
Math 332 Mission 10: Generalized Stokes’ Thm, Maxwell’s Eqns

Same instructions as Mission 1. Thanks!

Problem 73 Let f : Rn → R be a function with non-vanishing ∇f . Let M be the hypersurface which
is formed by the solution set of f(x) = c; that is M = f−1{c}. Furthermore, let n = ωn⃗ be
unit-normal form in the sense that Ker(np) = TpM for each p ∈ M and n⃗ • n⃗ = 1. We
define the volume form volM on the hypersurface by volM = ⋆n where ⋆ is the eulicidean
Hodge dual. Show:

df ∧ volM = |∇f |dx1 ∧ · · · ∧ dxn

Problem 74 Calculate, use the volume form defined in previous problem,∫
SR

volM = 2πR

where SR = F−1(R) for F (x, y) = x2 + y2. Suggestion,

n =
1

R
(xdy − ydx)

has n⃗ = 1
R
⟨−y, x⟩ with unit-length on SR.

Problem 75 Calculate, use the volume form defined in previous problem,∫
SR

volM = 4πR2

where SR = F−1(R) for F (x, y, z) = x2 + y2 + z2.

Problem 76 Consider the 1-form α = xdz + ydw− (x2 + y2 + z2 +w2)dt on R5. Calculate
∫
S
dα ∧ dα,

where S ⊂ R5 is given by x2+y2+z2+w2 = 1 and 0 ≤ t ≤ 1. Use the generalized Stokes’
Theorem and the identity dα ∧ dα = d(α ∧ dα) to make life easier.

Problem 77 Renteln Exercise 8.60 page 246-247. (volume of n-sphere )

Problem 78 Renteln Exercise 3.28 page 90. (Maxwell’s Equations)

Problem 79 Renteln Exercise 3.29 page 93. ( conservation of charge from d2 = 0)

Problem 80 Maxwell’s equations are written in differential form on R4 in my notes. Essentially, ig-
noring a factor of c, the coordinates on spacetime are (t, x, y, z). Pull-back Maxwell’s
equations to volume of constant time t = to. What are the new equations which hold on
the slice of spacetime where time is constant? Are these equations familar from Physics
232 ( if you’ve had the course, note, set µo = ϵo = 1 for our convenience here, I’ve not
been careful about dimensional analysis in my notes in certain places...)



Bonus 10: (Hokage level) Let πj : Rn → Rn be the projection defined by π(x) = x − (x • ej)ej for
each x ∈ Rn for j = 1, . . . , n. Suppose P is an (n − 1)-dimensional paralell-piped which is formed by
[0, 1]-weighted linear combinations of v1, . . . , vn−1 ∈ Rn suspended at base-point p ∈ (0,∞)n;

P =

{
p+

n−1∑
j=1

αjvj

∣∣∣∣ αj ∈ [0, 1]

}

Let n ∈ Rn be a unit-vector in {v1, · · · , vn−1}⊥. The (n − 1)-volume of P is given by vol(P) =
|det[v1| · · · |vn−1|n]|. We can study the area of the shadows formed by P on the coordinate hyperplanes.
Let Pj = πj(P) define the shadow of P on the xj = 0 coordinate plane. Notice,

Pj =

{
πj(p) +

n−1∑
i=1

αiπj(vi)

∣∣∣∣ αj ∈ [0, 1]

}
which shows Pj is formed by [0, 1]-weighted linear combinations of πj(v1), . . . , πj(vn) of attached at
basepoint πj(p). It follows that the (n− 1)-volume of the Pj can be calculated as follows:

vol(Pj) = |det[πj(v1)| · · · |πj(vn−1)|ej]|.

since ej is perpendicular to Pj. I choose to refer to the quantity as volume, but to be honest, in
the one-dimensional case we usually call it length, in two-dimensions area. Some people call higher
dimensional cases hypervolume. Let’s examine some simple cases. In the case n = 2 the 1-dimensional
paralell-piped is just a line-segment. For example, if v1 = (1, 1) then (1/

√
2,−1/

√
2) is perpendicular

to v1 and

det

[
1 1/

√
2

1 −1/
√
2

]
= −2/

√
2 = −

√
2 ⇒ vol(P) =

√
2.

Of course, this is actually the length of the line-segment. Also, notice

vol(P1)
2 + vol(P2)

2 = 12 + 12 =
√
2
2
= vol(P)2.

This is not suprising. However, perhaps the fact this generalizes to n-dimensions in the following sense
is not already known to you:

vol(P1)
2 + vol(P2)

2 + · · ·vol(Pn)
2 = vol(P)2

Prove it. You might call this the generalized Pythagorean identity, I’m not sure its history or formal
name. That said, the formula I give for generalized area could just as well be termed generalized
volume. Also, you could define

v1 × v2 × · · · × vn−1 = det

 v1 | v2 | · · · | vn−1

e1
e2
...
en

 ∈ Rn

where we insist the determinant is calculated via the Laplace expansion by minors along the last
column. You can show v1 × v2 × · · · × vn−1 ∈ {v1, . . . , vn−1}⊥. But, if n is a unit-vector which spans
{v1, . . . , vn−1}⊥ then the (n− 1)-ry cross-product must be a vector parallel to n and thus:

v1 × v2 × · · · × vn−1 = [(v1 × v2 × · · · × vn−1) •n]n



Note, n •n = 1 as we assumed n is unit-vector and we can show

(v1 × v2 × · · · × vn−1) •n = det[v1|v2| . . . |vn−1|n]

Notice this generalized cross-product is just an extension of the heurstic determinant commonly used
in multivariate calculus to define the standard cross-product. In particular, the following is equivalent
to the column-based definition

v1 × v2 × · · · × vn−1 = det


e1 e2 · · · en

vT1
vT2
...

vTn−1


where we insist the determinant is calculated via the Laplace expansion by minors along the first row.
In any event, my point in this discussion is merely that we can calculate higher-dimensional volumes
with determinants and these go hand-in-hand with generalized cross-products. In particular,

||v1 × v2 × · · · × vn−1|| = vol(P)

where P is formed by [0, 1]-weighted linear combinations of v1, . . . , vn−1. When n = 2 this gives vector

length, when n = 3 this is the familar result that the area of the parallelogram with sides A⃗, B⃗ is just
||A⃗× B⃗||.


