1.

In case (2.) we can actually solve the equation \(f(x) = y \) for a given value \(y \) close to \(b \) provided \(f(a) = b \) and \(f'(a) \neq 0 \). The idea here is just to replace the function at \((x_0, f(x_0)) \) with the line \(L(x) = f(x_0) + f'(a)(x-x_0) \) and then we solve \(L(x) = y \) to obtain \(x = x_0 - \frac{f(x_0) - y}{f'(a)} \). Note here we use the slope from the point \((a,b)\) throughout the iteration, in particular we say \(x_1 = x \) and start iterating as usual: \(x_{n+1} = x_n - \frac{f(x_n) - y}{f'(a)} \) (see Theorem 1.3 on pg. 165 in Edwards for proof this converges).

Problem: given a function \(f : \mathbb{R} \to \mathbb{R} \) which is continuously differentiable near \(a \) and \(f'(a) \neq 0 \), can we find a function \(g \) such that \(f(g(y)) = y \) for \(y \) near the image \(f(a) \)?

Solution: Modified Newton’s Method. we seek to solve \(f(g(y)) = y \) for \(y \) in some neighborhood of \(a \), simply define \(g_o(y) = a \) and apply the method

\[
g_{n+1}(y) = g_n(y) - \frac{f(g_n(y)) - y}{f'(a)}
\]

Notice this can be done for each \(y \) near \(f(a) \), in other words, we have a sequence of functions \(\{g_n\}_{n=0}^{\infty} \). Moreover, if we take \(n \to \infty \) this sequence uniformly converges to an exact solution \(g \). This gives us an iterative way to construct local inverse functions for some given continuously differentiable function at a point \(a \) such that \(f'(a) \neq 0 \).

The idea of convergence of functions begs the question of what precisely is the "length" or "norm" of a function. Again, I postpone such discussion until the very end of the course. For now just accept that the idea of convergence of sequences of functions is well defined and intuitively it just means that the sequence matches the limiting function as \(n \to \infty \). You encountered this idea in the discussion of Taylor series in calculus II, one can ask whether the sequence of Taylor polynomials for \(f \) does converge to \(f \) relative to some interval of convergence.
The calculations that follow here amaze me.

Example 9.1.2.

Example 9.1.3.

It would be interesting to implement this algorithm in Mathematica.
9.1. NEWTON’S METHOD FOR SOLVING THE INSOLVABLE

9.1.1 local solutions to level curves

Next, we try a similar technique to solve equations of the form $G(x, y) = 0$. You should recall that the solution set of $G(x, y) = 0$ is called a **level curve**. Usually we cannot make a global solution for y; in other words, there does not exist $f(x)$ such that $G(x, f(x)) = 0$ for all x in the solution set of G. For example, $G(x, y) = x^2 + y^2 - 1$ allows us to cast the unit circle as the solution set of the equation $G(x, y) = 0$. But, the unit circle is not the graph of a single function since it fails the vertical line test. Instead we need a pair of functions to cover the circle. Generally the situation can get quite complicated. Let’s pause to notice there are two points where we cannot find a solution to $G(x, y) = 0$ on an open disk about the point: these points are $(−1, 0)$ and $(1, 0)$. We have trouble at the vertical tangents, note $G_y(x, y) = 2y$ has $G_y(−1, 0) = G_y(1, 0) = 0$.

Idea: use the Newton’s method approach to find solution, however, the approach here is slightly indirect. We’ll use the mean value theorem to replace a function with its tangent line. Consider a fixed x_* near a then we have an function of y alone: $h(y) = G(x_*, y)$. Apply the mean value theorem to h for a y-value y_* such that point (x_*, y_*) has $G(x_*, y_*) = 0$, $G_y(x_*, b) = G_y(x_*, y_*) - G_y(x_*, b) y_* - b = -G(x_*, b)$.

We can solve for y_* to obtain: $y_* = b - \frac{G(x_*, b)}{G_y(x_*, b)}$.

Define $f_o(x) = b$ and define $f_1(x)$ by $f_1(x) = f_o(x) - \frac{G(x, f_o(x))}{G_y(x, f_o(x))}$ and $f_2(x) = f_1(x) - \frac{G(x, f_1(x))}{G_y(x, f_1(x))}$ and so forth...

Fortunately, Edwards proves we can use an easier formula where the denominator is replaced with $G_y(a, b)$ which is pretty close to the formula we have above provided the point considered is close to (a, b).

Theorem 9.1.4. *(Theorem 1.4 in Edwards’s Text)*

Let $G : \mathbb{R}^2 \to \mathbb{R}$ be continuously differentiable and (a, b) a point such that $G(a, b) = 0$ and $G_y(a, b) \neq 0$ then we can find a function f on some closed interval J centered at a which covers the solution set of $G(x, y) = 0$ near all points close to (a, b). Moreover, this **local solution** is the limit of the sequence of functions inductively defined below:

$f_o(x) = b$ and $f_{n+1}(x) = f_n(x) - \frac{G(x, f_n(x))}{G_y(a, b)}$

for all $n \in \mathbb{N}$. **We can calculate solutions iteratively!**

¹yes, if we used closed disks then we could find a solution on a disk where $(-1, 0)$ or $(1, 0)$ was on the boundary, the point of the discussion is to motivate the implicit function theorem’s language
Look at Example 2 on page 170 for a nice straight-forward application of Theorem 1.4. Perhaps you’re not too excited by this example. Certainly, algebra solves the problem with ease anyway, we just have to take care with the algebraic steps. I intend for the next example to confound algebraic techniques and yet we can find an approximate solution:

Example 9.1.5. Let \(G(x, y) = \exp(x^2 + y^2) + x - e \). Notice that \(G(0, 1) = 0 \) and \(G_y(0, 1) = 2 \). Apply the algorithm:

\[
\begin{align*}
 f_0(x) &= 1 \\
 f_1(x) &= 1 - \frac{1}{2}G(x, 1) = 1 - \frac{1}{2} (\exp(x^2 + 1) + x - e) \\
 f_2(x) &= f_1(x) - \frac{1}{2} [\exp(x^2 + [f_1(x)]^2) + x - e]
\end{align*}
\]

I’d go on but it just gets ugly. What is neat is that

\[
y = f_1(x) = 1 - \frac{1}{2} (\exp(x^2 + 1) + x - e)
\]

gives an approximation of a local solution of \(\exp(x^2 + y^2) + x - e = 0 \) for points near \((0, 1)\).

Example 9.1.6. Let \(G(x, y) = x^2 + y^2 + y - 1 \) note \(G_y = 2y + 1 \). Note that \(G(1, 0) = 0 \) and \(G_y(1, 0) = 1 \). Calculate the local solution by the algorithm:

\[
\begin{align*}
 f_0(x) &= 0 \\
 f_1(x) &= 0 - G(x, 0) = 1 - x^2 \\
 f_2(x) &= 1 - x^2 - G(x, 1 - x^2) = x^2 - x^4 \\
 f_3(x) &= x^2 - x^4 - G(x, x^2 - x^4) = 1 - x^2 - x^4 + 2x^6 - x^8
\end{align*}
\]

Now, these formulas are somewhat bizarre because we are writing an approximation centered at \(x = 1 \) as polynomials centered at zero. It is probable that a nicer pattern emerges if we were to write all of these as polynomials in \((x - 1)\). Notice that \(f_n(1) = 0 \) for \(n = 0, 1, 2, 3 \).

Example 9.1.7. Let \(G(x, y) = x^2 + y^2 + y - 2 \) note \(G_y = 2y + 1 \). Note that \(G(0, 1) = 0 \) and \(G_y(0, 1) = 3 \). Calculate the local solution by the algorithm:

\[
\begin{align*}
 f_0(x) &= 1 \\
 f_1(x) &= 1 - \frac{1}{3}G(x, 1) \\
 &= 1 - \frac{1}{3}x^2 \\
 f_2(x) &= 1 - \frac{1}{3}x^2 - G(x, 1 - \frac{1}{3}x^2) \\
 &= 1 - \frac{1}{3}x^2 - [x^2 + (1 - \frac{1}{3}x^2)^2 + (1 - \frac{1}{3}x^2) - 2] \\
 &= 1 - \frac{1}{3}x^2 - \frac{1}{3}x^4
\end{align*}
\]

Note how the approximation unfolds order by order when the center matches the format in which we write the expansion.
If the center \(a \neq 0 \) then what can happen is that the terms of a particular order get spread across all orders in the Newton’s Method approximation. I’ve found the expansions generated from the Newton’s method are not easy to write in a nice form in general... of course, this shouldn’t be that surprising, the method just gave us a way to solve problems that defy closed-form algebraic solution.

9.1.2 from level surfaces to graphs

In the preceding section we found that \(G(x, y) = 0 \) could be understood as a graph of a function of a single variable locally, in other words we found a 1-manifold. When we have an equation of \(n \)-variables it will likewise find \((n-1) \) free variables. This means that \(G(x, y, z) = x^2 + y^2 + z^2 - 1 = 0 \) gives us a level-surface (the sphere), or \(G(t, x, y, z) = -t^2 + x^2 + y^2 + z^2 = 0 \) gives a level-volume (the light cone). If we can solve the equation \(G(x_1, x_2, \ldots, x_n) \) for \(x_j \) then we say we have re-written the level surface as a graph. This is important because graphs are a special case of a parametrized manifold, the parametric formalism allows us to set-up integrals over higher-dimensional surfaces and so forth. These things will become clearer when we study integration of differential forms later in this course. I state Theorem 1.5 in Edwards here for completeness. The essential point is this, if \(\nabla G(p) \neq 0 \) then there exists \(j \) such that \(\frac{\partial G}{\partial x_j}(p) \neq 0 \) and we can solve for \(x_j \) by using basically the same the iterative process we just worked out in the \(n = 2 \) case in the preceding subsection.

Theorem 9.1.8. *(Theorem 1.5 in Edwards’s Text)*

Let \(G : \mathbb{R}^n \to \mathbb{R} \) be continuously differentiable and \(p = (a_1, a_2, \ldots, a_n) \) a point such that \(G(p) = 0 \) and \(G_j(p) \neq 0 \) then we can find a function \(f \) on some closed interval \(J \) centered at \(a_j \) which covers the solution set of \(G(x_1, x_2, \ldots, x_n) = 0 \) near all points close to \(p \). Moreover, this local solution is the limit of the sequence of multivariate functions inductively defined below:

\[
 f_0(\bar{x}) = a_j \quad \text{and} \quad f_{n+1}(\bar{x}) = f_n(\bar{x}) - \frac{G(x_1, \ldots, f(\bar{x}), \ldots, x_n)}{G_{x_j}(p)}
\]

for all \(n \in \mathbb{N} \). If \(f = \lim_{n \to \infty} f_n \) then \(G(x_1, \ldots, f(\bar{x}), \ldots, x_n) = 0 \) for points near \(p \).

Something interesting happens when we apply this theorem to examples which allow explicit closed-form algebraic solution.

Example 9.1.9. Consider \(G(x, y, z) = x + y + 2z - 4 = 0 \). Note that \(G_z = 2 \neq 0 \) and \(G(1, 1, 1) = 0 \).

Apply the algorithm:

\[
 f_0(x, y) = 1 \\
 f_1(x, y) = 1 - \frac{1}{2}G(x, y, 1) = 1 - \frac{1}{2}(x + y + 2 - 4) = -\frac{1}{2}(x + y - 4) \\
 f_2(x, y) = -\frac{1}{2}(x + y - 4) - \frac{1}{2}G(x, y, -\frac{1}{2}(x + y - 4)) = f_1(x, y)
\]

You can clearly see that \(f_n = f_1 \) for all \(n \geq 1 \) thus \(\lim_{n \to \infty} f_n = f_1 \). In other words, we found the exact solution is \(z = -\frac{1}{2}(x + y - 4) \).

\(^2\)physically this represents the border of the spacetime which we can interact with in the future or the past, granting that special relativity actually describes nature without exception...
CHAPTER 9. THEORY OF DIFFERENTIATION

You might wonder if this just happened because the preceding example was linear, in fact, it has little to do with it. Here’s another easy example,

Example 9.1.10. Consider $G(x, y, z) = x^2 + y^2 - z = 0$. Note that $G_z = -1 \neq 0$ and $G(0, 0, 0) = 0$. Apply the algorithm:

$$
\begin{align*}
 f_0(x, y) &= 0 \\
 f_1(x, y) &= 0 + G(x, y, 0) = x^2 + y^2 \\
 f_2(x, y) &= x^2 + y^2 + G(x, y, x^2 + y^2) = x^2 + y^2 + [x^2 + y^2 - (x^2 + y^2)] = f_1(x, y)
\end{align*}
$$

You can clearly see that $f_n = f_1$ for all $n \geq 1$ thus $\lim_{n \to \infty} f_n = f_1$. In other words, we found the exact solution is $z = x^2 + y^2$.

Part of the reason both of the preceding examples were easy is that the solutions were not just local solutions, in fact they were global. When the solution is the level surface equation breaks up into cases it will be more complicated.

Example 9.1.11. Suppose $G(x, y, z) = \sin(x + y - z) = 0$ then solutions must satisfy $x + y - z = n\pi$ for $n \in \mathbb{Z}$. In other words, the algorithm ought to find $z = x + y - n\pi$ where the choice of n depends on the locality we seek a solution. This level-set is actually a whole family of disconnected parallel planes. Let’s see how the algorithm deals with this, feed it $(0, 0, 2\pi)$ as the starting point (this ought to select the $n = -2$ surface. Apply the algorithm to $G(x, y, z) = \sin(x + y - z)$ where clearly $G(0, 0, 2\pi) = 0$ and $G_z = -\cos(-2\pi) = -1$ hence:

$$
\begin{align*}
 f_0(x, y) &= 2\pi \\
 f_1(x, y) &= 2\pi + G(x, y, 2\pi) = 2\pi + \sin(x + y + 2\pi) = 2\pi + \sin(x + y) \\
 f_2(x, y) &= 2\pi + \sin(x + y) + \sin(x + y + \sin(x + y)) \\
 f_3(x, y) &= 2\pi + \sin(x + y) + \sin(x + y + \sin(x + y)) + \sin(x + y + \sin(x + y) + \sin(x + y + \sin(x + y)))
\end{align*}
$$

I deem these formulas weird. Perhaps I can gain some insight by expanding f_1,

$$
 f_1(x, y) = 2\pi + x + y - \frac{1}{3!}(x + y)^3 + \cdots
$$

I’m a little scared to look at f_2. There must be some sort of telescoping that happens in order for us to obtain the real solution of $z = x + y + 2\pi$.

It’s not at all obvious to me how the formula above telescopes in the limit that $n \to \infty$. However, unless I’m missing something or making a silly mistake, it seems clear that G is continuously differentiable at $(0, 0, 2\pi)$ and $G_z(0, 0, 2\pi) \neq 0$. Therefore, Theorem 1.5 applies and the sequence of function f_n should uniformly converge to the solution we know exists through direct argument in this example. Anyway, my point in this section is not to make a blanket endorsement that you solve all equations by the algorithm. I am merely trying to illustrate how it works.
9.2 inverse and implicit mapping theorems

In the preceding section we began by motivating the inverse function theorem for functions of one variable. In short, if the derivative is nonzero at a point then the function is 1-1 when restricted to a neighborhood of the point. Newton’s method, plus a bunch of careful analysis about contraction mappings which we skipped this semester, then gave an algorithm to calculate the local inverse for a function of one variable. After that we essentially applied the local inverse idea to the problem of solving a level curve $G(x, y) = 0$ locally for an explicit solution of y. The result that such a solution is possible near points where $G_y \neq 0$ is known as the implicit function theorem. We then concluded by observing that almost the same mathematics allowed us to find an explicit solution of $G(x_1, \ldots, x_{n+1}) = 0$ for one of the variables provided the partial derivative in that direction was nonzero. This result is also called the implicit function theorem. We used these theorems implicitly when I pulled parametrizations from my imagination, typically it is the implicit function theorem that justifies such a step. Moreover, to insist $\nabla g(p) \neq 0$ means that there exists at least one partial derivative nonzero so the implicit function theorem applies. All of that said, this section is basically the same story again. Difference is we have to deal with a little extra notation and linear algebra since a mapping is actually an ensemble of functions dealt with at once.

9.2.1 inverse mapping theorem

Suppose $f : \mathbb{R}^n \to \mathbb{R}^n$ has an inverse $f^{-1} = g$ then we have $f \circ g = \text{Id}$ so the chain rule yields $df \circ dg = d(\text{Id}) = \text{Id}$ since the identity is a linear map and hence it is its own best linear approximation. Note that we find that $f'g' = I_n$ thus $(f')^{-1} = g'$ or in other notation $[f']^{-1} = [f^{-1}]'$. With this in mind we wish to find a formula to calculate the inverse function. The definition seems like a good place to start:

$$f(g(y)) = y \Rightarrow g(y) = f^{-1}(y)$$

$$\Rightarrow g(y) \approx g(f(a)) + g'(a)[y - f(a)]$$

$$\Rightarrow g(y) \approx a + [f'(a)]^{-1}[y - f(a)]$$

$$\Rightarrow g_1(y) = g_o(y) + [f'(a)]^{-1}[y - f(g_o(y))] \text{ where } g_o(y) = a$$

$$\Rightarrow g_{n+1}(y) = g_n(y) + [f'(a)]^{-1}[y - f(g_n(y))] \text{ where } g_o(y) = a$$

Theorem 9.2.1. (Theorem 3.3 in Edwards’s Text see pg 185)

Suppose $f : \mathbb{R}^n \to \mathbb{R}^n$ is continuously differentiable in an open set W containing a and the derivative matrix $f'(a)$ is invertible. Then f is locally invertible at a. This means that there exists an open set $U \subseteq W$ containing a and V a open set containing $b = f(a)$ and a one-one, continuously differentiable mapping $g : V \to W$ such that $g(f(x)) = x$ for all $x \in U$ and $f(g(y)) = y$ for all $y \in V$. Moreover, the local inverse g can be obtained as the limit of the sequence of successive approximations defined by

$$g_o(y) = a \text{ and } g_{n+1}(y) = g_n(y) - [f'(a)]^{-1}[f(g_n(y)) - y]$$

for all $y \in V$.
Notice this theorem gives us a way to test coordinate mappings for invertibility, we can simply calculate the derivative matrix then calculate its determinant to check to see it is nonzero to insure invertibility and hence the local invertibility of the coordinate map. There still remains the danger that the mapping doubles back to the same value further out so if we insist on a strict one-one correspondent then more analysis is needed to make sure a given transformation is indeed a coordinate system. (see Ex 1 on pg. 183 for a function which is everywhere locally invertible and yet not an injective mapping)

Example 9.2.2.

Example 9.2.3.
9.2. INVERSE AND IMPLICIT MAPPING THEOREMS

9.2.2 implicit mapping theorem

Let me begin by stating the problem we wish to consider:

Given continuously differentiable functions G_1, G_2, \ldots, G_n

\[
G_1(x_1, \ldots, x_m, y_1, \ldots, y_n) = 0 \\
G_2(x_1, \ldots, x_m, y_1, \ldots, y_n) = 0 \\
\vdots \\
G_n(x_1, \ldots, x_m, y_1, \ldots, y_n) = 0
\]

Locally solve y_1, \ldots, y_n as functions of x_1, \ldots, x_m. That is, find a mapping $\mathcal{h} : \mathbb{R}^m \rightarrow \mathbb{R}^n$ such that $G(x, y) = 0$ iff $y = \mathcal{h}(x)$ near some point $(a, b) \in \mathbb{R}^{m+n}$ such that $G(a, b) = 0$. In this section we use the notation $x = (x_1, x_2, \ldots, x_m)$ and $y = (y_1, y_2, \ldots, y_n)$.

It is convenient to define partial derivatives with respect to a whole vector of variables,

\[
\frac{\partial G}{\partial x} = \begin{bmatrix}
\frac{\partial G_1}{\partial x_1} & \cdots & \frac{\partial G_1}{\partial x_m} \\
\vdots & \ddots & \vdots \\
\frac{\partial G_n}{\partial x_1} & \cdots & \frac{\partial G_n}{\partial x_m}
\end{bmatrix} \quad \frac{\partial G}{\partial y} = \begin{bmatrix}
\frac{\partial G_1}{\partial y_1} & \cdots & \frac{\partial G_1}{\partial y_m} \\
\vdots & \ddots & \vdots \\
\frac{\partial G_n}{\partial y_1} & \cdots & \frac{\partial G_n}{\partial y_m}
\end{bmatrix}
\]

Consider $h : \mathbb{R}^m \rightarrow \mathbb{R}^n$ such that $G(x, y) = 0$ iff $y = h(x)$ near some point $(a, b) \in \mathbb{R}^{m+n}$ such that $G(a, b) = 0$. In other words, suppose $G(x, h(x)) = 0$. The chain rule reads:

\[
0 = \frac{\partial G}{\partial x} + \frac{\partial G}{\partial y} h'(x)
\]

Or, provided the matrix \(\frac{\partial G}{\partial y}\) is invertible we can calculate,

\[
h'(x) = -\left(\frac{\partial G}{\partial y}\right)^{-1} \frac{\partial G}{\partial x}
\]

Theorem 9.2.4. *(Theorem 3.4 in Edwards’s Text see pg 190)*

Let $G : \mathbb{R}^{n+m} \rightarrow \mathbb{R}^n$ be continuously differentiable in a open ball about the point (a, b) where $G(a, b) = 0$. If the matrix \(\frac{\partial G}{\partial y}(a, b)\) is invertible then there exists an open ball U containing a in \mathbb{R}^m and an open ball W containing (a, b) in \mathbb{R}^{n+m} and a continuously differentiable mapping $h : U \rightarrow \mathbb{R}^n$ such that $G(x, y) = 0$ iff $y = h(x)$ for all $(x, y) \in W$. Moreover, the mapping h is the limit of the sequence of successive approximations defined inductively below

\[
h_0(x) = b, \quad h_{n+1} = h_n(x) - \left[\frac{\partial G}{\partial y}(a, b)\right]^{-1} G(x, h_n(x))
\]

for all $x \in U$.
I have given barely enough details to understand the notation here. If you read pages 188-194 of Edwards you can have a much deeper understanding. I will not attempt to recreate his masterpiece here. One important notation I should mention is the so-called Jacobian of G with respect to y. It is the determinant of the partial derivative matrix $\frac{\partial G}{\partial y}$ which is denoted $\det \frac{\partial G}{\partial y} = \partial(G_1, G_2, ..., G_n) \frac{\partial}{\partial (y_1, y_2, ..., y_n)}$. This gives us an easy criteria to check on the invertibility of $\frac{\partial G}{\partial y}$. Note that if this Jacobian is nonzero then we may judge the level set $G(x, y) = 0$ is an n-dimensional space since it is in one-one correspondence of some open ball in \mathbb{R}^n.

Remark 9.2.5.

You may recall the strange comments in red from my section 6.2. I discussed the rank of various derivative matrices. In this section we put the free variables (x) at the start of the list and the dependent variables (y) at the end, however, this is just a notational choice. In practice if we can select any set of n-variables for $G(z_1, z_2, ..., z_{m+n}) = 0$ such that $\det[G_{i_1} | G_{i_2} | \cdots | G_{i_n}] \neq 0$ then we can solve for z_{i_1}, \ldots, z_{i_n} in terms of the remaining variables. Thus, in retrospect, showing full rank of the derivative matrix could justifies the local invertibility of certain mappings.

Example 9.2.6.

Example 9.2.7.
9.3 implicit differentiation

Enough theory, let’s calculate. In this section I apply previous theoretical constructions to specific problems. I also introduce standard notation for ”constrained” partial differentiation which is also sometimes called ”partial differentiation with a side condition”.

Example 9.3.1.

Example 9.3.2.

Example 9.3.3.
Example 9.3.4.

Example 9.3.5.
Example 9.3.6.

Example 9.3.7.
Chapter 10

introduction to manifold theory

In this chapter I intend to give you a fairly accurate account of the modern definition of a manifold. In a nutshell, a manifold is simply a set which allows for calculus locally. Alternatively, many people say that a manifold is simply a set which is locally "flat", or it locally "looks like \mathbb{R}^n".

Definition 10.0.8.

Let M be a set. Suppose $U_i \subseteq M$ for $i \in \Lambda$ (we call Λ the index set, it could be finite or infinite in principle). We call $A = \{U_i \mid i \in \Lambda\}$ a covering of M if the union of the sets in A covers M; that is $\bigcup_{i \in \Lambda} U_i = M$.

To construct an n-dimensional manifold we’ll need a covering where each of the sets comes paired with an injective mapping into \mathbb{R}^n. In particular,

Definition 10.0.9.

We call (U, x_U) a coordinate chart of M iff U is connected and $U \subset M$ and $x_U : U \to \mathbb{R}^n$ is a 1-1 mapping. If (U, x_U) and (V, x_V) are coordinate charts of M with $U \cap V \neq \emptyset$ then we say they are compatible charts iff the transition function $x_U \circ x_V^{-1} : x_V(U \cap V) \to x_U(U \cap V)$ is a smooth mapping. Here the term smooth means that the derivative matrix of $x_U \circ x_V^{-1}$ has component functions which have continuous partial derivatives of arbitrary order. If the sets of two coordinate charts do not overlap then they are also said to be compatible.

The condition that the transition functions be smooth is just one choice. In principle one can build manifolds with transition charts that have weaker conditions.

Definition 10.0.10.

A collection of compatible coordinate charts whose sets form a covering of M is called an atlas of M. If \mathcal{A} is an atlas for M then we say \mathcal{A}_o is the maximal atlas containing \mathcal{A} if it contains all coordinate charts of M which are compatible with the charts in \mathcal{A}. A maximal atlas for M is called a differentiable structure on M.

Usually if you can prove something relative to an atlas for M it follows that the theorem likewise holds for the maximal atlas containing your atlas.
Definition 10.0.11.

A set M together with a differentiable structure is called a **manifold**. If the coordinate charts in the maximal atlas of M map to \mathbb{R}^n then M is n-dimensional.

You may have noticed I did not stipulate that M was a subset of \mathbb{R}^m. In fact, in principle at least, a manifold can be an abstract set. Certain sets of functions or matrices form manifolds for example. It turns out that any n-dimensional manifold is in 1-1 correspondance with some subset of \mathbb{R}^m for some $m \geq n$. This theorem is due to Hassler Whitney who was one of the major contributors to the modern definition I have given in this chapter, I think this theorem is from the 1950’s but I haven’t found a concrete reference at this time. The conversation in mathematics that led to the concept of a manifold probably began with Riemann who dreamed in the mid nineteenth century of unifying both gravitation and electromagnetism. His goal is still unrealized by any physically verified theory. Around 1920, Kaluza and Klein pioneered the idea of attaching tiny circles to spacetime, it turns out this gives the equations of electromagnetism and gravity. However, there are other unphysical consequences of Kaluza Klein theory so it cannot be simply implemented. String theory incorporates aspects of Kaluza Klein theory, the basic idea is that the shape of spacetime has a symmetry which gives rise to both the physical interactions and particles that we observe. All I’m trying to get across here is that manifolds play a central role in the modern theory of physics. That is where my interest in manifolds first arose, I wanted to understand Einstein’s General Relativity.

