Same instructions as Mission 1. Thanks!

- **Problem 41** Suppose $T: V \times V \times V^* \to \mathbb{R}$ is a multilinear map. If $\beta = \{e_1, \dots, e_n\}$ is basis for V and $\theta^1, \dots, \theta^n$ is the dual basis for V^* then find $C_{ij}^k \in \mathbb{R}$ for which $T = \sum_{i,j,k} C_{ij}^k \theta^i \otimes \theta^j \otimes v_k$.
- Problem 42 Renteln Exercise 2.2 page 36. (contraction of symmetric and antisymmetric gives zero)
- **Problem 43** Renteln Exercise 2.5 page 41. $(\alpha \wedge \beta = (-1)^{|\alpha|}\beta \wedge \alpha$ see my notes for help.)
- Problem 44 Renteln Exercise 2.15 page 50. (Cartan's Lemma)
- **Problem 45** Renteln Exercise 2.17 page 50. (Hodge duality on \mathbb{R}^n with Euclidean metric)
- **Problem 46** Let $\omega_{\langle a,b,c\rangle} = ae^1 + be^2 + ce^3$ and $\Phi_{\langle a,b,c\rangle} = ae^2 \wedge e^3 + be^3 \wedge e^1 + ce^1 \wedge e^2$ notice the Hodge dual with respect to the Euclidean metric on \mathbb{R}^3 gives $\star \omega_{\langle a,b,c\rangle} = \Phi_{\langle a,b,c\rangle}$ and $\star 1 = e^1 \wedge e^2 \wedge e^3$ and $\star^2 = 1$. Calculate the following:
 - (a.) $\omega_{\vec{A}} \wedge \omega_{\vec{B}}$ and write your answer in terms of Φ of a well-known vector product from Calculus III,
 - (b.) $\star(\omega_{\vec{A}} \wedge \omega_{\vec{B}} \wedge \omega_{\vec{C}})$ and explain the geometric significance of this quantity which hopefully you saw in Calculus III.
- **Problem 47** Consider \mathbb{R}^4 and define $\omega_{\langle a,b,c,d\rangle} = ae^1 + be^2 + ce^3 + de^4$. Let \star denote the Hodge dual with respect to the Euclidean metric and define:

$$\vec{A} \times \vec{B} \times \vec{C} = \omega^{-1} \left(\star \left(\omega_{\vec{A}} \wedge \omega_{\vec{B}} \wedge \omega_{\vec{C}} \right) \right)$$

for $\vec{A}, \vec{B}, \vec{C} \in \mathbb{R}^4$.

- (a.) Prove $\vec{A} \times \vec{B} \times \vec{C} \in \{\vec{A}, \vec{B}, \vec{C}\}^{\perp}$
- (b.) Given $\vec{A}, \vec{B}, \vec{C}$ are orthogonal, show $\|\vec{A} \times \vec{B} \times \vec{C}\| = \|\vec{A}\| \|\vec{B}\| \|\vec{C}\|$.
- (c.) Can you write a formula for this generalized cross-product using a nonsense determinant in remembrance of calculus III ?
- **Problem 48** Let $\mathcal{I}(p,n)$ denote the set of all strictly increasing p-tuples of indices taken from $\{1,2,\ldots,n\}$. Show that if $\beta = \{e_1,\ldots,e_n\}$ is a basis for V then $\Lambda^p V$ has basis $\beta^p = \{e_I \mid I \in \mathcal{I}(p,n)\}$ where the **multi-index** notation $I = (i_1,\ldots,i_p)$ implicits $e_I = e_{i_1} \wedge \cdots \wedge e_{i_p}$.