Same instructions as Mission 1. Thanks!

- **Problem 25** Consider $\gamma(t) = (t, t^2/2, 4, -t)$ for $t \in \mathbb{R}$. Let $C = \gamma(\mathbb{R})$. Find the tangent and normal space to C at $\gamma(2)$.
- **Problem 26** Consider $F(x, y, z, w) = (x^2 + y^2, z^2 w^2)$. Define $M = F^{-1}(5, -7)$.
 - (a.) Find the tangent space and normal space to M at the point p = (1, 2, 3, 4).
 - (b.) Find a parametrization of M near p=(1,2,3,4) and find T_pM via a calculation involving the parametrization
- **Problem 27** Consider $F(x, y, z, t) = x^2 + y^2 + z^2 t^2$. Let $M = F^{-1}(0)$ and $p = (1, \sqrt{2}, \sqrt{3}, \sqrt{6})$.
 - (a.) Find the normal space to M at p,
 - (b.) Find a parametrization of M and use it to calculate T_pM .
- **Problem 28** Let $S_R(x_o, y_o)$ be the circle of radius R centered at (x_o, y_o) .
 - (a.) Find a parametrization of $M = S_R(x_o, y_o) \times S_A(x_1, y_1) \subseteq \mathbb{R}^4$. Find the tangent space at an arbitrary point in M
 - (b.) Express $M = S_R(x_o, y_o) \times S_A(x_1, y_1) \subseteq \mathbb{R}^4$ as the level-set of an appropriate function. Find the normal space to M at an arbitrary point on M.
- **Problem 29** Use the method of Lagrange multipliers to find the distance between the unit-circle $x^2 + y^2 = 1$ and the line x + y = 4
- **Problem 30** Find the highest and lowest points on the ellipse of intersection of the cylinder $x^2 + y^2 = 1$ and the plane x + y + z = 1.
- **Problem 31** Use the method of Lagrange multipliers to find the minimum distance from the origin to the curve of intersection of the surfaces $z^2 = x^2 + y^2$ and x 2z = 3.
- **Problem 32** Let A be a symmetric matrix; $A^T = A$. Define $Q(x) = x^T A x$ for each $x \in \mathbb{R}^n$. Apply the method of Lagrange multipliers to find the condition for min/max of Q restricted to $S_{n-1} = \{x \in \mathbb{R}^n \mid ||x|| = 1\}$ (here I use $||x||^2 = x^T x$, that is ||x|| is the Euclidean norm).
- **Bonus 4:** Suppose we have two manifolds in \mathbb{R}^n given as level sets of

$$g:\mathbb{R}^n\to\mathbb{R}^m\qquad\&\qquad h:\mathbb{R}^n\to\mathbb{R}^k.$$

Let $M = g^{-1}(0)$ and $N = h^{-1}(0)$ such that $M \cap N = \emptyset$. If there exist $p \in M$ and $q \in N$ which are closest together of all pairs of points $(p, q) \in M \times N$ then prove the line-segment $[p, q] = \{p + t(q - p) \mid 0 \le t \le 1\}$ is orthogonal to both M at p and N at q.

Please use the method of Lagrange multipliers to minimize $f(x,y) = ||x||^2 + ||y||^2$ for $x, y \in \mathbb{R}^n$ subject G(x,y) = (g(x),h(y)) = (0,0).