In calculus III we do line integrals along curves and surface integrals over surfaces. For the line integral we need a parametrization of the curve and for the surface integral we need the parametrization of the surface. A curve is one-dimensional manifold whereas a surface is a two-dimensional manifold. The parametrization of a curve goes opposite the direction of a coordinate chart, generally the inverse of a coordinate chart is called a **coordinate patch**. Coordinate patches are parametrizations. Much of classical differential geometry is written in terms of patches. For example, Gauss’ theorem on the intrinsic curvature of a surface is all in terms of the patches which define the surface.

Definition 10.0.12.

We say that $\Phi_i : V_i \subseteq \mathbb{R}^n \to M \subseteq \mathbb{R}^m$ are **regular patches** if they are 1-1 mappings with $\text{rank}(\Phi_i') = n$ for $i = 1, 2, \ldots, k$. Furthermore, suppose that the **regular patches** Φ_i are **differentially compatible** meaning that if $\Phi_i(U_i) \cap \Phi_j(U_j) = U_{ij} \neq \emptyset$ then $\Phi_j^{-1} \circ \Phi_i : \Phi_i^{-1}(U_{ij}) \to \Phi_j^{-1}(U_{ij})$ is a differentiable bijection. If $M = \bigcup_{i=1}^{k} \Phi_i(U_i)$ then we say $(M,\{\Phi_i\}_{i=1}^{k})$ defines a n-dimensional patched manifold in \mathbb{R}^m. If $\det(d(\Phi_j^{-1} \circ \Phi_i)(a)) > 0$ for all such i, j that $\Phi_i(U_i) \cap \Phi_j(U_j) \neq \emptyset$ and $a \in \Phi_i^{-1}(U_{ij})$ then we say that M is **orientable**.

I should warn you that we have three main methods to define a manifold. The patch definition given above corresponds to the so-called **parametric viewpoint** in calculus III. We also may use graphs and level sets to define a manifold in \mathbb{R}^n. These are complementary descriptions of the same object. See pages 196-200 of Edwards where he proves the definition we just gave follows from his graphical definition of a manifold. It turns out that the parametric definition is readily generalized to general abstract manifold theory.
10.1 manifolds defined by charts

Example 10.1.1. Let \(\mathcal{M} = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} \).

1. Let \(U_+ = \{(x, y) \in \mathcal{M} \mid y > 0\} = \text{dom}(\chi_+) \) and define \(\chi_+(x, y) = x \)

2. Let \(U_- = \{(x, y) \in \mathcal{M} \mid y < 0\} = \text{dom}(\chi_-) \) and define \(\chi_-(x, y) = y \)

3. Let \(U_R = \{(x, y) \in \mathcal{M} \mid x > 0\} = \text{dom}(\chi_R) \) and define \(\chi_R(x, y) = y \)

4. Let \(U_L = \{(x, y) \in \mathcal{M} \mid x < 0\} = \text{dom}(\chi_L) \) and define \(\chi_L(x, y) = y \)

The set of charts \(\mathcal{A} = \{(U_+, \chi_+), (U_-, \chi_-), (U_R, \chi_R), (U_L, \chi_L)\} \) forms an atlas on \(\mathcal{M} \) which gives the circle a differentiable structure. It is not hard to show the transition functions are smooth on the image of the intersection of their respect domains. For example, \(U_+ \cap U_R = W_{+R} = \{(x, y) \in \mathcal{M} \mid x, y > 0\} \), it’s easy to calculate that \(\chi_{-1}^+(x) = (x, \sqrt{1-x^2}) \) hence

\[
(\chi_R \circ \chi_{+1})(x) = \chi_R(x, \sqrt{1-x^2}) = \sqrt{1-x^2}
\]

for each \(x \in \chi_R(W_{+R}) \). Note \(x \in \chi_R(W_{+R}) \) implies \(0 < x < 1 \) hence it is clear the transition function is smooth. Similar calculations hold for all the other overlapping charts.

A cylinder is the Cartesian product of a line and a circle. In other words, we can create a cylinder by gluing a copy of a circle at each point along a line. If all these copies line up and don’t twist around then we get a cylinder. The example that follows here illustrates a more general pattern, we can take a given manifold an paste a copy at each point along another manifold by using a Cartesian product.

Example 10.1.2. Let \(\mathcal{M} = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\} \).

1. Let \(U_+ = \{(x, y, z) \in \mathcal{M} \mid y > 0\} = \text{dom}(\chi_+) \) and define \(\chi_+(x, y, z) = (x, z) \)

2. Let \(U_- = \{(x, y, z) \in \mathcal{M} \mid y < 0\} = \text{dom}(\chi_-) \) and define \(\chi_-(x, y, z) = (x, z) \)

3. Let \(U_R = \{(x, y, z) \in \mathcal{M} \mid x > 0\} = \text{dom}(\chi_R) \) and define \(\chi_R(x, y, z) = (y, z) \)

4. Let \(U_L = \{(x, y, z) \in \mathcal{M} \mid x < 0\} = \text{dom}(\chi_L) \) and define \(\chi_L(x, y, z) = (y, z) \)

The set of charts \(\mathcal{A} = \{(U_+, \chi_+), (U_-, \chi_-), (U_R, \chi_R), (U_L, \chi_L)\} \) forms an atlas on \(\mathcal{M} \) which gives the cylinder a differentiable structure. It is not hard to show the transition functions are smooth on the image of the intersection of their respect domains. For example, \(U_+ \cap U_R = W_{+R} = \{(x, y, z) \in \mathcal{M} \mid x, y > 0\} \), it’s easy to calculate that \(\chi_{-1}^+(x, z) = (x, \sqrt{1-x^2}, z) \) hence

\[
(\chi_R \circ \chi_{+1})(x, z) = \chi_R(x, \sqrt{1-x^2}, z) = (\sqrt{1-x^2}, z)
\]

for each \((x, z) \in \chi_R(W_{+R}) \). Note \((x, z) \in \chi_R(W_{+R}) \) implies \(0 < x < 1 \) hence it is clear the transition function is smooth. Similar calculations hold for all the other overlapping charts.
One of the exciting discoveries in manifold theory is that a particular set of points may have many different possible differentiable structures. This is why we say the manifold is a set together with a maximal atlas. The most familiar example of a manifold is just \mathbb{R}^2 or \mathbb{R}^3 itself. One may ask which coordinates are in the atlas which contains the standard Cartesian coordinate chart. The most commonly used charts other than Cartesian would probably be the spherical and cylindrical coordinate systems for \mathbb{R}^3 or the polar coordinate system for \mathbb{R}^2. Technically, certain restrictions must be made on the domain of these non-Cartesian coordinates if we are to correctly label them "coordinate charts". Interestingly, applications are greedier than manifold theorists, we do need to include those points in \mathbb{R}^n which spoil the injectivity of spherical or cylindrical coordinates. On the other hand, those bad points are just the origin and a ray of points which do not contribute noticeable in the calculation of a surface or volume integral.

I will not attempt to make explicit the domain of the coordinate charts in the following two examples (you might find them in a homework):

Example 10.1.3. Define $\chi_{\text{spherical}}(x, y, z) = (r, \theta, \phi)$ implicitly by the coordinate transformations

$$x = r \cos(\theta) \sin(\phi), \quad y = r \sin(\theta) \sin(\phi), \quad z = r \cos(\phi)$$

These can be inverted,

$$r = \sqrt{x^2 + y^2 + z^2}, \quad \theta = \tan^{-1}\left[\frac{y}{x}\right], \quad \phi = \cos^{-1}\left[\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right]$$

To show compatibility with the standard Cartesian coordinates we would need to select a subset of \mathbb{R}^3 for which $\chi_{\text{spherical}}$ is 1-1 and the since $\chi_{\text{Cartesian}} = \text{Id}$ the transition functions are just $\chi_{\text{spherical}}^{-1}$.

Example 10.1.4. Define $\chi_{\text{cylindrical}}(x, y, z) = (s, \theta, z)$ implicitly by the coordinate transformations

$$x = s \cos(\theta), \quad y = s \sin(\theta), \quad z = z$$

These can be inverted,

$$s = \sqrt{x^2 + y^2}, \quad \theta = \tan^{-1}\left[\frac{y}{x}\right], \quad z = z$$

You can take $\text{dom}(\chi_{\text{cylindrical}}) = \{(x, y, z) \mid 0 < \theta < 2\pi, \} - \{(0, 0, 0)\}$.
10.2 manifolds defined by patches

Example 10.2.1. A line is a one dimensional manifold with a global coordinate patch:
\[\vec{r}(t) = \vec{r}_o + t\vec{v} \]
for all \(t \in \mathbb{R} \). We can think of this as the mapping which takes the real line and glues it in \(\mathbb{R}^n \) along some line which points in the direction \(\vec{v} \) and the new origin is at \(\vec{r}_o \).

Example 10.2.2. A plane is a two dimensional manifold with a global coordinate patch: suppose \(\vec{A}, \vec{B} \) are any two linearly independent vectors in the plane, and \(\vec{r}_o \) is a particular point in the plane,
\[X(u,v) = \vec{r}_o + u\vec{A} + v\vec{B} \]
for all \((u,v) \in \mathbb{R}^2\). This amounts to pasting a copy of the xy-plane in \(\mathbb{R}^n \) where we moved the origin to \(\vec{r}_o \). If we just wanted a little parallelogram then we could restrict \((u,v) \in [0,1] \times [0,1]\), then we would envision that the unit-square has been pasted on to a parallelogram. Lengths and angles need not be maintained in this process of gluing.

Example 10.2.3. A cone is almost a manifold, define
\[X(t,z) = (z \cos(t), z \sin(t), z) \]
for \(t \in [0,2\pi] \) and \(z \geq 0 \). What two problems does this potential coordinate patch \(X \) suffer from?

Example 10.2.4. Let \(X(\theta, \gamma) = (\cos(\theta) \cosh(\gamma), \sin(\theta) \cosh(\gamma), \sinh(\gamma)) \) for \(\theta \in (0,2\pi) \) and \(\gamma \in \mathbb{R} \). This gives us a patch on the hyperboloid \(x^2 + y^2 - z^2 = 1 \).

Example 10.2.5. Let \(X(x,y,z,t) = (x,y,z,R \cos(t), R \sin(t)) \) for \(t \in (0,2\pi) \) and \((x,y,z) \in \mathbb{R}^3 \). This gives a copy of \(\mathbb{R}^3 \) inside \(\mathbb{R}^5 \) where a circle has been attached at each point of space in the two transverse directions of \(\mathbb{R}^5 \). You could imagine that \(R \) is nearly zero so we cannot traverse these extra dimensions.

Example 10.2.6. The following patch describes the Mobius band which is obtained by gluing a line segment to each point along a circle. However, these segments twist as you go around the circle and the structure of this manifold is less trivial than those we have thus far considered. The mobius band is an example of a manifold which is not oriented. This means that there is not a well-defined normal vectorfield over the surface. The patch is:
\[X(t, \lambda) = \left(\left[1 + \frac{1}{2} \lambda \cos\left(\frac{t}{2}\right) \right] \cos(t), \left[1 + \frac{1}{2} \lambda \sin\left(\frac{t}{2}\right) \right] \sin(t), \frac{1}{2} \lambda \sin\left(\frac{t}{2}\right) \right) \]
for \(0 \leq t \leq 2\pi \) and \(-1 \leq \lambda \leq 1 \). To understand this mapping better try studying the map evaluated at various values of \(t \);
\[X(0,\lambda) = (1 + \lambda/2, 0, 0), \quad X(\pi,\lambda) = (-1, 0, \lambda/2), X(2\pi,\lambda) = (1 - \lambda/2, 0, 0) \]
Notice the line segment parametrized by \(X(0,\lambda) \) and \(X(2\pi,\lambda) \) is the same set of points, however the orientation is reversed.
Chapter 11

exterior algebra and differential forms on \(\mathbb{R}^n \)

11.1 dual space

Definition 11.1.1.

If \(V \) is a vector space over \(\mathbb{R} \) then the dual space of \(V \) is the set of all linear functions from \(V \) into \(\mathbb{R} \). We denote the dual space by \(V^* \). Just to be clear,

\[
V^* = \{ f : V \to \mathbb{R} \mid f \text{ a linear function} \}
\]

Example 11.1.2. Suppose \(V = \mathbb{R}^3 \) then \(V^* = \{ L : \mathbb{R}^3 \to \mathbb{R} \mid L \text{ linear} \} \). Recall any linear mapping can be written as a matrix multiplication, in this case we expect \(L(v) = Av \) where \(A \in \mathbb{R}^{1\times 3} \). Usually we call a \(1 \times 3 \) matrix a row vector, let \(A = w^T \) to make it friendlier and note \(L(v) = w^T v \). But, \(w \) is just a column vector and we see \(L(v) = w \cdot v \). We arrive at the interesting result that every dual vector in \(\mathbb{R}^3^* \) can be written as the dot-product relative to some fixed vector in \(\mathbb{R}^3 \). In view of our discussion in this example it makes sense to say that \((\mathbb{R}^3^*)^* = \mathbb{R}^{1\times 3} \).

Definition 11.1.3.

Let \(\{e_1, e_2, \ldots, e_n\} \) be the standard basis of \(\mathbb{R}^n \). The standard dual basis for \(\mathbb{R}^n^* \) is denoted \(\{e^1, e^2, \ldots, e^n\} \), these are defined to be linear functions from \(\mathbb{R}^n \) to \(\mathbb{R} \) such that \(e^i(e_j) = \delta_{ij} \) for all \(1 \leq i, j \leq n \).

Given the example preceding the definition we could just as well define \(e^j(v) = e_j \cdot v \). Let me elaborate, suppose \(v \in \mathbb{R}^n \) then there we can write \(v = \sum_{i=1}^n v^i e_i \)

\[
e^j(v) = e^j(\sum_{i=1}^n v^i e_i) = \sum_{i=1}^n e^j(v^i e_i) = \sum_{i=1}^n v^i e^j(e_i) = v^j = e_j \cdot v
\]
11.2 bilinear maps and the tensor product

A bilinear map is a real-valued function of a Cartesian product of a vector space V and the dual space V^* such that the map is linear with respect to each copy in the Cartesian product.

Definition 11.2.1.

Let V be a vector space over \mathbb{R}. We say $b : V \times V \to \mathbb{R}$ is a bilinear map on V iff

\[
b(cx + y, z) = cb(x, z) + b(y, z) \quad \text{and} \quad b(x, cy + z) = cb(x, y) + b(x, z)
\]

for all $x, y, z \in V$ and $c \in \mathbb{R}$. If $b(x, y) = b(y, x)$ for all $x, y \in V$ then b is called symmetric. If $b(x, y) = -b(y, x)$ for all $x, y \in V$ then b is called antisymmetric.

Let $b : V \times V \to \mathbb{R}$ be a bilinear form. Suppose $\{e_i\}$ is a basis of V then define a matrix $[b] = B \in \mathbb{R}^{n \times n}$ by $B_{ij} = b(e_i, e_j)$. Calculate, if $x = \sum_i x^i e_i$ and $y = \sum_j y^j e_j$ then

\[
b(x, y) = b(\sum_i x^i e_i, \sum_j y^j e_j) = \sum_i \sum_j x^i y^j b(e_i, e_j) \quad \text{using bilinearity repeatedly}
= \sum_i \sum_j x^i B_{ij} y^j \quad \text{using definition of } B
= [x]^T B [y] \quad \text{definition of matrix multiplication}
\]

Here I used $[x] \in \mathbb{R}^n$ to denote the coordinate vector of x with respect to the basis $\{e_i\}$ of V. Often $x = [x]$ since we have $V = \mathbb{R}^n$ and the basis is the standard basis. I’m allowing for nonstandard bases here because we will have opportunity to discuss coordinate change later on. In any event, if $V = \mathbb{R}^n$ and we use the standard basis then

\[
b(x, y) = x^T B y \quad \text{where } B = [b(e_i, e_j)]
\]

Example 11.2.2. The dot-product defines a symmetric bilinear form on \mathbb{R}^n, its matrix is the identity matrix:

\[
b(x, y) = x \cdot y = x^T y = x^T I y \quad \Rightarrow \quad [b] = I
\]

We can use the notation $[b]$ to denote the matrix of b. Just to expand the notation so we all understand,

\[
b(x, y) = x_1 y_1 + x_2 y_2 + x_3 y_3 = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}
\]

Example 11.2.3. The cross-product does not give a bilinear form on \mathbb{R}^3 because its output is a vector. However, if we take the cross product then dot it with some vector that should give us an antisymmetric bilinear form. For example, define $b(x, y) = (x \times y) \cdot e_1$

\[
b(x, y) = (x \times y) \cdot e_1 = \sum_{i,j} e_{ij} x_i y_j = x_2 y_3 - x_3 y_2 = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}
\]
11.2. BILINEAR MAPS AND THE TENSOR PRODUCT

Example 11.2.4. Suppose \(b \) is a function from \(\mathbb{R}^2 \times \mathbb{R}^2 \) to \(\mathbb{R} \) defined by \(b(x, y) = 3x_1y_2 \) for all \(x, y \in \mathbb{R}^2 \). Observe that \(b \) is a bilinear form.

\[
b(x, y) = 3x_1y_2 = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}
\]

This bilinear form is neither symmetric nor antisymmetric. However, with a little imagination you can decompose it into a symmetric and antisymmetric bilinear form: use the standard technique:

\[
b(x, y) = \frac{1}{2} [b(x, y) + b(y, x)] + \frac{1}{2} [b(x, y) - b(y, x)] \quad \text{(just added zero)}
\]

\[
b(x, y) = \frac{3}{2} (x_1y_2 + y_1x_2) + \frac{3}{2} (x_1y_2 - y_1x_2)
\]

\[
= \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 0 & 3/2 \\ 3/2 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} + \begin{bmatrix} 0 & 3/2 \\ -3/2 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}
\] (11.1)

It’s not hard to see that the trick used in the preceding example equally well applies to any bilinear form, we can always write a given bilinear form as a sum of a symmetric and antisymmetric part. The same is not true for multilinear forms of higher order, also the correspondance of the bilinear form with matrix multiplication is special to the case of two-inputs. In contrast, the **tensor product** is a general construction, it will work in many cases we do not even consider in this course.

Definition 11.2.5.

Suppose \(\alpha, \beta \in V^* \) then we define \(\alpha \otimes \beta : V \times V \to \mathbb{R} \) by \((\alpha \otimes \beta)(x, y) = \alpha(x)\beta(y) \) for all \(x, y \in V \). We say that \(\alpha \otimes \beta \) is the **tensor product** of \(\alpha \) and \(\beta \).

Notice that we can write any bilinear form in terms of a sum of the tensor products, note that \(x^i = e^i(x) \) for each \(x \in \mathbb{R}^n \) hence

\[
b(x, y) = \sum_{i,j} x_iy_j b(e_i, e_j) = \sum_{i,j} b(e_i, e_j)e^i(x)e^j(y) = \sum_{i,j} b(e_i, e_j)(e^i \otimes e^j)(x, y)
\]

Since the calculate above holds for all inputs of \((x, y) \in V \times V \) it follows that

\[
b = \sum_{i,j} b(e_i, e_j)e^i \otimes e^j
\]

This means that \(\{e^i \otimes e^j\}_{i,j=1}^n \) spans the space of bilinear forms on \(\mathbb{R}^n \). It can be shown that the sum or scalar multiple of a bilinear forms is again a bilinear form hence the set of bilinear forms on \(\mathbb{R}^n \) forms a vector space and it is true that \(\{e^i \otimes e^j\}_{i,j=1}^n \) is a linearly independent spanning set. The space of bilinear forms on \(\mathbb{R}^n \) is isomorphic to the set of \(n \times n \) square matrices over \(\mathbb{R} \). If you’ve had linear algebra and this makes sense to you, great. If not, read onward, it’s ok.
Definition 11.2.6.

Suppose \(\alpha, \beta \in V^* \) then we define \(\alpha \wedge \beta = \alpha \otimes \beta - \beta \otimes \alpha \). We say that \(\alpha \wedge \beta \) is the \text{wedge product} of \(\alpha \) and \(\beta \).

Notice that we immediately have the identity that \(\alpha \wedge \beta = -\beta \wedge \alpha \). We can show that the set of all wedge products of the standard dual basis forms will span the set of antisymmetric bilinear forms.

Let \(b \) be a bilinear form on \(\mathbb{R}^n \) and suppose that \(b(x, y) = -b(y, x) \) for all \(x, y \in \mathbb{R}^n \).

\[
b(x, y) = \frac{1}{2} [b(x, y) - b(y, x)] = \frac{1}{2} \sum_{i,j} b(e_i, e_j)(x^i y^j - y^i x^j) = \frac{1}{2} \sum_{i,j} b(e_i, e_j)((e^i \otimes e^j)(x, y) - (e^j \otimes e^i)(x, y)) = \frac{1}{2} \sum_{i,j} b(e_i, e_j)(e^i \wedge e^j)(x, y)
\]

Where I identified that since \(e^i \wedge e^j = e^i \otimes e^j - e^j \otimes e^i \) the same ought to hold when they are evaluated at the pair \((x, y) \). Since the identity above holds for all \((x, y) \) it follows

\[
b = \sum_{i,j} \frac{1}{2} b_{ij} e^i \wedge e^j
\]

We can write any antisymmetric bilinear form as a sum of wedge products. Technically the set \(\{e^i \wedge e^j\}_{i,j=1}^n \) is not linearly independent because there are linear dependencies from the antisymmetry:

\[
e^i \wedge e^j = -e^j \wedge e^i \quad \Rightarrow \quad e^i \wedge e^i = 0
\]

and \(e^1 \wedge e^2 = -e^2 \wedge e^1 \) etc... Generally, we have to select a subset for which the indices do not repeat in order to obtain a linearly independent set of wedge products. It is convenient to use the boxed sum even though it’s not a basis expansion.

Remark 11.2.7.

Why ”exterior”? The reason the algebra provided by this ”wedge product” is called ”exterior” is that it has moved us outside the space we began the operation. The input of two dual vectors (which we will later identify as one-forms evaluated a a point) gives us an antisymmetric bilinear form (which we will soon identify as a two-form evaluated at a point). In contrast, the cross-product takes in two vectors and outputs another vector.
11.3 trilinear maps and tensor products

Definition 11.3.1.

Let V be a vector space over \mathbb{R}. We say $b : V \times V \times V \to \mathbb{R}$ is a trilinear map on V iff

$$b(cx + y, z, w) = cb(x, z, w) + b(y, z, w)$$
and
$$b(x, cy + z, w) = cb(x, y, w) + b(x, z, w)$$
and
$$b(x, y, cz + w) = cb(x, y, z) + b(x, y, w)$$

for all $x, y, z, w \in V$ and $c \in \mathbb{R}$. If we can switch every pair of inputs of $b(x, y, z)$ and the value of b is not changed for all $x, y, z \in V$ then b is called symmetric. If every switch of any pair of inputs in $b(x, y, z)$ changes the output by a minus sign for all x, y, z then b is called antisymmetric.

In particular, if b is symmetric,

$$b(x, y, z) = b(y, z, x) = b(z, y, x) = b(y, x, z) = b(x, z, y)$$

Whereas, if b is antisymmetric,

$$b(x, y, z) = b(y, z, x) = b(z, x, y) = -b(z, y, x) = b(y, x, z) = -b(x, z, y).$$

You can look in the appendix for a more elegant formulation in terms of sums over permutations.

We can again write any trilinear form as a sum over tensor products. The tensor product of three dual vectors is defined in the obvious way: $(\otimes \otimes \otimes)(x, y, z) = (x)_{i} (y)_{j} (z)_{k}$ and we can build a wedge product of three dual vectors by using the antisymmetrized tensor product:

Definition 11.3.2.

Suppose $\alpha, \beta, \gamma \in V^{*}$ then we define

$$\alpha \wedge \beta \wedge \gamma = \alpha \otimes \beta \otimes \gamma + \beta \otimes \gamma \otimes \alpha + \gamma \otimes \alpha \otimes \beta$$

$$-\gamma \otimes \beta \otimes \alpha - \beta \otimes \alpha \otimes \gamma - \alpha \otimes \gamma \otimes \beta$$

We say that $\alpha \wedge \beta \wedge \gamma$ is the wedge product of α and β and γ.

If you study Edward’s approach to wedge products and differential forms you’ll see that he uses the determinant to give the forms the desired antisymmetry. It’s really just a matter of notation since the proper definition of the determinant on $\mathbb{R}^{n \times n}$ is nothing more than the completely antisymmetrized n-multilinear mapping from $\mathbb{R}^{n} \times \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}$ to \mathbb{R} such that $\det(I) = 1$.

Example 11.3.3. Define $\gamma : \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \to \mathbb{R}$ by $\gamma(x, y, z) = \det(x|y|z)$ for all $x, y, z \in \mathbb{R}$. Clearly γ is trilinear since the determinant is linear in each column and if you switch any two columns the determinant differs by a minus sign. Challenge: find γ_{ijk} such that $\gamma = \sum_{ijk} \gamma_{ijk} e_{i} \otimes e_{j} \otimes e_{k}$.
Example 11.3.4. Let $\alpha = e^1 \wedge e^2$ and $\beta = e^2 + e^3$ we can calculate $\alpha \wedge \beta$ as follows: remember $e^2 \wedge e^2 = 0$ whereas $e^1 \wedge e^2 = -2^2 \wedge e^1$ etc... besides that we just distribute as you would expect.

$$\alpha \wedge \beta = e^1 \wedge e^2 \wedge (e^2 + e^3) = e^1 \wedge e^2 \wedge e^2 + e^1 \wedge e^2 \wedge e^3 = e^1 \wedge e^2 \wedge e^3.$$

It is tempting to develop the exterior algebra in more detail. We can prove that the wedge product is associative and if we take all possible wedge products of the dual space V^* it creates the alternating algebra over V which we may denote $\Lambda(V)$. For example, $\Lambda(\mathbb{R}^2) = \text{span}\{1, e^1, e^2, e^1 \wedge e^2\}$. Whereas for \mathbb{R}^3 we have,

$$\Lambda(\mathbb{R}^3) = \text{span}\{1, e^1, e^2, e^3, e^2 \wedge e^3, e^3 \wedge e^1, e^1 \wedge e^2, e^1 \wedge e^2 \wedge e^3\}$$

Generally, if V has dimension n then $\Lambda(V)$ will have dimension 2^n. Moreover, the sum or wedge product of any two objects in $\Lambda(V)$ will again be within the space thus it forms an algebra with respect to the wedge product.

Proposition 11.3.5.

