
Math 332 Mission 5: optimization, power series, variational calculus

Same instructions as Mission 1. Thanks!

Problem 31 Consider x, y ∈ Rn. Define Q(t) = ∥x − ty∥2 for t ∈ R. Find the minimum value for Q
and show how this can be used to derive the inequality x • y ≤ ∥x∥∥y∥.

Problem 32 Let V be a real inner product space with inner product ⟨, ⟩. Suppose β = {v1, . . . , vn} is
an orthonormal basis for V and let x =

∑
i xivi and y =

∑
j yjvj. Define ∥x∥ =

√
⟨x, x⟩.

Let Q(t) = ∥x− ty∥2 for t ∈ R. Find the minimum value for Q and show how this can be
used to derive the inequality ⟨x, y⟩ ≤ ∥x∥∥y∥.

Problem 33 Let Q(x, y, z) = 31x2 +15y2 +15z2 − 22xy− 22xz+10yz. Find the matrix for Q and use
technology to calculate the eigenvalues for Q. Let y1, y2, y3 denote the eigencoordinates,
write the formula for Q in terms of the eigencoordinates. For the record, I did not design
this problem to have that eigenvalue. It just happened.

Problem 34 Suppose

f(x, y, z) = 9000+31(x−1)2+15y2+15(z+2)2−22(x−1)y−22(x−1)(z+2)+10y(z+2)

Notice (1, 0,−2) is a critical point for f . Classify the critical point as min/max or saddle.

Problem 35 Calculate the multivariate Taylor series centered about (0, 0, 0) for f(x, y, z) =
1 + y2

1− 2xz
to

order 4. Analyze: is (0, 0, 0) a critical point? If so, analyze if it yields a min/max/saddle
or if the second derivative test is not applicable for the given problem.
Hint: all the cool kids use geometric series

Problem 36 Find the geodesics in the tunnel given by (x, y, z) for which y2 + z2 = R2.

Problem 37 Find the geodesics on the cone ϕ = π/3 where ϕ denotes the usual spherical angle.

Problem 38 Let L = m
2
(ẋ2 + ẏ2)− k

2
(x2 + y2) denote the Lagrangian of a particle with mass m under

the force a spring with potential energy U(x, y) = k
2
(x2 + y2). Notice L = T − U where

T is the kinetic energy. Calculate the Euler-Lagrange equations and show energy
E = T + U is conserved along the solution to the Euler-Lagrange equation

Problem 39 Let L = m
2
(ṙ2+r2θ̇2)+g(r) where g is a differentiable function of the polar radius r. Find

the Euler Lagrange equations. Also, suppose we define angular momentum J =
∂L

∂θ̇
, show

J is conserved.

Problem 40 A marble slides without friction on a bowl of radius R. If the marble has mass m and
the force of gravity is given by −mg ẑ then find the equations of motion for the marble
(differential equations suffice as an answer here). Also, show momentum in the direction
of a rotation about the z-axis is conserved.



Bonus 5: Imagine a pendulum of length l1 which consists of a very light rod which does not flex and
a bob of mass m1. Next, a second pendulum of length l2 which consists of a very light rod which does
not flex and a bob of mass m2 is attached so that l2 hangs freely off m1. All of this is attached to point
and allowed to swing back and forth under the influence of gravity. Assume this is near the surface of
the earth where F = mg applies. Find the equations of motion for this double pendulum. Let θ1 and
θ2 be the angles which l2 and l2 make with respect to − ẑ. Write the equations of motion in terms of
these anglular variables.

Bonus 6: Let qi and q̇i for 1 ≤ i ≤ n denote generalized coordinates of a physical system with
Lagrangian L(qi, q̇i). Define the Hamiltonian by

H(qi, pi) =
n∑

i=1

piq̇i − L(qi, q̇i)

where pi = ∂L
∂q̇i

defines the i-th generalized momenta of the system. Show that the Euler Lagrange
equations imply Hamilton’s Equations of motion:

dpi
dt

= −∂H

∂qi
&

dqi
dt

=
∂H

∂pi
.

Bonus 7: I have in mind a problem where you derive Coriolis effect and such by imposing rotation
of the earth on a rotating frame. I lack inspiration to frame the problem properly, but, if you have
interest, shoot me an email and I’ll put it together as a bonus problem here.