Let α_p, β_q be formed from sums of wedge products of p and q dual vectors respectively. Also, let γ_r be a wedge product of r dual vectors. Then,

$$\alpha_p \wedge \beta_q = (-1)^{pq} \beta_q \wedge \alpha_p$$

and

$$\left(\alpha_p \wedge \beta_q\right) \wedge \gamma_r = \alpha_p \wedge (\beta_q \wedge \gamma_r)$$

Finally, if $q = r$ then

$$\alpha_p \wedge (\beta_q + \gamma_q) = \alpha_p \wedge \beta_q + \alpha_p \wedge \gamma_q$$

In particular, if we have a constant then the p,q or r is taken to be zero in the formulas above which leads to the nice result that you can just pull constants out of wedge products.

Example 11.3.6. Let $\alpha = e^1 \wedge e^2$ and $\beta = e^3$ note that

$$(e^1 \wedge e^2) \wedge e^3 = (-1)^{2^1} e^3 \wedge (e^1 \wedge e^2)$$

Generally, if α is a sum of an terms with an even number of dual vectors wedged together then $\alpha \wedge \beta = \beta \wedge \alpha$

Example 11.3.7. Suppose we have $n + 1$ dual vectors in \mathbb{R}^{n*} wedged together to form $\gamma = e^{11} \wedge \cdots \wedge e^{1n+1}$. There must exist at least one index, say j, which is repeated. Therefore, we can permute the factors in the wedge product until we eventually find $\gamma = e^j \wedge e^j \wedge e^{11} \wedge \cdots \wedge e^{1n} = 0$. We call $e^1 \wedge e^2 \wedge \cdots \wedge e^n$ the top form in \mathbb{R}^n.
11.4 theory of determinants via the exterior algebra

In the previous sections we defined the wedge product of dual vectors. It turns out that every vector in a finite dimensional vector space \(V \) is in one-one correspondence with a vector in the so-called \textbf{double-dual} \(V^{**} \). In particular, \(\overline{v} \rightleftharpoons v \) if we define \(\overline{\alpha}(v) = \alpha(v) \) for each \(\alpha \in V^* \). This means we can reasonably talk about the wedge product of vectors if we just identify vectors with their double duals.

Definition 11.4.1.

Let \(A \) be an \(n \times n \) matrix and \(e_1, e_2, \ldots, e_n \) the standard basis of \(\mathbb{R} \) then the \textbf{determinant} of \(A \) is defined by the equation below

\[
A e_1 \wedge A e_1 \wedge \cdots \wedge A e_n \equiv \det(A) e_1 \wedge e_1 \wedge \cdots \wedge e_n.
\]

Let us verify that this determinant is really the determinant we know and love from linear algebra. I’ll work out the \(2 \times 2 \) case then I’ll let you do the \(3 \times 3 \) for homework,

Example 11.4.2. We derive the ordinary \(2 \times 2 \) determinant formula from the definition. Let \(A \) be an arbitrary \(2 \times 2 \) matrix, then

\[
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad (11.2)
\]

Observe that,

\[
A e_1 \wedge A e_2 = (ae_1 + ce_2) \wedge (be_1 + de_2) \\
= abc_1 \wedge e_1 + ade_1 \wedge e_2 + cbe_2 \wedge e_1 + cde_2 \wedge e_2 \\
= ade_1 \wedge e_2 - cbe_1 \wedge e_2 \\
= (ad - bc)e_1 \wedge e_2 \quad (11.3)
\]

where all we used in the calculation above was ordinary matrix multiplication and the antisymmetry property of the wedge product which tells us that \(e_2 \wedge e_1 = -e_1 \wedge e_2 \) and \(e_1 \wedge e_1 = e_2 \wedge e_2 = 0 \).

The proposition to follow is easy to prove now that we have a good definition for the determinant.

Proposition 11.4.3.

Let \(A \in \mathbb{R}^{n \times n} \) and let \(I \) be the \(n \times n \) identity matrix and \(r \in \mathbb{R} \) then

1. \(\det(I) = 1 \)
2. \(\det(A) = 0 \) if the columns of \(A \) are linearly dependent
3. \(\det(rA) = r^n \det(A) \)

\footnote{you can prove \(\Phi(v) = \overline{v} \) is an isomorphism from \(V \) to \(V^{**} \)}
CHAPTER 11. EXTERIOR ALGEBRA AND DIFFERENTIAL FORMS ON \(\mathbb{R}^N \)

Proof: First note that the \(k^{th} \) column of \(I \) is \(e_k \) thus,

\[
Ie_1 \wedge Ie_2 \wedge \cdots \wedge Ie_n = e_1 \wedge e_2 \wedge \cdots \wedge e_n
\]

therefore since the coefficient of the LHS of the above is defined to be the determinant we can read that \(\det(I) = 1 \). Next to prove \((ii)\) we appeal to an exercise in which you will show that if the columns of \(A \) are linearly dependent then their wedge product is zero hence that \(\det(A) = 0 \). Lastly consider \((iii)\) we’ll prove it by an indirect calculation,

\[
rAe_1 \wedge rAe_2 \wedge \cdots \wedge rAe_n = r^n Ae_1 \wedge Ae_2 \wedge \cdots \wedge Ae_n
\]

\[
\equiv \det(rA)e_1 \wedge e_2 \wedge \cdots \wedge e_n
\]

(11.4)

thus by comparing the equations we read off that \(\det(rA) = r^n \det(A) \) just as we claimed.

Remark 11.4.4. There is more we could do with the theory of determinants. With a little more work we could prove that \(\det(AB) = \det(A) \det(B) \). See Chapter II of Morton L. Curtis’ "Abstract Linear Algebra" for a very readable treatment of these matters. Or you might also look at Chapter 5 of Hoffman and Kunze’s "Linear Algebra" for a more advanced presentation of the theory of determinants.

11.5 Differential forms on open sets of \(\mathbb{R}^n \)

Throughout this section we require that \(M \) be an open subset of \(\mathbb{R}^n \). We say that \(x = (x^1, x^2, \ldots, x^n) \) is a chart on an open subset \(U \) of \(M \) iff \(x \) is a smooth mapping from \(U \) onto another open subset of \(\mathbb{R}^n \) which has a smooth inverse. We also refer to \((x^1, x^2, \ldots, x^n)\) as being coordinates on \(U \).

If \(p \in M \) we denote by \(C^\infty_p \) the set of all real-valued functions \(f \) such that \(f \) is a smooth mapping defined on an open subset of \(M \) containing \(p \). Note that one can define pointwise operations of addition and multiplication of elements of \(C^\infty_p \), and that these operations satisfy the usual properties of an algebra with the exception that both the domain of the sum \(f + g \) and the domain of the product \(fg \) of \(f, g \in C^\infty_p \) is the intersection of the domains of \(f \) and \(g \). If \(a^1, a^2, \ldots, a^n \) are arbitrary numbers the differential operator

\[
a^1 \frac{\partial}{\partial x^1}\big|_p + a^2 \frac{\partial}{\partial x^2}\big|_p + \cdots + a^n \frac{\partial}{\partial x^n}\big|_p
\]

acts on elements of \(C^\infty_p \) at \(p \) and produces a real number. Such operators generalize the notion of a directional derivative since we do not require that \((a^1, a^2, \ldots, a^n)\) be a unit vector.
Definition 11.5.1. tangent vectors are derivations on smooth functions.

To say that \(t \) is a tangent vector at \(p \in M \) with components \(a^1, a^2, \cdots, a^n \) means that \(t = a^1 \frac{\partial}{\partial x^1}|_p + a^2 \frac{\partial}{\partial x^2}|_p + \cdots + a^n \frac{\partial}{\partial x^n}|_p \). Thus tangent vectors at \(p \) are identified as differential operators acting on functions defined on open sets containing \(p \). Notice that there is a well-defined addition of tangent vectors at \(p \) defined as follows. If
\[
t = a^1 \frac{\partial}{\partial x^1}|_p + a^2 \frac{\partial}{\partial x^2}|_p + \cdots + a^n \frac{\partial}{\partial x^n}|_p
\]
and
\[
s = b^1 \frac{\partial}{\partial x^1}|_p + b^2 \frac{\partial}{\partial x^2}|_p + \cdots + b^n \frac{\partial}{\partial x^n}|_p
\]
are tangent vectors at \(p \) then their sum is
\[
t + s = (a^1 + b^1) \frac{\partial}{\partial x^1}|_p + (a^2 + b^2) \frac{\partial}{\partial x^2}|_p + \cdots + (a^n + b^n) \frac{\partial}{\partial x^n}|_p.
\]
Similarly, if \(\lambda \) is a number and \(t \) is a tangent vector we define \(\lambda t \) by
\[
\lambda t = (\lambda a^1) \frac{\partial}{\partial x^1}|_p + (\lambda a^2) \frac{\partial}{\partial x^2}|_p + \cdots + (\lambda a^n) \frac{\partial}{\partial x^n}|_p.
\]
The set of tangent vectors of \(M \) at \(p \) will be denoted by \(T_p M \). It is a vector space relative to the operations defined above with basis \(\{ \frac{\partial}{\partial x^i} \} \) and is called the tangent space to \(M \) at \(p \). Its dual is denoted \(T^*_p M \) and is called the cotangent space to \(M \) at \(p \). We denote the basis of \(T^*_p M \) dual to \(\{ \frac{\partial}{\partial x^i} \} \) by \(\{ dx^j \} \). Thus \(dx^j \) is the linear mapping from \(T_p M \) into \(\mathbb{R} \) defined by
\[
dx^j(t) = dx^j(a^1 \frac{\partial}{\partial x^1}|_p + a^2 \frac{\partial}{\partial x^2}|_p + \cdots + a^n \frac{\partial}{\partial x^n}|_p) = a^j.
\]
Notice that an arbitrary element \(\alpha \) of \(T^*_p M \) may be written as
\[
\alpha = \alpha_1 dx^1 + \alpha_2 dx^2 + \cdots + \alpha_n dx^n.
\]
In this section we apply the results of the previous section on exterior algebra to the vector space \(V = T_p M \). Recall that \(\{ \frac{\partial}{\partial x^i} \} \) is a basis of \(T_p M \) and thus the basis \(\{ e_i \} \) of \(V \) utilized throughout the previous section on exterior algebra will be taken to be
\[
e_i = \frac{\partial}{\partial x^i}|_p, \quad 1 \leq i \leq n
\]
in this section. Also recall that the set of covectors \(\{ dx^i \} \) is a basis of \(T^*_p M \) which is dual to \(\{ \frac{\partial}{\partial x^i} \} \) and consequently the \(\{ e^j \} \) in the previous section is taken to be
\[
e^j = dx^j, \quad 1 \leq j \leq n
\]
CHAPTER 11. EXTERIOR ALGEBRA AND DIFFERENTIAL FORMS ON \mathbb{R}^N

in the present context. With these choices the machinery of the previous section takes over and one obtains a vector space $\wedge^k(T_pM)$ for each $1 \leq k$ and for arbitrary $p \in M$. We write $\wedge^k TM$ for the set of ordered pairs (p, α) where $p \in M$ and $\alpha \in \wedge^k(T_pM)$ and we refer to $\wedge^k(TM)$ as the k-th exterior power of the tangent bundle TM. There is a projection $\pi : \wedge^k(TM) \to M$ defined by $\pi(p, \alpha) = p$ for $(p, \alpha) \in \wedge^k(TM)$. One refers to $(\wedge^k TM, \pi)$ as a vector bundle for reasons we do not pursue at this point. To say that $\hat{\alpha}$ is a section of this vector bundle means that $\hat{\alpha} : M \to \wedge^k(TM)$ is a (smooth) function such that $\hat{\alpha}(p) \in \wedge^k(T_pM)$ for all $p \in M$. Such functions are also called differential forms, or in this case, k-forms.

Definition 11.5.2. vector field on open subset of \mathbb{R}^n.

To say that X is a vector field on an open subset U of M means that

$$X = X^1 \frac{\partial}{\partial x^1} + X^2 \frac{\partial}{\partial x^2} + \cdots + X^n \frac{\partial}{\partial x^n}$$

where X^1, X^2, \ldots, X^n are smooth functions from U into \mathbb{R}.

Note that in this context we implicitly require that differential forms be smooth. To explain this we write out the requirements more fully below.

If β is a function with domain M such that for each $p \in M$, $\beta(p) \in \wedge^k(T_pM)$ then β is called a differential k-form on M if for all local vector fields X_1, X_2, \ldots, X_k defined on an arbitrary open subset U of M it follows that the map defined by

$$p \to \beta_p(X_1(p), X_2(p), \ldots, X_k(p))$$

is smooth on U. For example if (x^1, x^2, \ldots, x^n) is a chart then its domain $V \subset M$ is open in M and the map

$$p \to d_px^i$$

is a differential 1-form on U. Similarly the map

$$p \to d_px^i \wedge d_px^j$$

is a differential 2-form on U. Generally if β is a 1-form and (x^1, x^2, \ldots, x^n) is a chart then there are functions (b_i) defined on the domain of x such that

$$\beta(q) = \sum_{i} b_i(q)d_qx^i$$

for all q in the domain of x.

Similarly if γ is a 2-form on M and $x = (x^1, x^2, \ldots, x^n)$ is any chart on M then there are smooth functions c_{ij} on $dom(x)$ such that

$$\gamma_p = \frac{1}{2} \sum_{i,j=1}^n c_{ij}(p)(d_px^i \wedge d_px^j)$$
and such that \(c_{ij}(p) = -c_{ji}(p) \) for all \(p \in \text{dom}(x) \).
Generally if \(\alpha \) is a \(k \)-form and \(x \) is a chart then on \(\text{dom}(x) \)
\[
\alpha_p = \sum_{i_1 \leq \ldots \leq i_k} \frac{1}{k!} a_{i_1 i_2 \ldots i_k}(p) (dx^{i_1} \wedge \cdots \wedge dx^{i_k})
\]
where the \(\{a_{i_1 i_2 \ldots i_k}\} \) are smooth real-valued functions on \(U = \text{dom}(x) \) and \(\alpha_{i_1 i_2 \ldots i_k} = \text{sgn}(\sigma)a_{i_{\sigma(1)} i_{\sigma(2)} \ldots i_{\sigma(k)}} \),
for every permutation \(\sigma \). (this is just a fancy way of saying if you switch any pair of indices it generates a minus sign).

The algebra of differential forms follows the same rules as the exterior algebra we previously dis-
cussed. Remember, a differential form evaluated a particular point gives us a wedge product of a
bunch of dual vectors. It follows that the differential form in total also follows the general properties
of the exterior algebra.

Theorem 11.5.3.

<table>
<thead>
<tr>
<th>If (\alpha) is a (p)-form, (\beta) is a (k)-form, and (\gamma) is a (l)-form on (M) then</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\alpha \wedge (\beta \wedge \gamma) = (\alpha \wedge \beta) \wedge \gamma)</td>
</tr>
<tr>
<td>2. (\alpha \wedge \beta = (-1)^{pk}(\beta \wedge \alpha))</td>
</tr>
<tr>
<td>3. (\alpha \wedge (a\beta + b\gamma) = a(\alpha \wedge \beta) + b(\alpha \wedge \gamma)) (a, b \in \mathbb{R})</td>
</tr>
</tbody>
</table>

Notice that in \(\mathbb{R}^3 \) the set of differential forms
\[
\mathcal{B} = \{ 1, dx, dy, dz, dy \wedge dz, dz \wedge dx, dx \wedge dy, dx \wedge dy \wedge dz \}
\]
is a basis of the space of differential forms in the sense that every form on \(\mathbb{R}^3 \) is a linear combination
of the forms in \(\mathcal{B} \) with smooth real-valued functions on \(\mathbb{R}^3 \) as coefficients.

Example 11.5.4. Let \(\alpha = fdx + gdy \) and let \(\beta = 3dx + dz \) where \(f, g \) are functions. Find \(\alpha \wedge \beta \),
write the answer in terms of the basis defined in the Remark above,
\[
\alpha \wedge \beta = (fdx + gdy) \wedge (3dx + dz)
= f dx \wedge (3dx + dz) + gdy \wedge (3dx + dz)
= 3f dx \wedge dx + f dx \wedge dz + 3 gdy \wedge dx + gdy \wedge dz
\]
\[
= -gdy \wedge dz - f dz \wedge dx - 3gdx \wedge dy \quad (11.5)
\]

Example 11.5.5. Top form: Let \(\alpha = dx \wedge dy \wedge dz \) and let \(\beta \) be any other form with degree \(p > 0 \).
We argue that \(\alpha \wedge \beta = 0 \). Notice that if \(p > 0 \) then there must be at least one differential inside \(\beta \)
so if that differential is \(dx^k \) we can rewrite \(\beta = dx^k \wedge \gamma \) for some \(\gamma \). Then consider,
\[
\alpha \wedge \beta = dx \wedge dy \wedge dz \wedge dx^k \wedge \gamma
\]
now \(k \) has to be either 1, 2 or 3 therefore we will have \(dx^k \) repeated, thus the wedge product will be
zero. (can you prove this?).
The operation \(\wedge \) depends only on the values of the forms point by point. We define an operator \(d \) on differential forms which depends not only on the value of the differential form at a point but on its value in an entire neighborhood of the point. Thus if \(\beta \) is \(k \)-form then to define \(d\beta \) at a point \(p \) we need to know not only the value of \(\beta \) at \(p \) but we also need to know its value at every \(q \) in a neighborhood of \(p \).

Definition 11.5.6. the exterior derivative.

If \(\beta \) is a \(k \)-form and \(x = (x^1, x^2, \cdots, x^n) \) is a chart and \(\beta = \sum_I \frac{1}{k!} \beta_I dx^I \) and we define a \((k+1)\)-form \(d\beta \) to be the form
\[
d\beta = \sum_I \frac{1}{k!} d\beta_I \wedge dx^I.
\]

Where \(d\beta_I \) is defined as it was in calculus III,
\[
d\beta_I = \sum_{j=1}^n \frac{\partial \beta_I}{\partial x^j} dx^j.
\]

Note that \(d\beta_I \) is well-defined as
\[
\beta_I = \beta_{i_1i_2\cdots i_k}
\]
is just a real-valued function on \(\text{dom}(x) \). The definition in an expanded form is given by
\[
d_p\beta = \frac{1}{k!} \sum_{i_1=1}^n \sum_{i_2=1}^n \cdots \sum_{i_k=1}^n (d_p\beta_{i_1i_2\cdots i_k}) \wedge d_p x^{i_1} \wedge \cdots \wedge d_p x^{i_k}
\]
where
\[
\beta_q = \frac{1}{k!} \sum_{i_1=1}^n \sum_{i_2=1}^n \cdots \sum_{i_k=1}^n \beta_{i_1i_2\cdots i_k}(q) d_q x^{i_1} \wedge \cdots \wedge d_q x^{i_k}.
\]

11.5.1 coordinate independence of exterior derivative

The Einstein summation convention is used in this section and throughout the remainder of this chapter, please feel free to email me if it confuses you somewhere. When an index is repeated in a single summand it is implicitly assumed there is a sum over all values of that index.

It must be shown that this definition is independent of the chart used to define \(d\beta \). Suppose for example, that
\[
\beta_q = \beta_{f_J}(q)(d_q \overline{x}^{j_1} \wedge \cdots \wedge d_q \overline{x}^{j_k})
\]
for all \(q \) in the domain of a chart \((\overline{x}^1, \overline{x}^2, \cdots, \overline{x}^n)\) where
\[
\text{dom}(x) \cap \text{dom}(\overline{x}) \neq \emptyset.
\]
We assume, of course that the coefficients \(\{J(q)\} \) are skew-symmetric in \(J \) for all \(q \). We will have defined \(d\beta \) in this chart by
\[
d\beta = \frac{\partial J}{\partial x^I} \cdot d\bar{x}^I.
\]
We need to show that \(d_p \beta_1 \wedge d_p x^I = d_p \beta_1 \wedge d_p x^I \) for all \(p \in \text{dom}(x) \cap \text{dom}(\bar{x}) \) if this definition is to be meaningful. Since \(\beta \) is given to be a well-defined form we know
\[
\beta_1(p) d_p x^I = \bar{\beta}_1(p) d_p x^I.
\]
Using the identities
\[
d x^j = \frac{\partial}{\partial x^j} \cdot dx^j
\]
we have
\[
\beta_1 d x^I = \bar{\beta}_1 \left(\frac{\partial x^j}{\partial x^I} \wedge \frac{\partial x^j}{\partial x^{i_2}} \wedge \cdots \wedge \frac{\partial x^j}{\partial x^{i_k}} \right) dx^I
\]
so that
\[
\beta_1 = \bar{\beta}_1 \left(\frac{\partial x^j}{\partial x^{i_1}} \wedge \frac{\partial x^j}{\partial x^{i_2}} \wedge \cdots \wedge \frac{\partial x^j}{\partial x^{i_k}} \right).
\]
Consequently,
\[
d \beta_1 \wedge d x^I = \frac{\partial \beta_1}{\partial x^I} (dx^\lambda \wedge dx^I) = \frac{\partial}{\partial x^\lambda} \left[\beta_1 \left(\frac{\partial x^j}{\partial x^{i_1}} \wedge \cdots \wedge \frac{\partial x^j}{\partial x^{i_k}} \right) \right] (dx^\lambda \wedge dx^I)
\]
\[
= \frac{\partial^2 \beta_1}{\partial x^I \partial x^\lambda} (dx^\lambda \wedge dx^I) + \sum_r \bar{\beta}_1 \left(\frac{\partial x^j}{\partial x^{i_1}} \wedge \cdots \wedge \frac{\partial x^j}{\partial x^{i_r}} \wedge \frac{\partial x^j}{\partial x^{j_1}} \wedge \cdots \wedge \frac{\partial x^j}{\partial x^{j_k}} \right) (dx^\lambda \wedge dx^I)
\]
\[
= \frac{\partial^2 \beta_1}{\partial x^I \partial x^\lambda} (dx^\lambda \wedge dx^I) + \sum_r \left(\frac{\partial x^j}{\partial x^{i_1}} \wedge \cdots \wedge \frac{\partial x^j}{\partial x^{i_r}} \wedge \frac{\partial x^j}{\partial x^{j_1}} \wedge \cdots \wedge \frac{\partial x^j}{\partial x^{j_k}} \right)
\]
\[
\beta_1 \wedge d x^I = \frac{\partial^2 \beta_1}{\partial x^I \partial x^\lambda} (dx^\lambda \wedge dx^I) + \sum_r \left(\frac{\partial x^j}{\partial x^{i_1}} \wedge \cdots \wedge \frac{\partial x^j}{\partial x^{i_r}} \wedge \frac{\partial x^j}{\partial x^{j_1}} \wedge \cdots \wedge \frac{\partial x^j}{\partial x^{j_k}} \right)
\]
where in (*) the sum \(\sum_r \) is zero since:
\[
\frac{\partial^2 \beta_1}{\partial x^I \partial x^\lambda} (dx^\lambda \wedge dx^I) = \sum_r \frac{\partial^2 \beta_1}{\partial x^I \partial x^\lambda} [(dx^\lambda \wedge dx^j_1 \wedge \cdots \wedge dx^j_r \wedge \cdots dx^j_k] = 0.
\]
It follows that \(d\beta \) is independent of the coordinates used to define it.

Consequently we see that for each \(k \) the operator \(d \) maps \(\wedge^k(M) \) into \(\wedge^{k+1}(M) \) and has the following properties:

Theorem 11.5.7. properties of the exterior derivative.

If \(\alpha \in \wedge^k(M) \), \(\beta \in \wedge^l(M) \) and \(a, b \in \mathbb{R} \) then

1. \(d(a\alpha + b\beta) = a(d\alpha) + b(d\beta) \)
2. \(d(\alpha \wedge \beta) = (d\alpha \wedge \beta) + (-1)^k(\alpha \wedge d\beta) \)
3. \(d(d\alpha) = 0 \)
Proof: The proof of (1) is obvious. To prove (2), let \(x = (x^1, \cdots, x^n) \) be a chart on \(M \) then (ignoring the factorial coefficients)

\[
d(\alpha \wedge \beta) = d(\alpha_I \beta_J) \wedge dx^I \wedge dx^J = (\alpha_I d\beta_J + \beta_J d\alpha_I) \wedge dx^I \wedge dx^J
\]

\[
= \alpha_I (d\beta_J \wedge dx^I \wedge dx^J) + \beta_J (d\alpha_I \wedge dx^I \wedge dx^J)
\]

\[
= \alpha_I (dx^I \wedge (-1)^k (d\beta_J \wedge dx^J)) + \beta_J ((d\alpha_I \wedge dx^I) \wedge dx^J)
\]

\[
= (\alpha \wedge (-1)^k d\beta) + \beta_J (d\alpha \wedge dx^J)
\]

\[
= d\alpha \wedge \beta + (-1)^k (\alpha \wedge d\beta).
\]

11.5.2 exterior derivatives on \(\mathbb{R}^3 \)

We begin by noting that vector fields may correspond either to a one-form or to a two-form.

Definition 11.5.8. dictionary of vectors versus forms on \(\mathbb{R}^3 \).

Let \(\vec{A} = (A^1, A^2, A^3) \) denote a vector field in \(\mathbb{R}^3 \). Define then,

\[
\omega_A = \delta_{ij} A^i dx^j = A_idx^i
\]

which we will call the work-form of \(\vec{A} \). Also define

\[
\Phi_A = \frac{1}{2} \delta_{ik} A^k \epsilon_{ijk} (dx^i \wedge dx^j) = \frac{1}{2} A_i \epsilon_{ijk} (dx^i \wedge dx^j)
\]

which we will call the flux-form of \(\vec{A} \).

If you accept the primacy of differential forms, then you can see that vector calculus confuses two separate objects. Apparently there are two types of vector fields. In fact, if you have studied coordinate change for vector fields deeply then you will encounter the qualifiers axial or polar vector fields. Those fields which are axial correspond directly to two-forms whereas those correspondent to one-forms are called polar. As an example, the magnetic field is axial whereas the electric field is polar.

Example 11.5.9. Gradient: Consider three-dimensional Euclidean space. Let \(f : \mathbb{R}^3 \to \mathbb{R} \) then

\[
df = \frac{\partial f}{\partial x^i} dx^i = \omega_{\nabla f}
\]

which gives the one-form corresponding to \(\nabla f \).

Example 11.5.10. Curl: Consider three-dimensional Euclidean space. Let \(\vec{F} \) be a vector field and let \(\omega_F = F_i dx^i \) be the corresponding one-form then

\[
d\omega_F = dF_i \wedge dx^i = \frac{\partial}{\partial x^j} F_i \wedge dx^j + \frac{\partial}{\partial x^j} F_j \wedge dx^i
\]

\[
= \partial_x F_y dx \wedge dy + \partial_y F_x dy \wedge dx + \partial_z F_x dx \wedge dz + \partial_x F_z dz \wedge dx + \partial_y F_z dz \wedge dx + \partial_z F_y dz \wedge dy
\]

\[
= (\partial_x F_y - \partial_y F_x) dx \wedge dy + (\partial_z F_x - \partial_x F_z) dz \wedge dx + (\partial_y F_z - \partial_z F_y) dy \wedge dz
\]

\[
= \Phi_{\nabla \times \vec{F}}.\]
Thus we recover the curl.

Example 11.5.11. Divergence: Consider three-dimensional Euclidean space. Let \vec{G} be a vector field and let $\Phi_G = \frac{1}{2} \epsilon_{ijk} G_i dx^j \wedge dx^k$ be the corresponding two-form then

$$d\Phi_G = d\left(\frac{1}{2} \epsilon_{ijk} G_i \right) \wedge dx^j \wedge dx^k$$

$$= \frac{1}{2} \epsilon_{ijk} \left(\partial_m G_i \right) dx^m \wedge dx^j \wedge dx^k$$

$$= \frac{1}{2} \epsilon_{ijk} \epsilon_{mjk} dx \wedge dy \wedge dz$$

$$= \frac{1}{2} \epsilon_{ijk} \delta_m^i \left(\partial_m G_i \right) dx \wedge dy \wedge dz$$

$$= (\nabla \cdot \vec{G}) dx \wedge dy \wedge dz$$

and in this way we recover the divergence.

11.5.3 pullbacks

(optional, but worth studying if you plan to go deeper into manifold theory later in life) Another important “operation” one can perform on differential forms is the “pull-back” of a form under a map.

Definition 11.5.12. pull-back of a differential form.

If $f : M \to N$ is a C^1-map and $\omega \in \wedge^k(N)$ then $f^* \omega$ is the form on M defined by

$$(f^* \omega)_p(X_1, \cdots, X_k) = \omega_{f(p)}(d_pf(X_1), d_pf(X_2), \cdots, d_pf(X_k)).$$

Theorem 11.5.13. properties of the push-back.

If $f : M \to N$ is a C^1-map and $\omega \in \wedge^k(N), \tau \in \wedge^l(N)$ then

1. $f^*(a \omega + b \tau) = a(f^* \omega) + b(f^* \tau)$, $a, b \in \mathbb{R}$
2. $f^*(\omega \wedge \tau) = f^* \omega \wedge (f^* \tau)$
3. $f^*(d \omega) = d(f^* \omega)$

Proof: The proof of (1) is clear. We now prove (2).

$$f^*(\omega \wedge \tau)|_p(X_1, \cdots, X_{k+l}) = (\omega \wedge \tau)_{f(p)}(d_pf(X_1), \cdots, d_pf(X_{k+l}))$$

$$= \sum_\sigma (\text{sgn} \sigma)(\omega \wedge \tau)_{f(p)}(d_pf(X_{\sigma(1)}), \cdots, d_pf(X_{\sigma(k+l)}))$$

$$= \sum_\sigma \text{sgn}(\sigma) \omega(d_pf(X_{\sigma(1)}), \cdots, d_pf(X_{\sigma(k)}))\tau(d_f(X_{\sigma(k+1)} \cdots dfX_{\sigma(k+l)}))$$

$$= \sum_\sigma \text{sgn}(\sigma)\left(d^*(\omega)_{f(p)}(X_{\sigma(1)}), \cdots, X_{\sigma(k)})\left(f^*\tau_p\right)(X_{\sigma(k+1)} \cdots X_{\sigma(k+l)})$$

$$= ([f^*\omega] \wedge (f^*\tau))_p(X_1, X_2, \cdots, X_{(k+l)})$$
Finally we prove (3).

\[f^*(d\omega)_p(X_1, X_2, \ldots, X_{k+1}) = (d\omega)_{f(p)}(df(X_1), \ldots, df(X_{k+1})) \]
\[= (d\omega_I \wedge dx^I)_{f(p)}(df(X_1), \ldots, df(X_{k+1})) \]
\[= \left(\frac{\partial \omega_I}{\partial x^k} \right|_{f(p)} (dx^\lambda \wedge dx^I)_{f(p)}(df(X_1), \ldots, df(X_{k+1})) \right) \]
\[= \left(\frac{\partial \omega_I}{\partial x^k} \right|_{f(p)} (dx^\lambda \wedge dx^I)_{f(p)}(df(X_1), \ldots, df(X_{k+1})) \right) \]
\[= \left(\frac{\partial \omega_I}{\partial x^k} \right|_{f(p)} [dp(x^\lambda \circ f) \wedge dp(x^I \circ f)](X_1, \ldots, X_{k+1}) \]
\[= [d(\omega_I \circ f) \wedge d(x^I \circ f)](X_1, \ldots, X_{k+1}) \]
\[= d([\omega_I \circ f]_p dx^I \circ f)(X_1, \ldots, X_{k+1}) \]
\[= d(f^*\omega)_p(X_1, \ldots, X_{k+1}). \]
Chapter 12

generalized Stokes’ theorem

In this appendix we give a short introduction on how to integrate differential forms on a parametrized subset of \mathbb{R}. We demonstrate how the differential form integration recovers the usual notions of line and surface integrals in \mathbb{R}^3. Finally we write the Generalized Stokes’s Theorem and show how it reproduces the fundamental theorem of calculus, Gauss’ Theorem, and Stoke’s Theorem. We will be a little sloppy throughout this chapter on the issue of convergence. It should be mentioned that the integrals considered will only make sense for suitably chosen regions and for reasonably behaved functions. We leave those picky details for the reader to discover. Also we mention that generally one should study how to integrate differential forms over a manifold. In a manifold we cannot generally parametrize the whole surface by just one set of parameters (in this chapter we will assume that our subsets of \mathbb{R} have a global parametrization) so it is necessary to patch together with something called the partition of unity. Just want to place what we are doing in this chapter in context, there is more to say about integrating forms. We will just do the fun part.

12.1 definitions

The definitions given here are pragmatical. There are better more abstract definitions but we’d need to know about push-forwards and pull-backs (take manifold theory or Riemannian geometry or ask me if you’re interested). I also assume that you will go back and read through chapter 4 to remind yourself how line and surface integrals are formulated.

\footnote{see Edward’s concept of a “paving”}
CHAPTER 12. GENERALIZED STOKES’ THEOREM

Definition 12.1.1. integral of one-form along oriented curve:

Let \(\alpha = \alpha_i dx^i \) be a one form and let \(C \) be an oriented curve with parametrization \(X(t) : [a,b] \to C \) then we define the integral of the one-form \(\alpha \) along the curve \(C \) as follows,

\[
\int_C \alpha \equiv \int_a^b \alpha_i(X(t)) \frac{dX^i}{dt}(t)dt
\]

where \(X(t) = (X^1(t), X^2(t), \ldots, X^n(t)) \) so we mean \(X^i \) to be the \(i^{th} \) component of \(X(t) \). Moreover, the indices are understood to range over the dimension of the ambient space, if we consider forms in \(\mathbb{R}^2 \) then \(i = 1, 2 \) if in \(\mathbb{R}^3 \) then \(i = 1, 2, 3 \) if in Minkowski \(\mathbb{R}^4 \) then \(i \) should be replaced with \(\mu = 0, 1, 2, 3 \) and so on.

Example 12.1.2. One form integrals vs. line integrals of vector fields: We begin with a vector field \(\vec{F} \) and construct the corresponding one-form \(\omega_{\vec{F}} = F_i dx^i \). Next let \(C \) be an oriented curve with parametrization \(X : [a,b] \subset \mathbb{R} \to C \subset \mathbb{R}^n \), observe

\[
\int_C \omega_{\vec{F}} = \int_a^b F_i(X(t)) \frac{dX^i}{dt}(t)dt = \int_C \vec{F} \cdot d\vec{l}
\]

You may note that the definition of a line integral of a vector field is not special to three dimensions, we can clearly construct the line integral in \(n \)-dimensions, likewise the correspondance \(\omega \) can be written between one-forms and vector fields in any dimension, provided we have a metric to lower the index of the vector field components. The same cannot be said of the flux-form correspondance, it is special to three dimensions for reasons we have explored previously.

Definition 12.1.3. integral of two-form over an oriented surface:

Let \(\beta = \frac{1}{2} \beta_{ij} dx^i \wedge dx^j \) be a two-form and let \(S \) be an oriented piecewise smooth surface with parametrization \(X(u,v) : D_2 \subset \mathbb{R}^2 \to S \subset \mathbb{R}^n \) then we define the integral of the two-form \(\beta \) over the surface \(S \) as follows,

\[
\int_S \beta \equiv \int_{D_2} \beta_{ij}(X(u,v)) \frac{\partial X^i}{\partial u}(u,v) \frac{\partial X^j}{\partial v}(u,v) du dv
\]

where \(X(u,v) = (X^1(u,v), X^2(u,v), \ldots, X^n(u,v)) \) so we mean \(X^i \) to be the \(i^{th} \) component of \(X(u,v) \). Moreover, the indices are understood to range over the dimension of the ambient space, if we consider forms in \(\mathbb{R}^2 \) then \(i, j = 1, 2 \) if in \(\mathbb{R}^3 \) then \(i, j = 1, 2, 3 \) if in Minkowski \(\mathbb{R}^4 \) then \(i, j \) should be replaced with \(\mu, \nu = 0, 1, 2, 3 \) and so on.

Example 12.1.4. Two-form integrals vs. surface integrals of vector fields in \(\mathbb{R}^3 \): We begin with a vector field \(\vec{F} \) and construct the corresponding two-form \(\Phi_{\vec{F}} = \frac{1}{2} \epsilon_{ijk} F_k dx^i \wedge dx^j \) which is to say \(\Phi_{\vec{F}} = F_1 dy \wedge dz + F_2 dz \wedge dx + F_3 dx \wedge dy \). Next let \(S \) be an oriented piecewise smooth surface with parametrization \(X : D \subset \mathbb{R}^2 \to S \subset \mathbb{R}^3 \), then

\[
\int_S \Phi_{\vec{F}} = \int_S \vec{F} \cdot d\vec{A}
\]
Proof: Recall that the normal to the surface S has the form,

$$N(u, v) = \frac{\partial X}{\partial u} \times \frac{\partial X}{\partial v} = \epsilon_{ijk} \frac{\partial X^i}{\partial u} \frac{\partial X^j}{\partial v} e_k$$

at the point $X(u, v)$. This gives us a vector which points along the outward normal to the surface and it is nonvanishing throughout the whole surface by our assumption that S is oriented. Moreover the vector surface integral of \vec{F} over S was defined by the formula,

$$\int_S \vec{F} \cdot d\vec{A} \equiv \int \int_D \vec{F}(X(u, v)) \cdot \vec{N}(u, v) \, dudv.$$

Now that the reader is reminded what's what, let's prove the proposition, dropping the (u,v) dependence to reduce clutter we find,

$$\int_S \vec{F} \cdot d\vec{A} = \int \int_D \vec{F} \cdot \vec{N} \, dudv$$

$$= \int \int_D F_k N_k \, dudv$$

$$= \int \int_D F_k \epsilon_{ijk} \frac{\partial X^i}{\partial u} \frac{\partial X^j}{\partial v} \, dudv$$

$$= \int \int_D (\Phi_{\vec{F}})_{ij} \frac{\partial X^i}{\partial u} \frac{\partial X^j}{\partial v} \, dudv$$

$$= \int_S \Phi_{\vec{F}}$$

Notice that we have again used our convention that $(\Phi_{\vec{F}})_{ij}$ refers to the tensor components of the 2-form $\Phi_{\vec{F}}$ meaning we have $\Phi_{\vec{F}} = (\Phi_{\vec{F}})_{ij} dx^i \otimes dx^j$ whereas with the wedge product $\Phi_{\vec{F}} = \frac{1}{2} (\Phi_{\vec{F}})_{ij} dx^i \wedge dx^j$, I mention this in case you are concerned there is a half in $\Phi_{\vec{F}}$ yet we never found a half in the integral. Well, we don’t expect to because we defined the integral of the form with respect to the tensor components of the form, again they don’t contain the half.

Example 12.1.5. Consider the vector field $\vec{F} = (0, 0, 3)$ then the corresponding two-form is simply $\Phi_{\vec{F}} = 3dx \wedge dy$. Let’s calculate the surface integral and two-form integrals over the square $D = [0, 1] \times [0, 1]$ in the xy-plane, in this case the parameters can be taken to be x and y so $X(x, y) = (x, y)$ and,

$$N(x, y) = \frac{\partial X}{\partial x} \times \frac{\partial X}{\partial y} = (1, 0, 0) \times (0, 1, 0) = (0, 0, 1)$$

which is nice. Now calculate,

$$\int_S \vec{F} \cdot d\vec{A} = \int \int_D \vec{F} \cdot \vec{N} \, dxdy$$

$$= \int \int_D (0, 0, 3) \cdot (0, 0, 1) \, dxdy$$

$$= \int_0^1 \int_0^1 3 \, dxdy$$

$$= 3.$$
Consider that $\Phi_F = 3dx \wedge dy = 3dx \otimes dy - 3dy \otimes dx$ therefore we may read directly that $(\Phi_F)_{12} = -(\Phi_F)_{21} = 3$ and all other components are zero,

$\int_S \Phi_F = \int_D (\Phi_F)_{ij} \frac{\partial X^i}{\partial x} \frac{\partial X^j}{\partial y} dx dy$

$= \int_D \left(3 \frac{\partial X^1}{\partial x} \frac{\partial X^2}{\partial y} - 3 \frac{\partial X^2}{\partial x} \frac{\partial X^1}{\partial y} \right) dx dy$

$= \int_0^1 \int_0^1 \left(3 \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - 3 \frac{\partial y}{\partial u} \frac{\partial x}{\partial v} \right) dx dy$

$= 3$.

Definition 12.1.6. integral of a three-form over an oriented volume:

Let $\gamma = \frac{1}{6} \beta_{ijk} dx^i \wedge dx^j \wedge dx^k$ be a three-form and let V be an oriented piecewise smooth volume with parametrization $X(u, v, w) : D_3 \subset \mathbb{R}^3 \to V \subset \mathbb{R}^n$ then we define the integral of the three-form γ in the volume V as follows,

$\int_V \gamma \equiv \int_{D_3} \gamma_{ijk}(X(u, v, w)) \frac{\partial X^i}{\partial u} \frac{\partial X^j}{\partial v} \frac{\partial X^k}{\partial w} dudvdw$

where $X(u, v, w) = (X^1(u, v, w), X^2(u, v, w), \ldots, X^n(u, v, w))$ so we mean X^i to be the i^{th} component of $X(u, v, w)$. Moreover, the indices are understood to range over the dimension of the ambient space, if we consider forms in \mathbb{R}^3 then $i, j, k = 1, 2, 3$ if in Minkowski \mathbb{R}^4 then i, j, k should be replaced with $\mu, \nu, \sigma = 0, 1, 2, 3$ and so on.

Finally we define the integral of a p-form over an p-dimensional subspace of \mathbb{R}, we assume that $p \leq n$ so that it is possible to embed such a subspace in \mathbb{R},

Definition 12.1.7. integral of a p-form over an oriented volume:

Let $\gamma = \frac{1}{p!} \beta_{i_1 \ldots i_p} dx^{i_1} \wedge \cdots \wedge dx^{i_p}$ be a p-form and let S be an oriented piecewise smooth subspace with parametrization $X(u_1, \ldots, u_p) : D_p \subset \mathbb{R}^p \to S \subset \mathbb{R}^n$ (for $n \geq p$) then we define the integral of the p-form γ in the subspace S as follows,

$\int_S \gamma \equiv \int_{D_p} \beta_{i_1 \ldots i_p}(X(u_1, \ldots, u_p)) \frac{\partial X^{i_1}}{\partial u_1} \cdots \frac{\partial X^{i_p}}{\partial u_p} du_1 \cdots du_p$

where $X(u_1, \ldots, u_p) = (X^1(u_1, \ldots, u_p), X^2(u_1, \ldots, u_p), \ldots, X^n(u_1, \ldots, u_p))$ so we mean X^i to be the i^{th} component of $X(u_1, \ldots, u_p)$. Moreover, the indices are understood to range over the dimension of the ambient space.
12.2 Generalized Stokes Theorem

The generalized Stokes theorem contains within it most of the main theorems of integral calculus, namely the fundamental theorem of calculus, the fundamental theorem of line integrals (a.k.a the FTC in three dimensions), Greene’s Theorem in the plane, Gauss’ Theorem and also Stokes Theorem, not to mention a myriad of higher dimensional not so commonly named theorems. The breadth of its application is hard to overstate, yet the statement of the theorem is simple,

Theorem 12.2.1. Generalized Stokes Theorem:

Let S be an oriented, piecewise smooth $(p+1)$-dimensional subspace of \mathbb{R} where $n \geq p + 1$ and let ∂S be its boundary which is consistently oriented then for a p-form α which behaves reasonably on S we have that

$$\int_{S} d\alpha = \int_{\partial S} \alpha$$

The proof of this theorem (and a more careful statement of it) can be found in a number of places, Susan Colley’s *Vector Calculus* or Steven H. Weintraub’s *Differential Forms: A Complement to Vector Calculus* or Spivak’s *Calculus on Manifolds* just to name a few. I believe the argument in Edward’s text is quite complete.

Lets work out how this theorem reproduces the main integral theorems of calculus.

Example 12.2.2. Fundamental Theorem of Calculus in \mathbb{R}: Let $f : \mathbb{R} \to \mathbb{R}$ be a zero-form then consider the interval $[a,b]$ in \mathbb{R}. If we let $S = [a,b]$ then $\partial S = \{a,b\}$. Further observe that $df = f'(x)dx$. Notice by the definition of one-form integration

$$\int_{S} df = \int_{a}^{b} f'(x)dx$$

However on the other hand we find (the integral over a zero-form is taken to be the evaluation map, perhaps we should have defined this earlier, oops., but its only going to come up here so I’m leaving it.)

$$\int_{\partial S} f = f(b) - f(a)$$

Hence in view of the definition above we find that

$$\int_{a}^{b} f'(x)dx = f(b) - f(a) \iff \int_{S} df = \int_{\partial S} f$$

Example 12.2.3. Fundamental Theorem of Calculus in \mathbb{R}^3: Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a zero-form then consider a curve C from $p \in \mathbb{R}^3$ to $q \in \mathbb{R}^3$ parametrized by $\phi : [a,b] \to \mathbb{R}^3$. Note that $\partial C = \{\phi(a) = p, \phi(b) = q\}$. Next note that

$$df = \frac{\partial f}{\partial x^i} dx^i$$
Then consider that the exterior derivative of a function corresponds to the gradient of the function thus we are not to surprised to find that

$$\int_C df = \int_a^b \frac{\partial f}{\partial x^i} dx^i dt = \int_C (\nabla f) \cdot d\vec{l}$$

On the other hand, we use the definition of the integral over a two point set again to find

$$\int_{\partial C} f = f(q) - f(p)$$

Hence if the Generalized Stokes Theorem is true then so is the FTC in three dimensions,

$$\int_C (\nabla f) \cdot d\vec{l} = f(q) - f(p) \iff \int_C df = \int_{\partial C} f$$

another popular title for this theorem is the "fundamental theorem for line integrals". As a final thought here we notice that this calculation easily generalizes to 2,4,5,6,... dimensions.

Example 12.2.4. Greene’s Theorem: Let us recall the statement of Greene’s Theorem as I have not replicated it yet in the notes, let D be a region in the xy-plane and let ∂D be its consistently oriented boundary then if $\vec{F} = (M(x,y),N(x,y),0)$ is well behaved on D

$$\int_{\partial D} Mdx + Ndy = \int \int_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy$$

We begin by finding the one-form corresponding to \vec{F} namely $\omega_F = Mdx + Ndy$ consider then that

$$d\omega_F = d(Mdx + Ndy) = dM \wedge dx + dN \wedge dy = \frac{\partial M}{\partial y} dy \wedge dx + \frac{\partial N}{\partial x} dx \wedge dy$$

which simplifies to,

$$d\omega_F = \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \wedge dy = \Phi \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \hat{k}$$

Thus, using our discussion in the last section we recall

$$\int_{\partial D} \omega_F = \int_{\partial D} \vec{F} \cdot d\vec{l} = \int_{\partial D} Mdx + Ndy$$

where we have reminded the reader that the notation in the rightmost expression is just another way of denoting the line integral in question. Next observe,

$$\int_D d\omega_F = \int_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \hat{k} \cdot d\vec{A}$$

And clearly, since $d\vec{A} = \hat{k} dx dy$ we have

$$\int_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \hat{k} \cdot d\vec{A} = \int_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy$$

Therefore,

$$\int_{\partial D} Mdx + Ndy = \int \int_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy \iff \int_D d\omega_F = \int_{\partial D} \omega_F$$
Example 12.2.5. Gauss Theorem: Let us recall Gauss Theorem to begin, for suitably defined \vec{F} and V,

$$\int_{\partial V} \vec{F} \cdot d\vec{A} = \int_V \nabla \cdot \vec{F} \, d\tau$$

First we recall our earlier result that

$$d(\Phi_F) = (\nabla \cdot \vec{F}) dx \wedge dy \wedge dz$$

Now note that we may integrate the three form over a volume,

$$\int_V d(\Phi_F) = \int_V (\nabla \cdot \vec{F}) dx dy dz$$

whereas,

$$\int_{\partial V} \Phi_F = \int_{\partial V} \vec{F} \cdot d\vec{A}$$

so there it is,

$$\int_V (\nabla \cdot \vec{F}) d\tau = \int_{\partial V} \vec{F} \cdot d\vec{A} \iff \int_V d(\Phi_F) = \int_{\partial V} \Phi_F$$

I have left a little detail out here, I may assign it for homework.

Example 12.2.6. Stokes Theorem: Let us recall Stokes Theorem to begin, for suitably defined \vec{F} and S,

$$\int_S (\nabla \times \vec{F}) \cdot d\vec{A} = \int_{\partial S} \vec{F} \cdot d\vec{l}$$

Next recall we have shown in the last chapter that,

$$d(\omega_F) = \Phi_{\nabla \times F}$$

Hence,

$$\int_S d(\omega_F) = \int_S (\nabla \times \vec{F}) \cdot d\vec{A}$$

whereas,

$$\int_{\partial S} \omega_F = \int_{\partial S} \vec{F} \cdot d\vec{l}$$

which tells us that,

$$\int_S (\nabla \times \vec{F}) \cdot d\vec{A} = \int_{\partial S} \vec{F} \cdot d\vec{l} \iff \int_S d(\omega_F) = \int_{\partial S} \omega_F$$

The Generalized Stokes Theorem is perhaps the most persuasive argument for mathematicians to be aware of differential forms, it is clear they allow for more deep and sweeping statements of the calculus. The generality of differential forms is what drives modern physicists to work with them, string theorists for example examine higher dimensional theories so they are forced to use a language more general than that of the conventional vector calculus. See the end of the next chapter for an example of such thinking.
Chapter 13

Hodge duality and the electromagnetic equations

13.1 Hodge duality on exterior algebras

Hodge duality stems from the observation that \(\dim(\Lambda^p(V)) = \dim(\Lambda^{n-p}(V)) \), you'll prove this in a homework. This indicates that there is a one to one correspondence between \((n-p)\)-forms and \(p\)-forms. When our vector space has a metric we can write this correspondence in a nice coordinate independent manner. Let's think about what we are trying to do, we need to find a way to create a \((n-p)\)-form from a \(p\)-form. An \((n-p)\)-form has \((n-p)\) antisymmetric components, however a \(p\)-form has \(p\)-antisymmetric components. If we summed the \(p\)-components against \(p\) of the components of the \(n\)-dimensional Levi-Civita symbol (defined below) then that will almost do it. We need the indices that are summed over to be half up and half down to insure coordinate independence of our correspondence, this means we should raise the \(p\) of the components. If you didn’t get what I was saying in this paragraph that’s ok, I was just trying to motivate the following definition.

Definition 13.1.1. Let \(V \) be a vector space with a metric \(g \) and basis \(\{e_i\} \). Define the Levi-Civita symbol \(\epsilon_{j_1j_2\cdots j_n} \) by the equation

\[
e_1 \wedge e_2 \wedge \cdots \wedge e_n = \frac{1}{n!} \epsilon_{j_1j_2\cdots j_n}(e^{j_1} \wedge e^{j_2} \wedge \cdots \wedge e^{j_n}).
\]

If \(\alpha = \frac{1}{p!} \alpha_{i_1i_2\cdots i_p}(e^{i_1} \wedge e^{i_2} \wedge \cdots \wedge e^{i_p}) \in \Lambda^p(V) \) then define \(\ast \alpha \in \Lambda^{n-p}(V) \) by

\[
\ast \alpha = \frac{1}{p!} \frac{1}{(n-p)!} \alpha_{i_1i_2\cdots i_p} \epsilon_{i_1i_2\cdots i_p j_1j_2\cdots j_{n-p}} (e^{j_1} \wedge e^{j_2} \wedge \cdots \wedge e^{j_{n-p}}).
\]

Thus the components of \(\ast \alpha \) are

\[
\ast \alpha_{j_1j_2\cdots j_{n-p}} = \frac{1}{p!} \alpha_{i_1i_2\cdots i_p} \epsilon_{i_1i_2\cdots i_p j_1j_2\cdots j_{n-p}}.
\]

201
where as always we refer to the tensor components when we say components and the indices are raised with respect to the metric g as we described at length previously,

$$\alpha^{i_1i_2\ldots i_p} = g^{i_1j_1}g^{i_2j_2}\ldots g^{i_pj_p}\alpha_{j_1j_2\ldots j_p}.$$

Note that α may be written in the form $\alpha = \alpha_{|i_1i_2\ldots i_p|}(e^{i_1} \wedge e^{i_2} \wedge \ldots \wedge e^{i_p})$ where $|i_1i_2\ldots i_p|$ denotes only multi-indices $i_1i_2\ldots i_p$ such that $i_1 < i_2 < \ldots < i_p$. Thus

$$*\alpha \equiv \frac{1}{(n-p)!} \alpha^{i_1i_2\ldots i_p} \epsilon_{|i_1i_2\ldots i_p|j_1j_2\ldots j_{n-p}}(e^{j_1} \wedge e^{j_2} \wedge \ldots \wedge e^{j_{n-p}}).$$

Example 13.1.2. Consider $V = \mathbb{R}^3$ with the Euclidean metric. Let us calculate the Hodge dual of $\alpha = e^1 \wedge e^2 \wedge e^3$. Now $\alpha = \alpha_{|123|}(e^1 \wedge e^2 \wedge e^3)$ where $\alpha_{|123|} = 1$ and $\alpha^{123} = \delta^{i_1}_{1}\delta^{j_2}_{2}\delta^{k_3}_{3}\alpha_{ijk} = \alpha_{123} = 1$. The only multi-index (ijk) such that $i < j < k$ is $(ijk) = (123)$ so

$$*\alpha = \frac{1}{(3-3)!} \epsilon_{123}\alpha^{123} = 1.$$

The number 1 is a $3-3 = 0$ form as we should expect.

Let's go the other way, let's find the Hodge dual of a number,

Example 13.1.3. Consider $V = \mathbb{R}^3$ with the Euclidean metric. Let us calculate the Hodge dual of $\beta = 1$, the components are very easy to find, there are none. Hence,

$$*(1) = \frac{1}{3!} \epsilon_{ijk} e^i \wedge e^j \wedge e^k = \frac{1}{3!} 6(e^1 \wedge e^2 \wedge e^3) = e^1 \wedge e^2 \wedge e^3 \quad (13.1)$$

To elaborate a little on where the 6 came from, we list only the nonzero terms in the above equation

$$\epsilon_{ijk} e^i \wedge e^j \wedge e^k = \epsilon_{123} e^1 \wedge e^2 \wedge e^3 + \epsilon_{231} e^2 \wedge e^3 \wedge e^1 + \epsilon_{312} e^3 \wedge e^1 \wedge e^2 + \epsilon_{321} e^3 \wedge e^2 \wedge e^1 + \epsilon_{213} e^2 \wedge e^1 \wedge e^3 + \epsilon_{132} e^1 \wedge e^3 \wedge e^2 \quad (13.2)$$

Notice that the antisymmetry of the Levi-Civita symbol and the antisymmetry of the wedge product conspire above to produce only positive numbers in each term.

Remark 13.1.4.

It would seem we have come full circle,

$$*\alpha = \beta \quad \text{and} \quad *\beta = \alpha \implies **\alpha = \alpha.$$

Generally when you take the Hodge dual twice you'll get a minus sign that depends both on the metric used and the degree of the form in question.

That’s enough of this for now. We’ll do much more in the next section where the notation is a little friendlier for differential forms.
13.2 Hodge duality and differential forms

Recall that a differential p-form on M is a "smooth" assignment of a p-form to each point in M. A differential p-form may be written in terms of a coordinate system (x^1, x^2, \ldots, x^n) as follows,

$$\alpha = \frac{1}{p!} \alpha_{i_1 i_2 \ldots i_p} dx^{i_1} \wedge dx^{i_2} \wedge \cdots \wedge dx^{i_p}$$

By "smooth" we simply mean the component functions $\alpha_{i_1 i_2 \ldots i_p}$ are "smooth" meaning that we can take arbitrarily many partial derivatives.

13.3 differential forms in \mathbb{R}^3

As customary, we begin with Cartesian coordinates $(x, y, z) = (x^1, x^2, x^3)$ on \mathbb{R}^3 with the standard Euclidean metric. Differential forms can be can be written in terms of dx, dy, dz as follows,

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree</th>
<th>Typical Element</th>
<th>"Basis" for $\Lambda^p(\mathbb{R}^3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>function</td>
<td>$p = 0$</td>
<td>f</td>
<td>1</td>
</tr>
<tr>
<td>one-form</td>
<td>$p = 1$</td>
<td>$\alpha = \alpha_i dx^i$</td>
<td>dx, dy, dz</td>
</tr>
<tr>
<td>two-form</td>
<td>$p = 2$</td>
<td>$\beta = \beta_{ij} dx^i \wedge dx^j$</td>
<td>$dy \wedge dz, \ dz \wedge dx, \ dx \wedge dy$</td>
</tr>
<tr>
<td>three-form</td>
<td>$p = 3$</td>
<td>$\gamma = g dx \wedge dy \wedge dz$</td>
<td>$dx \wedge dy \wedge dz$</td>
</tr>
</tbody>
</table>

Notice that in the box above f, α, β, g are all functions. The reason quotes appear on the word "basis" is that technically since the coefficients are functions not numbers these are not a basis in the usual sense of linear algebra. (ask me if you wish more clarification on this idea). Also notice that these are all the nontrivial forms, the three-form is also called a top form because it has the highest degree possible in three dimensions.

Let us return to the issue of Hodge duality. We work out the action of the Hodge dual on basis forms as defined in the table.

Example 13.3.1. Let us calculate the Hodge dual of $\alpha = dx^1 \wedge dx^2 \wedge dx^3$, to do this observe first that if (ijk) is a multi-index such that $i < j < k$ then $(ijk) = (123)$. Moreover since $\alpha^{123} = \delta^{1i} \delta^{2j} \delta^{3k} \alpha_{ijk} = \alpha_{123} = 1$ we have that

$$\ast \alpha = \frac{1}{(3-3)!} \epsilon_{123} \alpha^{123} = 1.$$

Let's go the other way, let's find the Hodge dual of a number,

Example 13.3.2. Let us calculate the Hodge dual of $\beta = 1$, the components are very easy to find, there are none. Hence,

$$\ast (1) = \frac{1}{(n-p)!} \epsilon_{ijk} dx^i \wedge dx^j \wedge dx^k = \frac{1}{(3)!} 6 dx^1 \wedge dx^2 \wedge dx^3 = dx^1 \wedge dx^2 \wedge dx^3$$
CHAPTER 13. HODGE DUALITY AND THE ELECTROMAGNETIC EQUATIONS

We have elaborated where the 6 came from before (see example 13.1.3),

Example 13.3.3. Let us calculate the Hodge dual of $\alpha = dx$, clearly it only has a x-component, indeed a little thought should convince you that $\alpha = \delta^1_1 dx^1$. We expect to find a $3-1 = 2$-form. Calculate from the definition as usual, $dx = \alpha_1 dx$ with $\alpha_1 = 1$ and $\alpha^1 = \delta^{11} \alpha_i = 1$ as well. Thus

$$
* (dx) = \frac{1}{(3-1)!} \epsilon_{ijk} \alpha^1 (dx^j \wedge dx^k) \\
= \frac{1}{2} \epsilon_{1jk} (dx^j \wedge dx^k) \\
= \frac{1}{2} (\epsilon_{123} dx^2 \wedge dx^3 + \epsilon_{132} dx^3 \wedge dx^2) \\
= \frac{1}{2} (dx^2 \wedge dx^3 - (-dx^2 \wedge dx^3)) \\
= dx^2 \wedge dx^3 \\
= dy \wedge dz
$$

(13.4)

Example 13.3.4. Let us calculate the Hodge dual of $\alpha = dy \wedge dz$. Notice that $\alpha = \alpha_{23}(dy \wedge dz)$ with $\alpha_{23} = 1$. Since $\alpha^{23} = \delta^{2j} \delta^{3i} \alpha_{ij} = \alpha_{23} = 1$, we have

$$
* \alpha = \frac{1}{(3-2)!} \epsilon_{23i} \alpha^{23} dx^i = \epsilon_{231} dx = dx.
$$

We have found the Hodge dual of a basis form of each degree. We collect all of the results which we found so far as well as a few more which you may prove yourself.

Proposition 13.3.5. For three dimensional Euclidean space Hodge duality gives us the following correspondences

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$*1 = dx \wedge dy \wedge dz$</td>
<td>$(dx \wedge dy \wedge dz) = 1$</td>
</tr>
<tr>
<td>$*dx = dy \wedge dz$</td>
<td>$(dy \wedge dz) = dx$</td>
</tr>
<tr>
<td>$*dy = dz \wedge dx$</td>
<td>$(dz \wedge dx) = dy$</td>
</tr>
<tr>
<td>$*dz = dx \wedge dy$</td>
<td>$(dx \wedge dy) = dz$</td>
</tr>
</tbody>
</table>

Observe that the wedge product plus Hodge duality is replicating the cross product, as $\hat{i} \times \hat{j} = \hat{k}$ similarly we find that $* (dx \wedge dy) = dz$. In order to better discuss how vector fields and differential forms are related we should give a mapping from one to the other. Notice that we have two choices. Either a vector field could map to an one-form or a two-form. Both one and two forms have three components and now that we see how Hodge duality relates one and two forms it is quite evident that the maps defined in the definition below are natural.

The definition below is restatement of definition 11.5.8 reformulated using the Hodge dual notation.

Definition 13.3.6. Let $\vec{A} = (A^1, A^2, A^3)$ denote a vector field in \mathbb{R}^3. Define then,

$$
\omega_A = \delta_{ij} A^i dx^j = A_i dx^i
$$
the so-called ”work-form” of \vec{A}. Also define

$$\Phi_A = \delta_{ik} A^k dx^i = A_i^* dx^i = \frac{1}{2} A_i \varepsilon_{ijk} (dx^j \wedge dx^k)$$

the so-called ”flux-form” of \vec{A}.

We have chosen to follow R.W.R. Darling’s *Differential Forms and Connections* notation for the flux and work form mappings. These mappings are important as they provide the link between vector analysis and differential forms in \mathbb{R}^3.

Example 13.3.7. Let $\vec{A} = (a, b, c)$ then

$$\omega_A = adx + bdy + cdz$$

and

$$\Phi_A = a(dy \wedge dz) + b(dz \wedge dx) + c(dx \wedge dy)$$

we have two versions of a vector field in the formalism of differential forms. In vector analysis physicists sometimes refer to certain vectors as ”polar” and others as ”axial”. Polar vectors flip to minus themselves under a coordinate inversion whereas axial vectors are invariant under a coordinate inversion. If you analyze the differential forms here in view of that discussion you’ll see that Φ_A is behaving like an axial (or pseudovector) and ω_A is behaving like a polar vector. What was hidden with the vector notation is now explicit with differential forms.

Remark 13.3.8.

Given a particular vector $\vec{A} = (a, b, c)$ we’ve shown that there are two possible corresponding forms, the ”work-form” ω_A or the ”flux-form” Φ_A. Hodge duality exchanges these two pictures, observe that

$$^* \omega_A = ^*(adx + bdy + cdz)$$

$$= a^* dx + b^* dy + c^* dz$$

$$= a(dy \wedge dz) + b(dz \wedge dx) + c(dx \wedge dy)$$

$$= \Phi_A.$$

Notice that if \vec{V} and \vec{W} are vector fields the similarity of $V \wedge W$ and the wedge product of certain one-forms can be made precise. Indeed one has

$$\omega_V \wedge \omega_W = \Phi_{\vec{V} \times \vec{W}}$$

(13.5)

and this is the sense in which the cross-product and wedge product are related.
13.4 differential forms in Minkowski space

The logic here follows fairly close to the last section, however the wrinkle is that the metric here demands more attention. We must take care to raise the indices on the forms when we Hodge dual them. First we list the basis differential forms, we have to add time to the mix (again $c = 1$ so $x^0 = ct = t$ if you worried about it)

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree</th>
<th>Typical Element</th>
<th>"Basis” for $\Lambda^p(\mathbb{R}^4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>function</td>
<td>$p = 0$</td>
<td>f</td>
<td>1</td>
</tr>
<tr>
<td>one-form</td>
<td>$p = 1$</td>
<td>$\alpha = \alpha_\mu dx^\mu$</td>
<td>dt, dx, dy, dz</td>
</tr>
<tr>
<td>two-form</td>
<td>$p = 2$</td>
<td>$\beta = \frac{1}{2} \beta_\mu dx^\mu \wedge dx^\nu$</td>
<td>$dy \wedge dz, dz \wedge dx, dx \wedge dy$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$dt \wedge dx, dt \wedge dy, dt \wedge dz$</td>
</tr>
<tr>
<td>three-form</td>
<td>$p = 3$</td>
<td>$\gamma = \frac{1}{3!} \gamma_\mu dx^\mu \wedge dx^\nu dx^\alpha$</td>
<td>$dx \wedge dy \wedge dz, dt \wedge dy \wedge dz$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$dt \wedge dx \wedge dz, dt \wedge dx \wedge dy$</td>
</tr>
<tr>
<td>four-form</td>
<td>$p = 4$</td>
<td>$gdt \wedge dx \wedge dy \wedge dz$</td>
<td>$dt \wedge dx \wedge dy \wedge dz$</td>
</tr>
</tbody>
</table>

Greek indices are defined to range over 0, 1, 2, 3. Here the top form is degree four since in four dimensions we can have four differentials without a repeat. Wedge products work the same as they have before, just now we have dt to play with. Hodge duality may offer some surprises though.

Definition 13.4.1. The antisymmetric symbol in flat \mathbb{R}^4 is denoted $\epsilon_{\mu \nu \alpha \beta}$ and it is defined by the value

$$\epsilon_{0123} = 1$$

plus the demand that it be completely antisymmetric.

We must not assume that this symbol is invariant under a cyclic exchange of indices. Consider,

$$\epsilon_{0123} = -\epsilon_{1023} \quad \text{flipped (01)}$$
$$= +\epsilon_{1203} \quad \text{flipped (02)}$$
$$= -\epsilon_{1230} \quad \text{flipped (03)}.$$ \hspace{1cm} (13.6)

Example 13.4.2. We now compute the Hodge dual of $\gamma = dx$ with respect to the Minkowski metric $\eta_{\mu \nu}$. First notice that dx has components $\gamma_\mu = \delta_\mu^1$ as is readily verified by the equation $dx = \delta_\mu^1 dx^\mu$. We raise the index using η, as follows

$$\gamma^\mu = \eta^{\mu \nu} \gamma_\nu = \eta^{\mu \nu} \delta_\nu^1 = \eta^{1 \mu} = \delta^{1 \mu}.$$
13.4. DIFFERENTIAL FORMS IN MINKOWSKI SPACE

Beginning with the definition of the Hodge dual we calculate
\[*(dx) = \frac{1}{(4-1)!} \delta^{\mu\nu} \epsilon_{\mu\nu\alpha\beta} dx^\nu \wedge dx^\alpha \wedge dx^\beta \]
\[= (1/6)\epsilon_{\mu\nu\alpha\beta} dx^\nu \wedge dx^\alpha \wedge dx^\beta \]
\[= (1/6)[\epsilon_{0123}dt \wedge dy \wedge dz + \epsilon_{1230}dy \wedge dz \wedge dt + \epsilon_{1302}dz \wedge dt \wedge dy + \epsilon_{1320}dz \wedge dy \wedge dt + \epsilon_{1203}dy \wedge dt \wedge dz + \epsilon_{1032}dt \wedge dz \wedge dy] \]
\[= (1/6)[-dt \wedge dy \wedge dz - dy \wedge dz \wedge dt - dz \wedge dt \wedge dy + dz \wedge dy \wedge dt + dy \wedge dt \wedge dz + dt \wedge dz \wedge dy] \]
\[= -dy \wedge dz \wedge dt. \quad (13.7) \]

The difference between the three and four dimensional Hodge dual arises from two sources, for one we are using the Minkowski metric so indices up or down makes a difference, and second the antisymmetric symbol has more possibilities than before because the Greek indices take four values.

Example 13.4.3. We find the Hodge dual of \(\gamma = dt \) with respect to the Minkowski metric \(\eta_{\mu\nu} \). Notice that \(dt \) has components \(\gamma_\mu = \delta^0_\mu \) as is easily seen using the equation \(dt = \delta^0_\mu dx^\mu \). Raising the index using \(\eta \) as usual, we have
\[\gamma^\mu = \eta^{\mu\nu} \gamma_\nu = \eta^{\mu\nu} \delta^0_\nu = -\eta^0_\mu = -\delta^0_\mu \]

where the minus sign is due to the Minkowski metric. Starting with the definition of Hodge duality we calculate
\[*(dt) = -(1/6)\delta^{\mu\nu} \epsilon_{\mu\nu\alpha\beta} dx^\nu \wedge dx^\alpha \wedge dx^\beta \]
\[= -(1/6)\epsilon_{\mu0\alpha\beta} dx^\nu \wedge dx^\alpha \wedge dx^\beta \]
\[= -(1/6)\epsilon_{0ijk} dx^i \wedge dx^j \wedge dx^k \]
\[= -(1/6)\epsilon_{ijk} dx^i \wedge dx^j \wedge dx^k \]
\[= -dx \wedge dy \wedge dz. \quad (13.8) \]

for the case here we are able to use some of our old three dimensional ideas. The Hodge dual of \(dt \) cannot have a \(dt \) in it which means our answer will only have \(dx,dy,dz \) in it and that is why we were able to shortcut some of the work, (compared to the previous example).

Example 13.4.4. Finally, we find the Hodge dual of \(\gamma = dt \wedge dx \) with respect to the Minkowski metric \(\eta_{\mu\nu} \). Recall that \(*(dt \wedge dx) = \frac{1}{(4-2)!} \epsilon_{\mu1\nu} \gamma^{01}(dx^\mu \wedge dx^\nu) \) and that \(\gamma^{01} = \eta^{0\lambda} \eta^{1\rho} \gamma_{\lambda\rho} = (-1)(1)\gamma_{01} = -1 \). Thus
\[*(dt \wedge dx) = -(1/2)\epsilon_{01\mu\nu} dx^\mu \wedge dx^\nu \]
\[= -(1/2)[\epsilon_{0123}dy \wedge dz + \epsilon_{0132}dz \wedge dy] \]
\[= -dy \wedge dz. \quad (13.9) \]

Notice also that since \(dt \wedge dx = -dx \wedge dt \) we find \(*(dx \wedge dt) = dy \wedge dz \).
The other Hodge duals of the basic two-forms follow from similar calculations. Here is a table of all the basic Hodge dualities in Minkowski space. In the table the terms are grouped as they are to emphasize the isomorphisms between the one-dimensional $\Lambda^0(M)$ and $\Lambda^4(M)$, the four-dimensional $\Lambda^1(M)$ and $\Lambda^3(M)$, the six-dimensional $\Lambda^2(M)$ and itself. Notice that the dimension of $\Lambda(M)$ is 16 which just happens to be 2^4.

Now that we’ve established how the Hodge dual works on the differentials we can easily take the Hodge dual of arbitrary differential forms on Minkowski space. We begin with the example of the 4-current \vec{J}.

Example 13.4.5. Four Current: often in relativistic physics we would even just call the four current simply the current, however it actually includes the charge density ρ and current density \vec{J}. Consequently, we define,

$$ (J^\mu) \equiv (\rho, \vec{J}), $$

moreover if we lower the index we obtain,

$$ (J_\mu) = (-\rho, \vec{J}) $$

which are the components of the current one-form,

$$ \vec{J} = J_\mu dx^\mu = -\rho dt + J_x dx + J_y dy + J_z dz $$

This equation could be taken as the definition of the current as it is equivalent to the vector definition. Now we can rewrite the last equation using the vectors \mapsto forms mapping as,

$$ \vec{J} = -\rho dt + \omega_J. $$

Consider the Hodge dual of \vec{J},

$$ *\vec{J} = *(\rho dt + J_x dx + J_y dy + J_z dz) $$

$$ = -\rho^*dt + J_x^*dx + J_y^*dy + J_z^*dz $$

$$ = \rho dx \wedge dy \wedge dz - J_x dy \wedge dz \wedge dt - J_y dz \wedge dx \wedge dt - J_z dx \wedge dy \wedge dt $$

$$ = \rho dx \wedge dy \wedge dz - \Phi_J \wedge dt. \tag{13.10} $$

we will find it useful to appeal to this calculation in a later section.
Example 13.4.6. Four Potential: often in relativistic physics we would call the four potential
simply the potential, however it actually includes the scalar potential \(V \) and the vector potential \(\vec{A} \)
discussed at the end of chapter 3). To be precise we define,

\[
(A^\mu) \equiv (V, \vec{A})
\]

we can lower the index to obtain,

\[
(A_\mu) = (-V, \vec{A})
\]

which are the components of the current one-form,

\[
A = A_\mu dx^\mu = -V dt + A_x dx + A_y dy + A_z dz
\]

Sometimes this equation is taken as the definition of the four potential. We can rewrite the four
potential vector field using the vectors \(\to \) forms mapping as,

\[
A = -V dt + \omega \vec{A}.
\]

The Hodge dual of \(A \) is

\[
* A = V dx \wedge dy \wedge dz - \Phi \vec{A} \wedge dt. \quad (13.11)
\]

Several steps were omitted because they are identical to the calculation of the dual of the 4-current
above.

Definition 13.4.7. Faraday tensor.

Given an electric field \(\vec{E} = (E_1, E_2, E_3) \) and a magnetic field \(\vec{B} = (B_1, B_2, B_3) \) we define a
2-form \(F \) by

\[
F = \omega_E \wedge dt + \Phi_B.
\]

This 2-form is often called the electromagnetic field tensor or the Faraday tensor. If
we write it in tensor components as \(F = \frac{1}{2} F_{\mu\nu} dx^\mu \wedge dx^\nu \) and then consider its matrix \((F_{\mu\nu}) \)
of components then it is easy to see that

\[
(F_{\mu\nu}) = \begin{pmatrix}
0 & -E_1 & -E_2 & -E_3 \\
E_1 & 0 & B_3 & -B_2 \\
E_2 & -B_3 & 0 & B_1 \\
E_3 & B_2 & -B_1 & 0
\end{pmatrix} \quad (13.12)
\]

Convention: Notice that when we write the matrix version of the tensor components we take the
first index to be the row index and the second index to be the column index, that means \(F_{01} = -E_1 \)
whereas \(F_{10} = E_1 \).

Example 13.4.8. In this example we demonstrate various conventions which show how one can
transform the field tensor to other type tensors. Define a type \((1,1)\) tensor by raising the first index
by the inverse metric \(\eta^{\mu\nu} \) as follows,

\[
F^{\alpha\nu} = \eta^{\alpha\mu} F_{\mu\nu}
\]
CHAPTER 13. HODGE DUALITY AND THE ELECTROMAGNETIC EQUATIONS

The zeroth row,
\[(F^0_\nu) = (\eta^0\nu F_{\mu\nu}) = (0, E_1, E_2, E_3)\]
Then row one is unchanged since \(\eta^{1\mu} = \delta^{1\mu}\),
\[(F^1_\nu) = (\eta^{1\mu} F_{\mu\nu}) = (E_1, 0, B_3, -B_2)\]
and likewise for rows two and three. In summary the (1,1) tensor \(F' = F_\nu^\alpha (\frac{\partial}{\partial x^\alpha} \otimes dx^\nu)\) has the components below
\[
(F^\alpha_\nu) = \begin{pmatrix} 0 & E_1 & E_2 & E_3 \\ E_1 & 0 & B_3 & -B_2 \\ E_2 & -B_3 & 0 & B_1 \\ E_3 & B_2 & -B_1 & 0 \end{pmatrix}. \tag{13.13}
\]
At this point we raise the other index to create a (2,0) tensor,
\[
F^{\alpha\beta} = \eta^{\alpha\mu} \eta^{\beta\nu} F_{\mu\nu}
\]
and we see that it takes one copy of the inverse metric to raise each index and \(F^{\alpha\beta} = \eta^{\beta\nu} F^\alpha_\nu\), so we can pick up where we left off in the (1,1) case. We could proceed case by case like we did with the (1,1) case but it is better to use matrix multiplication. Notice that \(\eta^{\beta\nu} F^\alpha_\nu = F^\alpha_\nu \eta^{\beta\nu}\) is just the \((\alpha, \beta)\) component of the following matrix product,
\[
(F^{\alpha\beta}) = \begin{pmatrix} 0 & E_1 & E_2 & E_3 \\ E_1 & 0 & B_3 & -B_2 \\ E_2 & -B_3 & 0 & B_1 \\ E_3 & B_2 & -B_1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & E_1 & E_2 & E_3 \\ -E_1 & 0 & B_3 & -B_2 \\ -E_2 & -B_3 & 0 & B_1 \\ -E_3 & B_2 & -B_1 & 0 \end{pmatrix}. \tag{13.15}
\]

So we find a (2,0) tensor \(F'' = F^{\alpha\beta} (\frac{\partial}{\partial x^\alpha} \otimes \frac{\partial}{\partial x^\beta})\). Other books might even use the same symbol \(F\) for \(F'\) and \(F''\), it is in fact typically clear from the context which version of \(F\) one is thinking about. Pragmatically physicists just write the components so it’s not even an issue for them.

Example 13.4.9. Field tensor’s dual: We now calculate the Hodge dual of the field tensor,
\[
{^*F} = {^*}((\omega_E \wedge dt + \Phi_B) = E_x{^*}(dx \wedge dt) + E_y{^*}(dy \wedge dt) + E_z{^*}(dz \wedge dt) + B_x{^*}(dy \wedge dz) + B_y{^*}(dz \wedge dx) + B_z{^*}(dx \wedge dy) = E_x dy \wedge dz + E_y dz \wedge dx + E_z dx \wedge dy - B_x dx \wedge dt - B_y dy \wedge dt - B_z dz \wedge dt = \Phi_E - \omega_B \wedge dt.
\]
we can also write the components of \({^*F}\) in matrix form:
\[
({^*F}_{\mu\nu}) = \begin{pmatrix} 0 & B_1 & B_2 & B_3 \\ -B_1 & 0 & E_3 & -E_2 \\ -B_2 & -E_3 & 0 & E_1 \\ -B_3 & E_2 & -E_1 & 0 \end{pmatrix}. \tag{13.16}
\]
Notice that the net-effect of Hodge duality on the field tensor was to make the exchanges \(\vec{E} \leftrightarrow -\vec{B}\) and \(\vec{B} \leftrightarrow \vec{E}\).
13.5 exterior derivatives of charge forms, field tensors, and their duals

In the last chapter we found that the single operation of the exterior differentiation reproduces the gradient, curl and divergence of vector calculus provided we make the appropriate identifications under the "work" and "flux" form mappings. We now move on to some four dimensional examples.

Example 13.5.1. Charge conservation: Consider the 4-current we introduced in example 13.4.5. Take the exterior derivative of the dual of the current to get,

\[
d(\ast J) = d(\partial_t \rho dt \wedge dx \wedge dy \wedge dz - \Phi \wedge \vec{J} \wedge dt) \\
= (\partial_t \rho) dt \wedge dx \wedge dy \wedge dz - d(\vec{J} dx \wedge dy + J_y dz \wedge dx + J_z dx \wedge dy) \wedge dt \\
= \partial_t \rho dt \wedge dx \wedge dy \wedge dz \\
- \partial_x J_x dx \wedge dy \wedge dz \wedge dt - \partial_y J_y dz \wedge dx \wedge dt - \partial_z J_z dx \wedge dy \wedge dz \wedge dt \\
= (\partial_t \rho + \nabla \cdot \vec{J}) dt \wedge dx \wedge dy \wedge dz.
\]

We work through the same calculation using index techniques,

\[
d(\ast J) = d(\rho dx \wedge dy \wedge dz - \Phi \wedge dt) \\
= d(\partial_t \rho) dt \wedge dx \wedge dy \wedge dz - d(\frac{1}{2} \epsilon_{ijk} J_i dx^j \wedge dx^k \wedge dt) \\
= (\partial_t \rho) dt \wedge dx \wedge dy \wedge dz - \frac{1}{2} \epsilon_{ijk} \partial_m J_i dx^m \wedge dx^j \wedge dx^k \wedge dt \\
= (\partial_t \rho) dt \wedge dx \wedge dy \wedge dz - \frac{1}{2} \epsilon_{ijk} \partial_m \partial_n J_i dx^m \wedge dx^j \wedge dx^k \wedge dt \\
= (\partial_t \rho) dt \wedge dx \wedge dy \wedge dz - \frac{1}{2} \delta_{mn} \partial_n J_i dx \wedge dy \wedge dz \wedge dt \\
= (\partial_t \rho + \nabla \cdot \vec{J}) dt \wedge dx \wedge dy \wedge dz.
\]

Observe that we can now phrase charge conservation by the following equation

\[
d(\ast J) = 0 \quad \iff \quad \partial_t \rho + \nabla \cdot \vec{J} = 0.
\]

In the classical scheme of things this was a derived consequence of the equations of electromagnetism, however it is possible to build the theory regarding this equation as fundamental. Rindler describes that formal approach in a late chapter of "Introduction to Special Relativity".

Proposition 13.5.2.

If \((A_\mu) = (-V, \vec{A})\) is the vector potential (which gives the magnetic field) and \(A = -V dt + \omega \vec{A}\), then \(dA = \omega \vec{E} + \Phi \vec{B} = F\) where \(F\) is the electromagnetic field tensor. Moreover, \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu\).
Continuing the calculation, \(\vec{B}\) flux form of \(\partial_t A\) and \(\vec{B} = \nabla \times \vec{A}\) and some vector identities:

\[
d A = d(-V dt + \omega) \\
= -dV \wedge dt + d(\omega) \\
= -dV \wedge dt + (\partial_t A) dt \wedge dx^i + (\partial_j A_i) dx^j \wedge dx^i \\
= \omega(-\nabla V) \wedge dt - \omega \partial_t \vec{A} \wedge dt + \Phi_{\nabla \times \vec{A}} \\
= (\omega(-\nabla V) - \omega \partial_t) \wedge dt + \Phi_{\nabla \times \vec{A}} \\
= \omega(-\nabla V - \omega \partial_t) \wedge dt + \Phi_{\nabla \times \vec{A}} \\
= \omega \vec{E} \wedge dt + \Phi_{\vec{B}} \\
= F = \frac{1}{2} F_{\mu \nu} dx^\mu \wedge dx^\nu.
\]

Moreover we also have:

\[
d A = d(A_\nu) \wedge dx^\nu \\
= \partial_\mu A_\nu dx^\mu \wedge dx^\nu \\
= \frac{1}{2}(\partial_\mu A_\nu - \partial_\nu A_\mu) dx^\mu \wedge dx^\nu + \frac{1}{2}(\partial_\mu A_\nu + \partial_\nu A_\mu) dx^\mu \wedge dx^\nu \\
= \frac{1}{2}(\partial_\mu A_\nu - \partial_\nu A_\mu) dx^\mu \wedge dx^\nu.
\]

Comparing the two identities we see that \(F_{\mu \nu} = \partial_\mu A_\nu - \partial_\nu A_\mu\) and the proposition follows.

Example 13.5.3. Exterior derivative of the field tensor: We have just seen that the field tensor is the exterior derivative of the potential one-form. We now compute the exterior derivative of the field tensor expecting to find Maxwell’s equations since the derivative of the fields are governed by Maxwell’s equations.

\[
dF = d(E_i dx^i \wedge dt) + d(\Phi_{\vec{B}}) \\
= \partial_m E_i (dx^m \wedge dx^i \wedge dt) + (\nabla \cdot \vec{B}) dx \wedge dy \wedge dz + \frac{1}{2} \epsilon_{ijk}(\partial_i B_j)(dt \wedge dx^j \wedge dx^k). \tag{13.17}
\]

W pause here to explain our logic. In the above we dropped the \(\partial_i E_i dt \wedge \cdots\) term because it was wedged with another \(dt\) in the term so it vanished. Also we broke up the exterior derivative on the flux form of \(\vec{B}\) into the space and then time derivative terms and used our work in example 11.5.11.

Continuing the calculation,

\[
dF = [\partial_\mu E_\nu + \frac{1}{2} \epsilon_{ijk}(\partial_i B_j)] dx^j \wedge dx^k \wedge dt + (\nabla \cdot \vec{B}) dx \wedge dy \wedge dz \\
= [\partial_\mu E_\nu - \partial_\nu E_\mu + \epsilon_{123}(\partial_i B_i)] dx \wedge dy \wedge dt \\
+ [\partial_\mu E_\nu - \partial_\nu E_\mu + \epsilon_{231}(\partial_i B_i)] dx \wedge dz \wedge dt \\
+ [\partial_\mu E_\nu - \partial_\nu E_\mu + \epsilon_{123}(\partial_i B_i)] dy \wedge dz \wedge dt \\
+ (\nabla \cdot \vec{B}) dx \wedge dy \wedge dz \\
= (\nabla \times \vec{E} + \partial_t \vec{B}) \Phi_e dx \wedge dt + (\nabla \cdot \vec{B}) dx \wedge dy \wedge dz \\
= \Phi \nabla \times \vec{E} + \partial_t \vec{B} dx \wedge dt + (\nabla \cdot \vec{B}) dx \wedge dy \wedge dz
\]
where we used the fact that Φ is an isomorphism of vector spaces (at a point) and $\Phi_{e_1} = dy \wedge dz$, $\Phi_{e_2} = dz \wedge dx$, and $\Phi_{e_3} = dx \wedge dy$. Behold, we can state two of Maxwell’s equations as

$$dF = 0 \iff \nabla \times \vec{E} + \partial_t \vec{B} = 0, \quad \nabla \cdot \vec{B} = 0$$ \quad (13.19)

Example 13.5.4. We now compute the exterior derivative of the dual to the field tensor:

$$d^* F = d(-B_i dx^i \wedge dt) + d(\Phi_{\vec{E}}) = \Phi_{-\nabla \times \vec{B}} + \partial_t \vec{E} \wedge dt + (\nabla \cdot \vec{E}) dx \wedge dy \wedge dz$$ \quad (13.20)

This follows directly from the last example by replacing $\vec{E} \mapsto -\vec{B}$ and $\vec{B} \mapsto \vec{E}$. We obtain the two inhomogeneous Maxwell’s equations by setting $d^* F$ equal to the Hodge dual of the 4-current,

$$d^* F = \mu_o \cdot \vec{J} \iff -\nabla \times \vec{B} + \partial_t \vec{E} = -\mu_o \cdot \vec{J}, \quad \nabla \cdot \vec{E} = \rho$$ \quad (13.21)

Here we have used example 13.4.5 to find the RHS of the Maxwell equations.

We now know how to write Maxwell’s equations via differential forms. The stage is set to prove that Maxwell’s equations are Lorentz covariant, that is they have the same form in all inertial frames.

13.5.1 coderivatives and comparing to Griffith’s relativitic E & M

Optional section, for those who wish to compare our tensorial E & M with that of Griffith’s, you may skip ahead to the next section if not interested

I should mention that this is not the only way to phrase Maxwell’s equations in terms of differential forms. If you try to see how what we have done here compares with the equations presented in Griffith’s text it is not immediately obvious. He works with $F^\mu\nu$ and $G^\mu\nu$ and J^μ none of which are the components of differential forms. Nevertheless he recovers Maxwell’s equations as $\partial_\mu F^\mu\nu = J^\nu$ and $\partial_\mu G^\mu\nu = 0$. If we compare the components of $^* F$ with equation 12.119 (the matrix form of $G^\mu\nu$) in Griffith’s text,

$$(G^\mu\nu(c = 1)) = \begin{pmatrix} 0 & B_1 & B_2 & B_3 \\ -B_1 & 0 & -E_3 & E_2 \\ -B_2 & -E_3 & 0 & -E_1 \\ -B_3 & E_2 & -E_1 & 0 \end{pmatrix} = -(^* F^\mu\nu).$$ \quad (13.22)

we find that we obtain the negative of Griffith’s ”dual tensor” (recall that raising the indices has the net-effect of multiplying the zeroth row and column by -1). The equation $\partial_\mu F^\mu\nu = J^\nu$ does not follow directly from an exterior derivative, rather it is the component form of a ”coderivative”. The coderivative is defined $\delta = ^* d^*$, it takes a p-form to an $(n-p)$-form then d makes it a $(n-p+1)$-form then finally the second Hodge dual takes it to an $(n-(n-p+1))$-form. That is δ takes a p-form to a $p-1$-form. We stated Maxwell’s equations as

$$dF = 0 \quad d^* F = ^* \vec{J}.$$
Now we can take the Hodge dual of the inhomogeneous equation to obtain,

\[\ast d \ast F = \delta F = \ast \ast J = \pm J \]

where I leave the sign for you to figure out. Then the other equation

\[\partial_{\mu} G^{\mu \nu} = 0 \]

can be understood as the component form of \(\delta \ast F = 0 \) but this is really \(dF = 0 \) in disguise,

\[0 = \delta \ast F = \ast d \ast F = \pm \ast dF \iff dF = 0 \]

so even though it looks like Griffith’s is using the dual field tensor for the homogeneous Maxwell’s equations and the field tensor for the inhomogeneous Maxwell’s equations it is in fact not the case. The key point is that there are coderivatives implicit within Griffith’s equations, so you have to read between the lines a little to see how it matched up with what we’ve done here. I have not entirely proved it here, to be complete we should look at the component form of \(\delta F = J \) and explicitly show that this gives us \(\partial_{\mu} F^{\mu \nu} = J^{\nu} \), I don’t think it is terribly difficult but I’ll leave it to the reader.

Comparing with Griffith’s is fairly straightforward because he uses the same metric as we have. Other texts use the mostly negative metric, it’s just a convention. If you try to compare to such a book you’ll find that our equations are almost the same up to a sign. One good careful book is Reinhold A. Bertlmann’s *Anomalies in Quantum Field Theory* you will find much of what we have done here done there with respect to the other metric. Another good book which shares our conventions is Sean M. Carroll’s *An Introduction to General Relativity: Spacetime and Geometry*, that text has a no-nonsense introduction to tensors forms and much more over a curved space (in contrast to our approach which has been over a vector space which is flat). By now there are probably thousands of texts on tensors; these are a few we have found useful here.

13.6 Maxwell’s equations are relativistically covariant

Let us begin with the definition of the field tensor once more. We define the components of the field tensor in terms of the 4-potentials as we take the viewpoint those are the basic objects (not the fields). If

\[F_{\mu \nu} \equiv \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}, \]

then the field tensor \(F = F_{\mu \nu} dx^\mu \otimes dx^\nu \) is a tensor, or is it? We should check that the components transform as they ought according to the discussion in section ??.

\[x^\mu = \Lambda^\alpha_{\nu} x^\nu \quad \Rightarrow \quad \partial_{\nu} = (\Lambda^{-1})^\alpha_{\nu} \partial_{\alpha} \]

(1.) \(\bar{A}_{\mu} = (\Lambda^{-1})^\alpha_{\mu} A_{\alpha} \)

(2.) \(\frac{\partial}{\partial \bar{x}^\mu} = \frac{\partial x^\nu}{\partial \bar{x}^\mu} \frac{\partial}{\partial x^\nu} = (\Lambda^{-1})^\beta_{\nu} \frac{\partial}{\partial x^\beta} \quad (13.23) \)

where (2.) is simply the chain rule of multivariate calculus and (1.) is not at all obvious. We will assume that (1.) holds, that is we assume that the 4-potential transforms in the appropriate way.
for a one-form. In principle one could prove that from more base assumptions. After all electromagnetism is the study of the interaction of charged objects, we should hope that the potentials are derivable from the source charge distribution. Indeed, there exist formulas to calculate the potentials for moving distributions of charge. We could take those as definitions for the potentials, then it would be possible to actually calculate if (1.) is true. We’d just change coordinates via a Lorentz transformation and verify (1.). For the sake of brevity we will just assume that (1.) holds. We should mention that alternatively one can show the electric and magnetic fields transform as to make $F_{\mu\nu}$ a tensor. Those derivations assume that charge is an invariant quantity and just apply Lorentz transformations to special physical situations to deduce the field transformation rules. See Griffith’s chapter on special relativity or look in Resnick for example.

Let us find how the field tensor transforms assuming that (1.) and (2.) hold, again we consider $\tilde{x}^\mu = \Lambda^\mu_\nu x^\nu$,

$$\tilde{F}_{\mu\nu} = \tilde{\partial}_\mu \tilde{A}_\nu - \tilde{\partial}_\nu \tilde{A}_\mu
= (\Lambda^{-1})^\alpha_\mu \partial_\alpha ((\Lambda^{-1})^\beta_\nu A_\beta) - (\Lambda^{-1})^\beta_\nu \partial_\beta ((\Lambda^{-1})^\alpha_\mu A_\alpha)
= (\Lambda^{-1})^\alpha_\mu (\Lambda^{-1})^\beta_\nu (\partial_\alpha A_\beta - \partial_\beta A_\alpha)
= (\Lambda^{-1})^\alpha_\mu (\Lambda^{-1})^\beta_\nu F_{\alpha\beta}.\quad (13.24)$$

therefore the field tensor really is a tensor over Minkowski space.

Proposition 13.6.1.

The dual to the field tensor is a tensor over Minkowski space. For a given Lorentz transformation $\tilde{x}^\mu = \Lambda^\mu_\nu x^\nu$ it follows that

$$\star \tilde{F}_{\mu\nu} = (\Lambda^{-1})^\alpha_\mu (\Lambda^{-1})^\beta_\nu F_{\alpha\beta}$$

Proof: homework (just kidding in 2010), it follows quickly from the definition and the fact we already know that the field tensor is a tensor.

Proposition 13.6.2.

The four-current is a four-vector. That is under the Lorentz transformation $\tilde{x}^\mu = \Lambda^\mu_\nu x^\nu$ we can show,

$$\tilde{J}_\mu = (\Lambda^{-1})^\alpha_\mu J_\alpha$$

Proof: follows from arguments involving the invariance of charge, time dilation and length contraction. See Griffith’s for details, sorry we have no time.

Corollary 13.6.3.

The dual to the four current transforms as a 3-form. That is under the Lorentz transformation $\tilde{x}^\mu = \Lambda^\mu_\nu x^\nu$ we can show,

$$\star \tilde{J}_{\mu\nu\gamma} = (\Lambda^{-1})^\alpha_\mu (\Lambda^{-1})^\beta_\nu (\Lambda^{-1})^\gamma_\sigma J_{\alpha\beta\gamma}$$
Up to now the content of this section is simply an admission that we have been a little careless in defining things up to this point. The main point is that if we say that something is a tensor then we need to make sure that is in fact the case. With the knowledge that our tensors are indeed tensors the proof of the covariance of Maxwell’s equations is trivial.

\[dF = 0 \quad d^* F = * J \]

are coordinate invariant expressions which we have already proved give Maxwell’s equations in one frame of reference, thus they must give Maxwell’s equations in all frames of reference.

The essential point is simply that

\[F = \frac{1}{2} F_{\mu\nu} dx^\mu \wedge dx^\nu = \frac{1}{2} \tilde{F}_{\mu\nu} d\tilde{x}^\mu \wedge d\tilde{x}^\nu \]

Again, we have no hope for the equation above to be true unless we know that

\[\tilde{F}_{\mu\nu} = (\Lambda^{-1})^\alpha_\mu (\Lambda^{-1})^\beta_\nu F_{\alpha\beta}. \]

That transformation follows from the fact that the four-potential is a four-vector. It should be mentioned that others prefer to "prove" the field tensor is a tensor by studying how the electric and magnetic fields transform under a Lorentz transformation. We in contrast have derived the field transforms based ultimately on the seemingly innocuous assumption that the four-potential transforms according to \(\tilde{A}_\mu = (\Lambda^{-1})^\alpha_\mu A_\alpha \). OK enough about that.

So the fact that Maxwell’s equations have the same form in all relativistically inertial frames of reference simply stems from the fact that we found Maxwell’s equation were given by an arbitrary frame, and the field tensor looks the same in the new barred frame so we can again go through all the same arguments with barred coordinates. Thus we find that Maxwell’s equations are the same in all relativistic frames of reference, that is if they hold in one inertial frame then they will hold in any other frame which is related by a Lorentz transformation.

13.7 Poincare’s Lemma and \(d^2 = 0 \)

This section is in large part inspired by M. Gockeler and T. Schucker’s *Differential geometry, gauge theories, and gravity* page 20-22.

Proposition 13.7.1.

The exterior derivative of the exterior derivative is zero. \(d^2 = 0 \)

Proof: Let \(\alpha \) be an arbitrary \(p \)-form then

\[
 d\alpha = \frac{1}{p!} (\partial_m \alpha_{i_1 i_2 \ldots i_p}) dx^m \wedge dx^{i_1} \wedge dx^{i_2} \wedge \cdots \wedge dx^{i_p} \quad (13.25)
\]

then differentiate again,

\[
 d(d\alpha) = d \left[\frac{1}{p!} (\partial_m \alpha_{i_1 i_2 \ldots i_p}) dx^m \wedge dx^{i_1} \wedge dx^{i_2} \wedge \cdots \wedge dx^{i_p} \right] = d \frac{1}{p!} (\partial_k \partial_m \alpha_{i_1 i_2 \ldots i_p}) dx^k \wedge dx^m \wedge dx^{i_1} \wedge dx^{i_2} \wedge \cdots \wedge dx^{i_p} \quad (13.26)
\]

= 0
13.7. **POINCARE’S LEMMA AND D² = 0**

since the partial derivatives commute whereas the wedge product anticommutes so we note that the pair of indices (k,m) is symmetric for the derivatives but antisymmetric for the wedge, as we know the sum of symmetric against antisymmetric vanishes (see equation [15.1] part iv if you forgot.)

Definition 13.7.2.

A differential form \(\alpha \) is **closed** iff \(d\alpha = 0 \). A differential form \(\beta \) is **exact** iff there exists \(\gamma \) such that \(\beta = d\gamma \).

Proposition 13.7.3.

All exact forms are closed. However, there exist closed forms which are not exact.

Proof: Exact implies closed is easy, let \(\beta \) be exact such that \(\beta = d\gamma \) then

\[
d\beta = d(d\gamma) = 0
\]

using the theorem \(d^2 = 0 \). To prove that there exists a closed form which is not exact it suffices to give an example. A popular example (due to its physical significance to magnetic monopoles, Dirac Strings and the like..) is the following differential form in \(\mathbb{R}^2 \)

\[
\phi = \frac{1}{x^2 + y^2} (xdy - ydx) \quad (13.27)
\]

I’ll let you show that \(d\phi = 0 \) in homework. Observe that if \(\phi \) were exact then there would exist \(f \) such that \(\phi = df \) meaning that

\[
\frac{\partial f}{\partial x} = -\frac{y}{x^2 + y^2}, \quad \frac{\partial f}{\partial y} = \frac{x}{x^2 + y^2}
\]

which are solved by \(f = \arctan(y/x) + c \) where \(c \) is arbitrary. Observe that \(f \) is ill-defined along the \(y \)-axis \(x = 0 \) (this is the Dirac String if we put things in context), however the natural domain of \(\phi \) is \(\mathbb{R}^{n \times n} - \{(0,0)\} \).

Poincare’ suggested the following partial converse, he said closed implies exact provided we place a topological restriction on the domain of the form. In particular, if the domain of a closed form is simply connected then it can be shown to be exact. I believe Poincare proved the equivalence of closed and exact forms on ”star-shaped” regions.

Proposition 13.7.4.

If \(U \subseteq \mathbb{R} \) is star-shaped and \(\text{dom}(\phi) = U \) then \(\phi \) is closed iff \(\phi \) is exact.
Definition 13.7.5. de Rham cohomology:

We define several real vector spaces of differential forms over some subset U of \mathbb{R},

$$Z^p(U) \equiv \{ \phi \in \Lambda^p U \mid \phi \text{ closed} \}$$

the space of closed p-forms on U. Then,

$$B^p(U) \equiv \{ \phi \in \Lambda^p U \mid \phi \text{ exact} \}$$

the space of exact p-forms where by convention $B^0(U) = \{0\}$ The de Rham cohomology groups are defined by the quotient of closed/exact,

$$H^p(U) \equiv Z^p(U)/B^p(U).$$

the $\dim(H^pU) = p^{th}$ Betti number of U.

We observe that star shaped regions have all the Betti numbers zero since $Z^p(U) = B^p(U)$ implies that $H^p(U) = \{0\}$. Of course there is much more to say about Cohomology, I just wanted to give you a taste and alert you to the fact that differential forms can be used to reveal aspects of topology. Cohomology is basically a method to try to classify certain topological features of spaces. Not all algebraic topology uses differential forms though, in fact if you take the course in it here you’ll spend most of your time on other calculational schemes besides the de Rham cohomology.

13.8 Electrostatics in Five dimensions

We will endeavor to determine the electric field of a point charge in 5 dimensions where we are thinking of adding an extra spatial dimension. Let’s call the fourth spatial dimension the w-direction so that a typical point in space time will be (t, x, y, z, w). First we note that the electromagnetic field tensor can still be derived from a one-form potential,

$$A = -\rho dt + A_1 dx + A_2 dy + A_3 dz + A_4 dw$$

we will find it convenient to make our convention for this section that $\mu, \nu, ..., = 0, 1, 2, 3, 4$ whereas $m, n, ..., = 1, 2, 3, 4$ so we can rewrite the potential one-form as,

$$A = -\rho dt + A_m dx^m$$

This is derived from the vector potential $A^\mu = (\rho, A^m)$ under the assumption we use the natural generalization of the Minkowski metric, namely the 5 by 5 matrix,

$$\langle \eta_{\mu\nu} \rangle = \begin{pmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = (\eta^{\mu\nu}) \quad (13.28)$$
we could study the linear isometries of this metric, they would form the group $O(1,4)$. Now we form the field tensor by taking the exterior derivative of the one-form potential,

$$F = dA = \frac{1}{2} (\partial_\mu \partial_\nu - \partial_\nu \partial_\mu) dx^\mu \wedge dx^\nu$$

now we would like to find the electric and magnetic "fields" in 4 dimensions. Perhaps we should say 4+1 dimensions, just understand that I take there to be 4 spatial directions throughout this discussion if in doubt. Note that we are faced with a dilemma of interpretation. There are 10 independent components of a 5 by 5 antisymmetric tensor, naively we would expect that the electric and magnetic fields each would have 4 components, but that is not possible, we’d be missing two components. The solution is this, the time components of the field tensor are understood to correspond to the electric part of the fields whereas the remaining 6 components are said to be magnetic. This aligns with what we found in 3 dimensions, its just in 3 dimensions we had the fortunate quirk that the number of linearly independent one and two forms were equal at any point. This definition means that the magnetic field will in general not be a vector field but rather a "flux" encoded by a 2-form.

$$\begin{pmatrix}
0 & -E_x & -E_y & -E_z & -E_w \\
E_x & 0 & B_z & -B_y & H_1 \\
E_y & -B_z & 0 & B_x & H_2 \\
E_z & B_y & -B_x & 0 & H_3 \\
E_w & -H_1 & -H_2 & -H_3 & 0
\end{pmatrix}$$

(13.29)

Now we can write this compactly via the following equation,

$$F = E \wedge dt + B$$

I admit there are subtle points about how exactly we should interpret the magnetic field, however I’m going to leave that to your imagination and instead focus on the electric sector. What is the generalized Maxwell’s equation that E must satisfy?

$$d^* F = \mu_0^* J \implies d^* (E \wedge dt + B) = \mu_0^* J$$

where $J = -\rho dt + J_m dx^m$ so the 5 dimensional Hodge dual will give us a $5 - 1 = 4$ form, in particular we will be interested in just the term stemming from the dual of dt,

$$^* (-\rho dt) = \rho dx \wedge dy \wedge dz \wedge dw$$

the corresponding term in $d^* F$ is $d^* (E \wedge dt)$ thus, using $\mu_0 = \frac{1}{\epsilon_0}$,

$$d^* (E \wedge dt) = \frac{1}{\epsilon_0} \rho dx \wedge dy \wedge dz \wedge dw$$

(13.30)

is the 4-dimensional Gauss’s equation. Now consider the case we have an isolated point charge which has somehow always existed at the origin. Moreover consider a 3-sphere that surrounds the
charge. We wish to determine the generalized Coulomb field due to the point charge. First we note that the solid 3-sphere is a 4-dimensional object, it the set of all \((x, y, z, w) \in \mathbb{R}^4\) such that
\[
x^2 + y^2 + z^2 + w^2 \leq r^2
\]
We may parametrize a three-sphere of radius \(r\) via generalized spherical coordinates,
\[
\begin{align*}
x &= r \sin(\theta) \cos(\phi) \sin(\psi) \\
y &= r \sin(\theta) \sin(\phi) \sin(\psi) \\
z &= r \cos(\theta) \sin(\psi) \\
w &= r \cos(\psi)
\end{align*}
\]
Now it can be shown that the volume and surface area of the radius \(r\) three-sphere are as follows,
\[
\text{vol}(S^3) = \frac{\pi^2}{2} r^4 \quad \text{area}(S^3) = 2\pi^2 r^3
\]
We may write the charge density of a smeared out point charge \(q\) as,
\[
\rho = \begin{cases}
2q/\pi^2 a^4, & 0 \leq r < a \\
0, & r > a
\end{cases}
\]
Notice that if we integrate \(\rho\) over any four-dimensional region which contains the solid three sphere of radius \(a\) will give the enclosed charge to be \(q\). Then integrate over the Gaussian 3-sphere \(S^3\) with radius \(r\) call it \(M\),
\[
\int_M d^* (E \wedge dt) = \frac{1}{\epsilon_0} \int_M \rho \, dx \wedge dy \wedge dz \wedge dw
\]
now use the Generalized Stokes Theorem to deduce,
\[
\int_{\partial M} * (E \wedge dt) = \frac{q}{\epsilon_0}
\]
but by the ”spherical” symmetry of the problem we find that \(E\) must be independent of the direction it points, this means that it can only have a radial component. Thus we may calculate the integral with respect to generalized spherical coordinates and we will find that it is the product of \(E_r \equiv E\) and the surface volume of the four dimensional solid three sphere. That is,
\[
\int_{\partial M} * (E \wedge dt) = 2\pi^2 r^3 E = \frac{q}{\epsilon_0}
\]
Thus,
\[
E = \frac{q}{2\pi^2 \epsilon_0 r^3}
\]
the Coulomb field is weaker if it were to propagate in 4 spatial dimensions. Qualitatively what has happened is that the have taken the same net flux and spread it out over an additional dimension,
13.8. ELECTROSTATICS IN FIVE DIMENSIONS

this means it thins out quicker. A very similar idea is used in some brane world scenarios. String theorists posit that the gravitational field spreads out in more than four dimensions while in contrast the standard model fields of electromagnetism, and the strong and weak forces are confined to a four-dimensional brane. That sort of model attempts an explanation as to why gravity is so weak in comparison to the other forces. Also it gives large scale corrections to gravity that some hope will match observations which at present don’t seem to fit the standard gravitational models.

This example is but a taste of the theoretical discussion that differential forms allow. As a final comment I remind the reader that we have done things for flat space in this course, when considering a curved space there are a few extra considerations that must enter. Coordinate vector fields e_i must be thought of as derivations $\partial/\partial x^\mu$ for one. Also the metric is not a constant tensor like δ_{ij} or $\eta_{\mu\nu}$ rather is depends on position, this means Hodge duality acquires a coordinate dependence as well. Doubtless I have forgotten something else in this brief warning. One more advanced treatment of many of our discussions is Dr. Fulp’s Fiber Bundles 2001 notes which I have posted on my webpage. He uses the other metric but it is rather elegantly argued, all his arguments are coordinate independent. He also deals with the issue of the magnetic induction and the dielectric, issues which we have entirely ignored since we always have worked in free space.

References and Acknowledgements:

I have drawn from many sources to assemble the content of the last couple chapters, the references are listed approximately in the order of their use to the course, additionally we are indebted to Dr. Fulp for his course notes from many courses (ma 430, ma 518, ma 555, ma 756, ...). Also Manuela Kulaxizi helped me towards the correct (I hope) interpretation of 5-dimensional E&M in the last example.

Vector Calculus, Susan Jane Colley

Introduction to Special Relativity, Robert Resnick

Differential Forms and Connections, R.W.R. Darling

Differential geometry, gauge theories, and gravity, M. Göckerler & T. Schücker

Anomalies in Quantum Field Theory, Reinhold A. Bertlmann

Abstract Linear Algebra, Morton L. Curtis
Gravitation, Misner, Thorne and Wheeler

Introduction to Special Relativity, Wolfgang Rindler

Differential Forms A Complement to Vector Calculus, Steven H. Weintraub

Differential Forms with Applications to the Physical Sciences, Harley Flanders

Introduction to Electrodynamics, (3rd ed.) David J. Griffiths

The Geometry of Physics: An Introduction, Theodore Frankel

An Introduction to General Relativity: Spacetime and Geometry, Sean M. Carroll

Gauge Theory and Variational Principles, David Bleeker

Group Theory in Physics, Wu-Ki Tung
Chapter 14

variational calculus

14.1 history

The problem of variational calculus is almost as old as modern calculus. Variational calculus seeks to answer questions such as:

Remark 14.1.1.

1. what is the shortest path between two points on a surface ?
2. what is the path of least time for a mass sliding without friction down some path between to point ?
3. what is the path which minimizes the energy ?
4. given two points on the x-axis and a particular area what curve has the longest perimeter and bounds that area between those points and the x-axis?

You’ll notice these all involve a variable which is not a real variable or even a vector-valued-variable. Instead, the answers to the questions posed above will be paths or curves depending on how you wish to frame the problem. In variational calculus the variable is a function and we wish to find extreme values for a functional. In short, a functional is an abstract function of functions. A functional takes as an input a function and gives as an output a number. The space from which these functions are taken varies from problem to problem. Often we put additional contraints or conditions on the space of admissable solutions. To read about the full generality of the problem you should look in a text such as Hans Sagan’s. Our treatment is introductory in this chapter, my aim is to show you why it is plausible and then to show you how we use variational calculus.

We will see that the problem of finding an extreme value for a functional is equivalent to solving the Euler-Lagrange equations or Euler equations for the functional. Lagrange predates Euler in his discovery of the equations bearing their names. Lagrange’s intial attack of the problem was to
chop the hypothetical solution curve up into a polygonal path. The unknowns in that approach were the coordinates of the vertices in the polygonal path. Then through some ingenious calculations he arrived at the Euler-Lagrange equations. Apparently there were logical flaws in Lagrange’s original treatment. Euler later derived the same equations using the viewpoint that the variable was a function and the variation was one of shifting by an arbitrary function. The treatment of variational calculus in Edwards is neither Euler nor Lagrange’s approach, it is a refined version which takes in the contributions of generations of mathematicians working on the subject and then merges it with careful functional analysis. I’m no expert of the full history, I just give you a rough sketch of what I’ve gathered from reading a few variational calculus texts.

Lagrange was a physicist as well as a mathematician. Every physicist takes course(s) in Lagrangian Mechanics. Hamilton’s principle says that all physics can be derived from the principle of least action. In short this means that nature is lazy. The solutions realized in the physical world are those which minimize the action. The action $S = \int L \, dt$ is constructed from the Lagrangian $L = T - U$ where T is the kinetic energy and U is the potential energy. In the case of classical mechanics the Euler Lagrange equations are precisely Newton’s equations. The Hamiltonian $H = T + U$ is similar to the Lagrangian except that the fundamental variables are taken to be momentum and position in contrast to velocity and position in Lagrangian mechanics. Hamiltonians and Lagrangians are used to set-up new physical theories. Euler-Lagrange equations are said to give the so-called classical limit of modern field theories. The concept of a force is not so useful to quantum theories, instead the concept of energy plays the central role. Moreover, the problem of quantizing and then renormalizing field theory brings in very sophisticated mathematics. In fact, the math of modern physics is not understood. In this chapter I’ll just show you a few famous classical mechanics problems which are beatifully solved by Lagrange’s approach. We’ll also see how expressing the Lagrangian in non-Cartesian coordinates can give us an easy way to derive forces that arise from geometric contraints. Hopefully we can derive the coriolis force in this manner. I also plan to include a problem or two about Maxwell’s equations from the variational viewpoint. There must be at least a dozen different ways to phrase Maxwell’s equations, one reason I revisit them is to give you a concrete example as to the fact that physics has many formulations.

I am following the typical physics approach to variational calculus. Edwards’ last chapter is more natural mathematically but I think the math is a bit much for your first exposure to the subject. The treatment given here is close to that of Arfken and Weber’s Mathematical Physics text, however I suspect you can find these calculations in dozens of classical mechanics texts. More or less our approach is that of Euler’s.
14.2 variational derivative
14.3 Euler-Lagrange equations
14.4 examples
14.5 multivariate Euler-Lagrange equations
14.6 multivariate examples
14.7 geodesics
14.8 minimal surfaces
14.9 classical mechanics
14.10 some theory of variational calculus
Chapter 15
appendices

15.1 set theory
Recall that we say $U \subseteq V$ iff $u \in U$ implies $u \in V$ for each $u \in U$. The union of sets is, $U \cup V = \{x \mid x \in U \text{ or } x \in V\}$ and the intersection is defined by $U \cap V = \{x \mid x \in U \text{ and } x \in V\}$

15.2 introduction to topology
Topology is the study of continuity. This branch of mathematics was refined in the first half of the twentieth century. Topological concepts lie at the base of most modern geometrical research. In short, a topology tells you what the open sets for a space are. The axiomatic and abstract definition given below is due to Riesz and Hausdorff. Most graduate students in mathematics will be required to take a course or two in topology.

Definition 15.2.1 (definition of topology). A topology \mathcal{T} for a set S is a family of subsets of S such that,

- \mathcal{T} must contain S and \emptyset.
- \mathcal{T} is closed under any union of its elements,
 \[\bigcup_{U \in \mathcal{T}} U \in \mathcal{T} \]
- \mathcal{T} is closed under finite intersections of its elements. If $U_1, \ldots, U_n \in \mathcal{T}$ then
 \[\bigcap_{i=1}^{n} U_i \in \mathcal{T} \]

The sets in \mathcal{T} are defined to be open. Moreover, a set is defined to be closed if its complement relative to S is open. A set S paired with a topology \mathcal{T} is called a topological space.
CHAPTER 15. APPENDICES

I hope you are familiar with open intervals and closed intervals of \(\mathbb{R} \). The open intervals are the simplest type of open set in \(\mathbb{R} \). We could define the standard topology on \(\mathbb{R} \) by letting \(T \) be the empty set together with collection of all open intervals and their unions. Since the finite intersection of open intervals is again a union of open intervals, or the empty set, we will satisfy the three axioms for a topology. Notice that,

\[
\mathbb{R} - [a,b] = (-\infty, a) \cup (b, \infty)
\]

thus the complement of a closed interval is open. This means that the closed interval \([a,b]\) is in fact a closed set. These bizarre axioms will recover all the ordinary geometric definitions of open and closed with which we are more familiar. The definition above provides the basis for the field of Point-Set Topology. The other way to define open and closed sets is in terms of a metric. The concept of a metric space predates topology.

Definition 15.2.2. A metric, or distance function, on a space \(M \) is a function \(d : M \times M \to \mathbb{R} \) such that for \(x, y, z \in M \),

i. \(d \) is positive definite; \(d(x, y) \geq 0 \) and \(d(x, x) = 0 \) iff \(x = 0 \).

ii. \(d \) is symmetric; \(d(x, y) = d(y, x) \).

iii. \(d \) satisfies triangle inequality; \(d(x, y) + d(y, z) \leq d(x, z) \)

A space \(M \) together with a distance function is called a metric space

You can verify that \(\mathbb{R} \) has the distance function \(d(a, b) = |b - a| \). This means that \(\mathbb{R} \) is a metric space. Every metric space can be given the structure of a topological space via the metric topology. You will learn about that in the real analysis course here at LU. The standard topology on \(\mathbb{R} \) is the metric topology which is generated from \(d(a, b) = |b - a| \).

Metric spaces are quite special. Many sets do not have a natural idea of distance. However, we can still give them a topological structure.

Example 15.2.3. Let \(X \) be a nonempty set. Define \(T = \{X, \emptyset\} \). This provides a topology on \(X \) called the discrete topology. Axiom i. is satisfied. Then note

\[
X \cup \emptyset = X \in T
\]

\[
X \cap \emptyset = \emptyset \in T
\]

Thus axioms ii. and iii. are satisfied. The set \(X \) could be most anything. For example, \(X = \mathbb{R} \). With respect to the discrete topology, the set \((0,1)\) is not open since \((0,1) \notin T \). There are many topologies available for a given space and they are not always compatible.

The power of topology is that it allows concrete definitions of very intuitive geometric terms such as compact, disconnected and simply connected. The topological definition of a continuous function states that a function is continuous if the inverse image of open sets is open for the function. We will work with that definition a little later when we discuss functions. If you’d like to learn more about topology or metric spaces then ask me sometime, I can recommend a few books.
15.3 Einstein notation, an introduction to tensor arithmetic

Remark 15.3.1.

The Einstein notation or **repeated index notation** simply states that if an index is repeated then it is summed over all of its values.

Kronecker delta and the Levi-Civita symbol are defined as follows:

\[
\delta_{ij} = \begin{cases}
1 & i = j \\
0 & i \neq j
\end{cases}
\]

\[
\epsilon_{ijk} = \begin{cases}
1 & (i,j,k) \in \{(1,2,3), (3,1,2), (2,3,1)\} \\
-1 & (i,j,k) \in \{(3,2,1), (2,1,3), (1,3,2)\} \\
0 & \text{if any index repeats}
\end{cases}
\]

An equivalent definition for the Levi-civita symbol is simply that \(\epsilon_{123} = 1\) and it is antisymmetric with respect to the interchange of any pair of indices;

\[\epsilon_{ijk} = \epsilon_{jki} = \epsilon_{kij} = -\epsilon_{kji} = -\epsilon_{jik} = -\epsilon_{ikj}.\]

The following identities are often useful for calculations,

\[
\begin{align*}
\epsilon_{ijk} \epsilon_{mjk} &= 2\delta_{im} \\
\epsilon_{ijk} \epsilon_{klm} &= \delta_{il}\delta_{jm} - \delta_{jl}\delta_{im} \\
\delta_{kk} &= 3
\end{align*}
\]

The first and third identities hold **only for three dimensions**, they are multiplied by different constants otherwise. In fact if \(n\) is a positive integer then

\[
\begin{align*}
\epsilon_{i_1 i_2 \ldots i_n} \epsilon_{j_1 j_2 \ldots j_n} &= (n-1)! \delta_{ij} \\
\delta_{kk} &= n.
\end{align*}
\]

Although we have given the definition for the antisymmetric symbol in three dimensions with three indices it should be clear that we can construct a similar object with \(n\)-indices in \(n\)-dimensions, simply define that \(\epsilon_{12\ldots n} = 1\) and the symbol is antisymmetric with respect to the exchange of any two indices. In fact, we can define the determinant of a square matrix in this notation simply by the formula below:

\[\det(A) = \epsilon_{i_1 i_2 \ldots i_n} A_{1i_1} A_{2i_2} \cdots A_{ni_n}.\]

When using index notation it is preferable to number the **standard basis** in \(V^3\) as is customary in linear algebra:

\[e_1 = \langle 1, 0, 0 \rangle \quad e_2 = \langle 0, 1, 0 \rangle \quad e_3 = \langle 0, 0, 1 \rangle.\]

I prefer these over the hat-notation of the preceding section because this notation generalizes nicely to \(n\)-dimensions. Now let us restate some earlier results in terms of the Einstein repeated index.
conventions, let $\vec{A}, \vec{B} \in V^n$ and $c \in \mathbb{R}$ then

\[
\begin{align*}
\vec{A} &= A_k e_k & \text{standard basis expansion} \\
e_i \cdot e_j &= \delta_{ij} & \text{orthonormal basis} \\
(\vec{A} + \vec{B})_i &= \vec{A}_i + \vec{B}_i & \text{vector addition} \\
(\vec{A} - \vec{B})_i &= \vec{A}_i - \vec{B}_i & \text{vector subtraction} \\
(c\vec{A})_i &= c\vec{A}_i & \text{scalar multiplication} \\
\vec{A} \cdot \vec{B} &= A_k B_k & \text{dot product} \\
(\vec{A} \times \vec{B})_k &= \epsilon_{ijk} A_i B_j & \text{cross product}.
\end{align*}
\]

All but the last of the above are readily generalized to dimensions other than three by simply increasing the number of components. However, the cross product is special to three dimensions. I can’t emphasize enough that the formulas given above for the dot and cross products are much easier to utilize for abstract calculations. For specific vectors with given numerical entries the formulas you learned in multivariate calculus will do just fine, but as we go on in this course we will deal with vectors with arbitrary entries so an abstract language allows us to focus on what we know without undue numerical clutter.

15.3.1 basic index arithmetic ideas

The Einstein notation is more a hindrance then a help if you don’t know the tricks. I’ll now make a list of common “tricks”, most of them are simple,

(i.) $A_i B_j = B_j A_i$ components are numbers!

(ii.) $A_i B_i \delta_{ij} = A_j B_j$ no sum over j

(iii.) $A_{ij} B_{ij} = A_{ji} B_{ji} = A_{mp} B_{mp}$ switching dummies

(iv.) If $S_{ij} = S_{ji}$ and $A_{ij} = -A_{ji}$ then $A_{ij} B_{ij} = 0$ symmetric kills antisymmetric

Part (i.) is obviously true. Part (ii.) is not hard to understand, the index j is a fixed (but arbitrary) index and the terms in the sum are all zero except when $i = j$ as a consequence of what δ_{ij} means. Part (iii.) is also simple, the index of summation is just notation, wether I use i or j or m or p the summation includes the same terms. A word of caution on (iii.) is that when an index is free (like j in (i.)) we cannot just change it to something else. Part (iv.) deserves a small proof which we give now, assuming the conditions of (iv.),

\[
A_{ij} S_{ij} = A_{mp} S_{mp} \quad \text{by (iii.)}
\]

\[
= -A_{pm} S_{pm} \quad \text{using our hypothesis}
\]

\[
= -A_{ij} S_{ij} \quad \text{by (iii.)}
\]

therefore $2A_{ij} S_{ij} = 0$ thus $A_{ij} S_{ij} = 0$ as claimed.

There are other tricks, but these should do for now. It should be fairly clear these ideas are not particular to three dimensions. The Einstein notation is quite general.
15.3.2 applying Einstein’s notation

Let’s begin with the following ”brute-force” calculation: $\vec{A} \times (\vec{B} + \vec{C}) \equiv$

$\equiv < A_2(B_3 + C_3 - A_3(B_2 + C_2), A_3(B_1 + C_1) - A_1(B_3 + C_3), A_1(B_2 + C_2) - A_2(B_1 + C_1) >$

$= < A_2B_3 + A_2C_3 - A_3B_2 - A_3C_2, A_3B_1 + A_3C_1 - A_1B_3 - A_1C_3, A_1B_2 + A_1C_2 - A_2B_1 - A_2C_1 >$

$= < A_2B_3 - A_3B_2, A_3B_1 - A_1B_3, A_1B_2 - A_2B_1 > + < A_2C_3 - A_3C_2, A_3C_1 - A_1C_3, A_1C_2 - A_2C_1 >$

$\equiv \vec{A} \times \vec{B} + \vec{A} \times \vec{C}$.

Compare against the equivalent index-based calculation:

$$(\vec{A} \times (\vec{B} + \vec{C}))_k = \epsilon_{ijk}A_i(B + C)_j = \epsilon_{ijk}A_iB_j + \epsilon_{ijk}A_iC_j = (\vec{A} \times \vec{B})_k + (\vec{A} \times \vec{C})_k.$$

We now give an example of how we can implement Einstein’s notation to prove an otherwise cumbersome identity. (if you don’t believe me that it is cumbersome feel free to try to prove it in Cartesian components).

Proposition 15.3.2.

\begin{align*}
(i.) & \quad \vec{A} \times (\vec{B} \times \vec{C}) = \vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(\vec{A} \cdot \vec{B}) \\
(ii.) & \quad \vec{A} \cdot (\vec{B} \times \vec{C}) = \vec{B} \cdot (\vec{C} \times \vec{A}) = \vec{C} \cdot (\vec{A} \times \vec{B})
\end{align*}

Let’s look at the k^{th} component of $\vec{A} \times (\vec{B} \times \vec{C})$,

$$[\vec{A} \times (\vec{B} \times \vec{C})]_k = \epsilon_{ijk}A_i(\vec{B} \times \vec{C})_j$$

$$= \epsilon_{ijk}A_i\epsilon_{mpj}B_mC_p$$

$$= -\epsilon_{ikj}\epsilon_{mpj}A_mB_mC_p$$

$$= -(\delta_{im}\delta_{kp} - \delta_{ip}\delta_{km})A_mB_mC_p$$

$$= \delta_{ip}\delta_{km}A_mB_mC_p - \delta_{im}\delta_{kp}A_mB_mC_p$$

$$= A_iB_mC_i - A_mB_tC_k$$

$$= B_k(\vec{C} \cdot \vec{A}) - C_k(\vec{A} \cdot \vec{B}).$$ \hspace{1cm} (15.1)

Now this equation holds for each value of k thus the vector equation in question is true. Now let us attack (ii.),

$$\vec{A} \cdot (\vec{B} \times \vec{C}) = A_k(\vec{B} \times \vec{C})_k$$

$$= A_k\epsilon_{ijk}B_iC_j$$

bob

$$= B_i\epsilon_{ijk}C_jA_k$$

components are numbers

$$= B_i\epsilon_{ijk}C_jA_k$$

since $\epsilon_{ijk} = -\epsilon_{jik} = \epsilon_{kji}$

$$= \vec{B} \cdot (\vec{C} \times \vec{A})$$

half done.

$$= C_j\epsilon_{ijk}A_kB_i$$

going back to bob and commuting numbers

$$= C_j\epsilon_{kij}A_kB_i$$

since $\epsilon_{ijk} = -\epsilon_{ikj} = \epsilon_{kij}$

$$= \vec{C} \cdot (\vec{A} \times \vec{B})$$

and finished. \hspace{1cm} (15.2)
Thus we see the cyclicity of ϵ_{ijk} has translated into the cyclicity of the triple product identity (ii.). Hence the proposition is true, and again I emphasize the Einstein notation has saved us much labor in these calculations. You should consider using this notation if I ask you to prove vector identities.

Our next goal is exhibit the utility of the Einstein notation to set-up basic notions of differentiation that involve vector fields.

15.3.3 The ∇ operator

We define the ∇ operator in Cartesian coordinates,

$$\nabla = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} = e_i \partial_i$$ \hspace{1cm} (15.3)

where we have introduced the notation ∂_i for $\frac{\partial}{\partial x_i}$. Admitably ∇ is a strange object, a vector of operators. Much like the determinant formula for the cross product this provides a convenient mnemonic for the vector calculus.

15.3.4 grad, curl and div in Cartesians

Let $U \subset \mathbb{R}$ and f a function from U to \mathbb{R}. The gradient of f is a vector field on U defined by,

$$\text{grad}(f) = \nabla f = \hat{i} \frac{\partial f}{\partial x} + \hat{j} \frac{\partial f}{\partial y} + \hat{k} \frac{\partial f}{\partial z} = e_i \partial_i f$$ \hspace{1cm} (15.4)

Let $\vec{F} = F^i e_i$ be a vector field on U. The curl of \vec{F} is defined by,

$$\text{curl}(\vec{F}) = \nabla \times \vec{F} = \hat{i} (\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}) + \hat{j} (\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}) + \hat{k} (\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}) = \epsilon_{ijk} (\partial_i F_j) e_k. \hspace{1cm} (15.5)$$

Let $\vec{G} = G^i e_i$ be a vector field on U. The divergence of \vec{G} is defined by,

$$\text{div}(\vec{G}) = \nabla \cdot \vec{G} = \frac{\partial G_1}{\partial x} + \frac{\partial G_2}{\partial y} + \frac{\partial G_3}{\partial z} = \partial_i G_i. \hspace{1cm} (15.6)$$

All the operations above are only defined for suitable functions and vector fields, we must be able to perform the partial differentiation that is required. I have listed the definition in each of the popular notations and with the less popular (among mathematicians anyway) repeated index notation. Given a particular task you should choose the notation wisely.

15.3.5 properties of the gradient operator

It is fascinating how many of the properties of ordinary differentiation generalize to the case of vector calculus. The main difference is that we now must take more care to not commute things that don’t commute or confuse functions with vector fields. For example, while it is certainly true that $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$ it is not even sensible to ask the question does $\nabla \cdot \vec{A} = \vec{A} \cdot \nabla$? Notice $\nabla \cdot \vec{A}$ is a function while $\vec{A} \cdot \nabla$ is an operator, apples and oranges.
Proposition 15.3.3. Let \(f, g, h \) be real valued functions on \(\mathbb{R} \) and \(\vec{F}, \vec{G}, \vec{H} \) be vector fields on \(\mathbb{R} \) then (assuming all the partials are well defined)

(i.) \(\nabla (f + g) = \nabla f + \nabla g \)

(ii.) \(\nabla \cdot (\vec{F} + \vec{G}) = \nabla \cdot \vec{F} + \nabla \cdot \vec{G} \)

(iii.) \(\nabla \times (\vec{F} + \vec{G}) = \nabla \times \vec{F} + \nabla \times \vec{G} \)

(iv.) \(\nabla (fg) = (\nabla f)g + f(\nabla g) \)

(v.) \(\nabla \cdot (f\vec{F}) = (\nabla f) \cdot \vec{F} + f\nabla \cdot \vec{F} \)

(vi.) \(\nabla \times (f\vec{F}) = \nabla f \times \vec{F} + f\nabla \times \vec{F} \)

(vii.) \(\nabla \cdot (\vec{F} \times \vec{G}) = \vec{F} \cdot (\nabla \times \vec{G}) + \vec{G} \times (\nabla \cdot \vec{F}) + (\vec{F} \cdot \nabla)\vec{G} + (\vec{G} \cdot \nabla)\vec{F} \)

(viii.) \(\nabla \times (\vec{F} \times \vec{G}) = (\vec{G} \cdot \nabla)\vec{F} - (\vec{F} \cdot \nabla)\vec{G} + \vec{F} (\nabla \cdot \vec{G}) - \vec{G} (\nabla \cdot \vec{F}) \)

(ix.) \(\nabla \times (\vec{F} \cdot \vec{G}) = \vec{G} \times (\nabla \cdot \vec{F}) + \vec{F} (\nabla \cdot \vec{G}) + (\vec{F} \cdot \nabla)\vec{G} + (\vec{G} \cdot \nabla)\vec{F} \)

Proof: The proofs of (i.), (ii.) and (iii.) are easy, we begin with (iv.),

\[
\begin{align*}
\nabla (fg) &= e_i \partial_i (fg) \\
&= e_i[(\partial_i f)g + f\partial_i g] & \text{ordinary product rule} \\
&= (e_i\partial_i f)g + f(e_i\partial_i g) \\
&= (\nabla f)g + f(\nabla g).
\end{align*}
\]

Now consider (vii.), let \(\vec{F} = F_i e_i \) and \(\vec{G} = G_i e_i \) as usual,

\[
\begin{align*}
\nabla \cdot (\vec{F} \times \vec{G}) &= \partial_k[(\vec{F} \times \vec{G})_k] \\
&= \partial_k[e_{ijk}F_i G_j] \\
&= e_{ijk}[(\partial_k F_i)G_j + F_i(\partial_k G_j)] \\
&= e_{ijk}(\partial_k F_i)G_j - F_i e_{kij}(\partial_k G_j) \\
&= e_{kij}(\partial_k F_i)G_j - F_i e_{kji}(\partial_k G_j) \\
&= (\nabla \times \vec{F})_j G_j - F_i (\nabla \times \vec{G})_i \\
&= (\nabla \times \vec{F}) \cdot \vec{G} - \vec{F} \cdot (\nabla \times \vec{G}).
\end{align*}
\]

The proof of the other parts of this proposition can be handled similarly, although parts (viii) and (ix) require some thought.

Proposition 15.3.4. Let \(f \) be a real valued function on \(\mathbb{R} \) and \(\vec{F} \) be a vector field on \(\mathbb{R} \), both with well defined partial derivatives, then

\[
\begin{align*}
\nabla \cdot (\nabla \times \vec{F}) &= 0 \\
\nabla \times \nabla f &= 0 \\
\nabla \times (\nabla \times \vec{F}) &= \nabla(\nabla \cdot \vec{F}) - \nabla^2 \vec{F}
\end{align*}
\]

Again the proof is similar to those already given in this section.

15.4 vector space terminology

This section is linear algebra in a nutshell.
15.4.1 definition of vector space

Definition 15.4.1.

A vector space V over \mathbb{R} is a set V together with a function $+: V \times V \to V$ called vector addition and another function $\cdot : \mathbb{R} \times V \to V$ called scalar multiplication. We require that the operations of vector addition and scalar multiplication satisfy the following 10 axioms: for all $x,y,z \in V$ and $a,b \in \mathbb{R}$,

1. (A1) $x + y = y + x$ for all $x,y \in V$,
2. (A2) $(x + y) + z = x + (y + z)$ for all $x,y,z \in V$,
3. (A3) there exists $0 \in V$ such that $x + 0 = x$ for all $x \in V$,
4. (A4) for each $x \in V$ there exists $-x \in V$ such that $x + (-x) = 0$,
5. (A5) $1 \cdot x = x$ for all $x \in V$,
6. (A6) $(ab) \cdot x = a \cdot (b \cdot x)$ for all $x \in V$ and $a,b \in \mathbb{R}$,
7. (A7) $a \cdot (x + y) = a \cdot x + a \cdot y$ for all $x,y \in V$ and $a \in \mathbb{R}$,
8. (A8) $(a + b) \cdot x = a \cdot x + b \cdot x$ for all $x \in V$ and $a,b \in \mathbb{R}$,
9. (A9) If $x,y \in V$ then $x + y$ is a single element in V, (we say V is closed with respect to addition)
10. (A10) If $x \in V$ and $c \in \mathbb{R}$ then $c \cdot x$ is a single element in V. (we say V is closed with respect to scalar multiplication)

We call 0 in axiom 3 the zero vector and the vector $-x$ is called the additive inverse of x. We will sometimes omit the \cdot and instead denote scalar multiplication by juxtaposition; $a \cdot x = ax$.

15.4.2 subspace test

Definition 15.4.2.

Let V be a vector space. If $W \subseteq V$ such that W is a vector space with respect to the operations of V restricted to W then we say that W is a subspace of V and we write $W \leq V$.

Theorem 15.4.3.
Let V be a vector space and suppose $W \subset V$ with $W \neq \emptyset$ then $W \leq V$ if and only if the following two conditions hold true

1. if $x, y \in W$ then $x + y \in W$ (W is closed under addition),
2. if $x \in W$ and $c \in \mathbb{R}$ then $c \cdot x \in W$ (W is closed under scalar multiplication).

Example 15.4.4. The function space $\mathcal{F}(\mathbb{R})$ has many subspaces.

1. continuous functions: $C(\mathbb{R})$
2. differentiable functions: $C^1(\mathbb{R})$
3. smooth functions: $C^\infty(\mathbb{R})$
4. polynomial functions
5. analytic functions
6. solution set of a linear homogeneous ODE with no singular points

The proof that each of these follows from Theorem [15.4.3]. For example, $f(x) = x$ is continuous therefore $C(\mathbb{R}) \neq \emptyset$. Moreover, the sum of continuous functions is continuous and a scalar multiple of a continuous function is continuous. Thus $C(\mathbb{R}) \leq \mathcal{F}(\mathbb{R})$. The arguments for (2.), (3.), (4.), (5.) and (6.) are identical. The solution set example is one of the most important examples for engineering and physics, linear ordinary differential equations naturally invoke a great deal of linear algebra.

15.4.3 linear combinations and spanning sets

Definition 15.4.5.

Let $S = \{v_1, v_2, \ldots, v_k\}$ be a finite set of vectors in a vector space V then $\text{span}(S)$ is defined to be the set of all linear combinations of S:

$$\text{span}\{v_1, v_2, \ldots, v_k\} = \left\{ \sum_{i=1}^{k} c_i v_i \mid c_i \in \mathbb{R} \text{ for } i = 1, 2, \ldots, k \right\}$$

If $W = \text{span}(S)$ then we say that S is a generating set for W.

15.4.4 linear independence

Definition 15.4.6.
Let \(v_1, v_2, \ldots, v_k \in V \) a vector space. The set of vectors \(\{v_1, v_2, \ldots, v_k\} \) is linearly independent iff
\[
c_1 v_1 + c_2 v_2 + \cdots + c_k v_k = 0 \Rightarrow c_1 = c_2 = \cdots = c_k = 0.
\]

Proposition 15.4.7.
\[
S \text{ is a linearly independent set of vectors iff for all } v_1, v_2, \ldots, v_k \in S,
\]
\[
a_1 v_1 + a_2 v_2 + \cdots + a_k v_k = b_1 v_1 + b_2 v_2 + \cdots + b_k v_k
\]
implies \(a_i = b_i \) for each \(i = 1, 2, \ldots, k \). In other words, we can equate coefficients of linearly independent vectors. And, conversely if a set of vectors allows for equating coefficients then it is linearly independent.

Example 15.4.8. I called \(\{e_1, e_2, \ldots, e_n\} \) the standard basis of \(\mathbb{R}^{n \times 1} \). Since \(v \in \mathbb{R}^{n \times 1} \) can be written as
\[
v = \sum_i v_i e_i
\]
it follows \(\mathbb{R}^{n \times 1} = \text{span}\{e_i \mid 1 \leq i \leq n\} \). Moreover, linear independence of \(\{e_i \mid 1 \leq i \leq n\} \) follows from a simple calculation:
\[
0 = \sum_i c_i e_i \Rightarrow 0 = \sum_i c_i e_i = \sum_i c_i \delta_{ik} = c_k
\]
hence \(c_k = 0 \) for all \(k \). Thus \(\{e_i \mid 1 \leq i \leq n\} \) is a basis for \(\mathbb{R}^{n \times 1} \), we continue to call it the standard basis of \(\mathbb{R}^{n \times 1} \). The vectors \(e_i \) are also called "unit-vectors".

Example 15.4.9. Since \(A \in \mathbb{R}^{m \times n} \) can be written as
\[
A = \sum_{i,j} A_{ij} E_{ij}
\]
it follows \(\mathbb{R}^{m \times n} = \text{span}\{E_{ij} \mid 1 \leq i \leq m, 1 \leq j \leq n\} \). Moreover, linear independence of \(\{E_{ij} \mid 1 \leq i \leq m, 1 \leq j \leq n\} \) follows from a simple calculation:
\[
0 = \sum_{i,j} c_{ij} E_{ij} \Rightarrow 0 = \sum_{i,j} c_{ij} E_{ij} = \sum_{i,j} c_{ij} \delta_{ik} \delta_{jl} = c_{kl}
\]
hence \(c_{kl} = 0 \) for all \(k,l \). Thus \(\{E_{ij} \mid 1 \leq i \leq m, 1 \leq j \leq n\} \) is a basis for \(\mathbb{R}^{m \times n} \), we continue to call it the standard basis of \(\mathbb{R}^{m \times n} \). The matrices \(E_{ij} \) are also called "unit-matrices".
15.5 Tensor products and exterior algebra

In this chapter we will explore the algebraic foundations of tensor and exterior products. To begin we will study multilinear maps on V. We will then introduce the concept of the tensor product which will provide us a basis for the space of multi-linear maps. Then once the basic properties of tensor products are understood we will then introduce exterior products and the corresponding exterior algebra.

Let V be a vector space with a fixed basis $\{e_1, e_2, \cdots, e_n\}$. The dual of V, denoted V^*, is the set of all linear maps from V into \mathbb{R} along with the operations $+$, \cdot defined by $(L_1 + L_2)(x) = L_1(x) + L_2(x)$ and $(cL)(x) = cL(x)$ for L_1, L_2, L in V^*, $c \in \mathbb{R}$, and $x \in V$. It is easy to show that V^* is a vector space over \mathbb{R} relative to these operations. It follows also that V^* is n-dimensional (as can be seen from Proposition 2.1).

Proposition 15.5.1. Let $e^i, 1 \leq i \leq n$, be functions from V into \mathbb{R} defined by $e^i(\lambda^j e_j) = \lambda^i$ for $\lambda^i \in \mathbb{R}$. Then $e^i \in V^*$ for each i and $\{e^1, e^2, \cdots, e^n\}$ is a basis of V^*.

proof: It is easily verified that e^i is linear for each i and that $e^i \in V^*$. We show that $\{e^1, e^2, \cdots, e^n\}$ is a basis. Let $L \in V^*$. We first show that L is a linear combination of the linear maps, e^i. Observe that for $h \in V$, $h = h^i e_i$ and

$$L(h) = L(h^i e_i) = h^i L(e_i) = e^i(h) L(e_i)$$

and

$$L(h) = L(e_i) e^i(h) = [L(e_i) e^i](h) .$$

Thus $L = L(e_i) e^i$ and L is a linear combination of the e^i's. Next we show the e^i's are independent. Assume that

$$t_i e^i = 0 .$$

Then for every h, $t_i e^i(h) = 0$. Choose $h = e_j$. Then

$$t_i e^i(e_j) = 0 \quad t_i \delta^i_j = 0 \quad t_j = 0$$

since j was arbitrary we see that all the t_j vanish and $\{e^i\}$ are independent. This concludes the proof of the proposition.

A map b is said to be a p-multilinear map on V if b is a function from $V^p = V \times V \times \cdots \times V$ (p-factors) into \mathbb{R} such that b is linear in each variable, i.e., if for each $1 \leq i \leq p$ and fixed vectors $h_1, h_2, \cdots, h_{i-1}, h_{i+1}, \cdots, h_p$ the mapping

$$x \rightarrow b(h_1, \cdots, h_{i-1}, x, h_{i+1}, \cdots, h_p)$$

is a linear map.
is a linear map from V into \mathbb{R}. Our first task is to show that the set of all p-multilinear maps from V^p into \mathbb{R} is a vector space and to produce a basis for it.

Let $\mathcal{B}^p(V, \mathbb{R}) = \mathcal{B}^p$ denote the set of all p-multilinear maps from V^p into \mathbb{R} and define $+$ and \cdot on \mathcal{B}^p by
\[
(b_1 + b_2)(h_1, \cdots, h_p) = b_1(h_1, \cdots, h_p) + b_2(h_1, h_2, \cdots, h_p)
\]
\[
(cb)(h_1, h_2, \cdots, h_p) = cb(h_1, h_2, \cdots, h_p)
\]
for $b_1, b_2, b \in \mathcal{B}^p$, $c \in \mathbb{R}$, $h_1, h_2, \cdots, h_p \in V$. It is easy to show that \mathcal{B}^p is a real vector space. We produce a basis for \mathcal{B}^p. First we define a new “operation” on V^*, then we define a map $L_1 \otimes L_2 \otimes \cdots \otimes L_p$ as follows. The domain of $L_1 \otimes L_2 \otimes \cdots \otimes L_p$ is V^p and the range is \mathbb{R}. Moreover for $(h_1, h_2, \cdots, h_p) \in V^p$
\[
(L_1 \otimes L_2 \otimes \cdots \otimes L_p)(h_1, h_2, \cdots, h_p) = L_1(h_1)L_2(h_2)\cdots L_p(h_p).
\]
It is easy to prove $L_1 \otimes L_2 \otimes \cdots \otimes L_p$ is a multilinear map and thus that
\[
L_1 \otimes L_2 \otimes \cdots \otimes L_p \in \mathcal{B}^p.
\]

Theorem 15.5.2. \mathcal{B}^p has as a basis all maps of the form
\[
e^{i_1} \otimes e^{i_2} \otimes \cdots \otimes e^{i_p},\quad 1 \leq i_j \leq n,\quad 1 \leq j \leq p,
\]
where $\{e^i\}$ is the basis of V^* obtained in Proposition 5.1.1 above. In particular $\dim \mathcal{B}^p = n^p$.

proof: We first show that every $b \in \mathcal{B}^p$ is a linear combination of the bilinear maps,
\[
e^i \otimes e^{i_2} \otimes \cdots \otimes e^{i_p},\quad 1 \leq j \leq p,\quad 1 \leq i_j \leq n.
\]
For $1 \leq i \leq p$ let $h_i \in V$ and write $h_i = h^j_i e_j$. Then
\[
b(h_1, h_2, \cdots, h_p) = h^{i_1}_1 h^{i_2}_2 \cdots h^{i_p}_p b(e_{i_1}, e_{i_2}, \cdots, e_{i_p}).
\]
If $b_{i_1i_2\cdots i_p} \equiv b(e_{i_1}, e_{i_2}, \cdots, e_{i_p})$ then
\[
b(h_1, h_2, \cdots, h_p) = e^{i_1}(h_1)e^{i_2}(h_2)\cdots e^{i_p}(h_p)b_{i_1i_2\cdots i_p}
\]
\[
= b_{i_1i_2\cdots i_p}(e^{i_1} \otimes e^{i_2} \otimes \cdots \otimes e^{i_p})(h_1, \cdots, h_p).
\]
Thus b is a linear combination of the $\{e^{i_1} \otimes \cdots \otimes e^{i_p}\}$. We now show that the maps $\{e^{i_1} \otimes \cdots \otimes e^{i_p}\}$ are independent. Assume that $t_{i_1i_2\cdots i_p}$ are real numbers such that
\[
t_{i_1i_2\cdots i_p}(e^{i_1} \otimes e^{i_2} \otimes \cdots \otimes e^{i_p})(h_1, h_2, \cdots, h_p) = 0.
\]
Then $\forall h_1, h_2, \cdots, h_p$ we have
\[
t_{i_1i_2\cdots i_p}(e^{i_1} \otimes e^{i_2} \otimes \cdots \otimes e^{i_p})(h_1, h_2, \cdots, h_p) \equiv 0.\]
or
\[t_{i_1 i_2 \cdots i_p} e^{i_1} (h_1) e^{i_2} (h_2) \cdots e^{i_p} (h_p) = 0. \]

Specialize \(h_1 = e_{j_1}, h_2 = e_{j_2}, \cdots, h_p = e_{j_p} \) then
\[t_{i_1 i_2 \cdots i_p} e^{i_1} (e_{j_1}) e^{i_2} (e_{j_2}) \cdots e^{i_p} (e_{j_p}) = 0. \]

or
\[t_{i_1 i_2 \cdots i_p} \delta^{i_1}_{j_1} \delta^{i_2}_{j_2} \cdots \delta^{i_p}_{j_p} = 0 \]

or
\[t_{j_1 j_2 \cdots j_p} = 0. \]

Thus all the coefficients are zero and the \(\{ e^{i_1} \otimes \cdots \otimes e^{i_p} \} \) are independent. The theorem follows.

Definition 15.5.3. A multilinear map \(b \in \mathcal{B}^p \) is said to be symmetric if for arbitrary \(h_1, h_2, \cdots, h_p \in V \) and arbitrary permutations \(\sigma \) of \(\{1, 2, \cdots, p\} \)
\[b(h_{\sigma_1}, h_{\sigma_2}, \cdots, h_{\sigma_p}) = b(h_1, h_2, \cdots, h_p). \]

This is equivalent to saying that
\[b(h_1, h_2, \cdots, h_i, \cdots, h_j, \cdots, h_p) = b(h_1, \cdots, h_j, \cdots, h_i, \cdots, h_p) \]
for all \(h_1, h_2, \cdots, h_p \in V \) and for \(1 \leq i < j \leq p \). A map \(b \in \mathcal{B}^p \) is skew or skew-symmetric if for arbitrary \(h_1, h_2, \cdots, h_p \in V \) and an arbitrary permutation \(\sigma \)
\[b(h_{\sigma_1}, h_{\sigma_2}, \cdots, h_{\sigma_p}) = \text{sgn}(\sigma) b(h_1, h_2, \cdots, h_p). \]

This condition is equivalent to requiring, for arbitrary \(h_1, h_2, \cdots, h_p \) in \(V \)
\[b(h_1, h_2, \cdots, h_i, \cdots, h_j, \cdots, h_p) = -b(h_1, h_2, \cdots, h_j, \cdots, h_i, \cdots, h_p). \]

Theorem 15.5.4. Every \(b \in \mathcal{B}^2 \) is the sum of a symmetric mapping and a skew-symmetric mapping.

proof: Let \(b \in \mathcal{B}^2 \) and define a map \(a \in \mathcal{B}^2 \) by
\[a(h, k) = \frac{1}{2} [b(h, k) - b(k, h)]. \]

Then \(a(h, k) = -a(k, h) \) is skew. Define a map \(c \in \mathcal{B}^2 \) by
\[c(h, k) = \frac{1}{2} [b(h, k) + b(k, h)]. \]

Then \(c \) is symmetric and \(b = a + c \). The theorem follows.
It turns out that differential forms are special kinds of skew-symmetric maps on V where V is the tangent space to a manifold at some point p in the manifold. Thus we will spend some time studying the special properties of these maps. Let $\Lambda^p = \Lambda^p(V)$ denote the set of all skew-symmetric p-multilinear maps on V. It is clear that if b_1, b_2 are skew-symmetric elements of \mathcal{B}^p then $b_1 + b_2$ is skew-symmetric. Also if $b \in \mathcal{B}^p$ is skew-symmetric and $\lambda \in \mathbb{R}$ then λb is skew-symmetric. Thus Λ^p is a subspace of \mathcal{B}^p. We need to produce a basis for this subspace but before doing so we work out this basis for some low-dimensional cases.

Proposition 15.5.5. (A) If $b \in \mathcal{B}^2$ and $b = b_{ij}(e^i \otimes e^j)$ then b is skew-symmetric iff $b_{ij} = -b_{ji}$ for all $1 \leq i, j \leq n$.

(B) If, for $1 \leq i, j \leq n$, $e^i \wedge e^j = (e^i \otimes e^j - e^j \otimes e^i)$ then $e^i \wedge e^j \in \Lambda^2$ for all i, j and

$$\{e^i \wedge e^j \mid 1 \leq i < j \leq n\}$$

is a basis of Λ^2. In particular $\dim(\Lambda^2) = {n \choose 2}$

(C) If $b \in \Lambda^2$ and $b = b_{ij}(e^i \otimes e^j)$ then

$$b = b_{ij}(e^i \wedge e^j) = \sum_{1 \leq i < j \leq n} (b_{ij})(e^i \wedge e^j).$$

Proof of (A) Let $b = b_{ij}(e^i \otimes e^j)$. Then for $h, k \in V$ $b(h, k) = -b(k, h)$ so that $b_{ij}e^i(h)e^j(k) = -b_{ij}e^i(k)e^j(h)$. Thus

$$b_{ij}h^i k^j = -b_{ij} k^i h^j = -b_{ji} h^i k^j.$$

This holds $\forall h, k$, thus $b_{ij} = -b_{ji}$. (A) follows.

Proof of (B) It is clear that $e^i \wedge e^j \equiv (e^i \otimes e^j - e^j \otimes e^i) \in \Lambda^2$. We show that $\{e^i \wedge e^j \mid 1 \leq i < j \leq n\}$ is a basis of Λ^2. Let $b \in \Lambda^2$. We write b as a linear combination of the $e^i \wedge e^j$, $i < j$. Since $b \in \Lambda^2$, $b = b_{ij}(e^i \otimes e^j)$ with $b_{ij} = -b_{ji}$. Thus $b_{ii} = -b_{ii}$ and $b_{ii} = 0$. It follows that

$$b = \sum_{i \neq j} b_{ij}(e^i \otimes e^j)$$

$$= \sum_{i < j} b_{ij}(e^i \otimes e^j) + \sum_{j < i} b_{ij}(e^i \otimes e^j)$$

$$= \sum_{i < j} b_{ij}(e^i \otimes e^j) + \sum_{i < j} b_{ji}(e^j \otimes e^i)$$

$$= \sum_{i < j} b_{ij}[(e^i \otimes e^j) - (e^j \otimes e^i)]$$

$$= \sum_{i < j} b_{ij}(e^i \wedge e^j)$$

Thus $e^i \wedge e^j, 1 \leq i < j \leq n$ span Λ^2. To see that they are linearly independent note that if

$$\sum_{i < j} t_{ij}(e^i \wedge e^j) = 0$$

then reversing the steps above one gets

$$\sum_{i, j=1}^n t_{ij}(e^i \otimes e^j) = 0$$
where \(t_{ij} = -t_{ji} \) for \(j < i \). Since \(\{e^i \otimes e^j\} \) is a basis of \(\mathcal{B}^2 \) all coefficients are zero and thus \(t_{ij} = 0 \) for all \(i < j \). (B) follows. Proof of (C) Let \(b \in \Lambda^2 \) and \(b = b_{ij}(e^i \otimes e^j) \). Then
\[
b = \frac{1}{2} b_{ij} (e^i \otimes e^j) + \frac{1}{2} b_{ji} (e^j \otimes e^i)
\]
\[
= \frac{1}{2} b_{ij} (e^i \otimes e^j) - \frac{1}{2} b_{ij} (e^j \otimes e^i)
= \frac{1}{2} ((e^i \otimes e^j) - (e^j \otimes e^i)) b_{ij}
= \frac{1}{2} b_{ij} (e^i \wedge e^j)
= \frac{1}{2} \sum_{i<j} b_{ij} (e^i \wedge e^j) + \frac{1}{2} \sum_{j<i} b_{ij} (e^i \wedge e^j)
= \frac{1}{2} \sum_{i<j} b_{ij} (e^i \wedge e^j) + \frac{1}{2} \sum_{i<j} b_{ij} (e^j \wedge e^i)
\]
(15.15)

But \(b_{ji} = -b_{ij} \) and \(e^j \wedge e^i = -(e^i \wedge e^j) \). Thus
\[
\sum_{i<j} b_{ji} (e^j \wedge e^i) = \sum_{i<j} b_{ij} (e^i \wedge e^j).
\]
It follows that
\[
b = \sum_{i<j} (b_{ij})(e^i \wedge e^j).
\]
Part (C) follows.

Definition 15.5.6. Define, for \(1 \leq i, j, k \leq n \),
\[
e^i \wedge e^j \wedge e^k = \sum_{\sigma \in \Sigma(3)} \text{sgn}(\sigma)(e^{\sigma i} \otimes e^{\sigma j} \otimes e^{\sigma k})
\]
where \(\Sigma(3) \) denotes the set of all permutations of \(\{i, j, k\} \).

Exercise (A) Let \(b \in \mathcal{B}^3 \). Show that if \(b = b_{ijk}(e^i \otimes e^j \otimes e^k) \) then \(B \) is skew iff \(b_{ijk} = -b_{jik} = b_{jki} \), for \(1 \leq i, j, k \leq n \).

(B) Show that \(\{e^i \wedge e^j \wedge e^k \mid 1 \leq i < j < k \leq n\} \) is a basis of \(\Lambda^3 \).

(C) If \(b \in \Lambda^3 \) and \(b = b_{ijk}(e^i \otimes e^j \otimes e^k) \) then show that
\[
b = b_{ijk}(e^i \wedge e^j \wedge e^k) = \sum_{i<j<k} (6b_{ijk})(e^i \wedge e^j \wedge e^k).
\]

Definition 15.5.7. For \(1 \leq i_1, i_2, \ldots, i_p \leq n \) define
\[
e^{i_1} \wedge e^{i_2} \wedge \cdots \wedge e^{i_p} = \sum_{\sigma \in \Sigma(p)} \text{sgn}(\sigma)(e^{i_{\sigma 1}} \otimes \cdots \otimes e^{i_{\sigma p}}),
\]
where \(\Sigma(p) \) denotes the set of all permutations of \(\{1, 2, \ldots, p\} \).

Proposition 15.5.8. For all \(i_1, i_2, \ldots, i_p \) the maps \(e^{i_1} \wedge \cdots \wedge e^{i_p} \) are in \(\Lambda_p \). Moreover \(\{e^{i_1} \wedge \cdots \wedge e^{i_p} \mid 1 \leq i_1 < i_2 < \cdots < i_p \leq n\} \) is a basis of \(\Lambda^p \). It follows that \(\dim \Lambda^p = (p) \).
Proof: We first show \(e^{i_1} \wedge e^{i_2} \wedge \cdots \wedge e^{i_p} \) is skew-symmetric.

\[
(e^{i_1} \wedge \cdots \wedge e^{i_p})(h_{1}, \cdots, h_{p}) = \sum_{\sigma} \text{sgn}(\sigma)e^{i_{\sigma(1)}}(h_{1}) \cdots e^{i_{\sigma(p)}}(h_{p})
\]

for all \(e \). Thus

\[
\text{sgn}(\tau)\sum_{\sigma} \text{sgn}(\sigma^{-1})e^{i_{\sigma^{-1}(1)}}(h_{1}) \cdots e^{i_{\sigma^{-1}(p)}}(h_{p})
\]

is skew-symmetric. Then we define \(b \). Now for every \(j_1, j_2, \ldots, j_p \) either \(b_{j_1, j_2, \ldots, j_p} = 0 \) or all the \(j_1, j_2, \ldots, j_p \) are distinct and there is a permutation \(\sigma \) such that \(j_{\sigma 1} < j_{\sigma 2} < j_{\sigma 3} < \cdots < j_{\sigma p} \).

It follows that

\[
b = b_{j_1, j_2, \ldots, j_p}(e^{i_1} \otimes e^{i_2} \otimes \cdots \otimes e^{i_p})
\]

Thus the \(e^{i_1} \wedge \cdots \wedge e^{i_p}, i_1 < i_2 < \cdots < i_p \) span \(\Lambda^p \). It is trivial to see that these maps are independent since \(\{e^{i_1} \otimes \cdots \otimes e^{i_p}\} \) are independent. The proposition follows.

Definition 15.5.9. Suppose \(a \in \Lambda^k \), \(b \in \Lambda^l \) with

\[
a = \frac{1}{k!}a_{i_1 \cdots i_k}(e^{i_1} \wedge \cdots \wedge e^{i_k}), \quad b = \frac{1}{l!}b_{j_1, j_2, \ldots, j_l}(e^{j_1} \wedge e^{j_2} \wedge \cdots \wedge e^{j_l})
\]

and with \(a_{i_1 \cdots i_k}, b_{j_1 \cdots j_l} \) skew-symmetric. Then we define \(a \wedge b \) to be the member of \(\Lambda^{k+l} \) defined by

\[
a \wedge b = \frac{1}{k!l!}(a_{i_1 \cdots i_k}b_{j_1 \cdots j_l})(e^{i_1} \wedge \cdots \wedge e^{i_k} \wedge e^{j_1} \wedge \cdots \wedge e^{j_l})
\]

Theorem 15.5.10. The operation \(\wedge \) on \(\Lambda^k \times \Lambda^l \) to \(\Lambda^{k+l} \) is well-defined and has the following properties: for \(a, b, c \) in \(\Lambda^k, \Lambda^l, \Lambda^p \) respectively

1. \(a \wedge (b \wedge c) = (a \wedge b) \wedge c \)
2. \(a \wedge (\lambda b + \eta c) = \lambda(a \wedge b) + \eta(a \wedge c) \)
3. \(a \wedge b = (-1)^{kl}(b \wedge a) \)
proof: (1) and (2) are easy and are left to the reader. To see that (3) holds observe first that $e^i \wedge e^j = -(e^j \wedge e^i)$ and thus that

\begin{align*}
e^{i_1} \wedge \cdots \wedge e^{i_k} \wedge e^{j_1} \wedge \cdots \wedge e^{j_l} &= (-1)^l (e^{i_1} \wedge \cdots \wedge e^{i_{k-1}} \wedge e^{j_1} \wedge \cdots \wedge e^{j_l} \wedge e^{i_k}) \\
&= (-1)^{l+l} e^{i_1} \wedge \cdots \wedge e^{i_{k-2}} \wedge e^{j_1} \wedge \cdots \wedge e^{j_l} \wedge e^{i_{k-1}} \wedge e^{i_k} \\
&= \cdots = (-1)^{kl} (e^{j_1} \wedge \cdots \wedge e^{j_l} \wedge e^{i_1} \wedge \cdots \wedge e^{i_k})
\end{align*}

Statement (3) follows easily.