Same instructions as Tour 1. Thanks!

Problem 17 Suppose x_1, \ldots, x_n are coordinates of a normed linear space V with respect to the basis $\beta = \{v_1, \ldots, v_n\}$. Let $F, G: V \to \mathbb{R}$ be differentiable functions on V and $h: \mathbb{R} \to \mathbb{R}$ a differentiable function on \mathbb{R} . Show: for $c \in \mathbb{R}$ and for $i = 1, \ldots, n$,

$$\frac{\partial}{\partial x_i} \left[cF(x) + G(x) \right] = c \frac{\partial F}{\partial x_i} + \frac{\partial G}{\partial x_i} \qquad \& \qquad \frac{\partial}{\partial x_i} \left[h(F(x)) \right] = h'(F(x)) \frac{\partial F}{\partial x_i}.$$

Problem 18 add problem in lecture here.

- **Problem 19** If $x^2 + y^2 + z^2 + w^2 = 1$ and xywz = 1 then calculate $\frac{\partial z}{\partial x}|_y$. That is, take z, w to be dependent variables and calculate the derivative of z with respect to x while holding y-fixed.
- **Problem 20** Let $G(x, y, a, b) = (x^2 y^2 ax + by, 2xy xb ya)$. Suppose $M = G^{-1}(2, 1)$.
 - (a.) Solve for a, b as functions of x, y
 - (b.) use the implicit function theorem to show where it is possible to solve for a, x as functions of b, y (no need to actually solve it, demonstration of existence suffices)
 - (c.) use the implicit function theorem to show where it is possible to solve for a, y as functions of b, x (no need to actually solve it, demonstration of existence suffices))
 - (d.) use the implicit function theorem to show where it is possible to solve for x, y as functions of a, b. (no need to actually solve it, demonstration of existence suffices))

note: I don't expect you to analyze the subtle question of if it is still possible to solve where there implicit function theorem breaks down. I merely wish for you to find the low-hanging fruit which the implicit function theorem provides

- **Problem 21** Let $F(x, y, z, w) = (e^x \cosh y, e^x \sinh y, e^z \cos w, e^z \sin w)$ for all $(x, y, z, w) \in \mathbb{R}^4$. Show this mapping is locally invertible. Prove that no global inverse exists.
- **Problem 22** Define F(x, y, z) = (x/y, y/z, z) for $y, z \neq 0$. Calculate J_F and determine where F can be F is locally invertible. Calculate $F^{-1}(a, b, c)$.
- **Problem 23** Let $F(x,y) = (x^3 3xy^2, 3x^2y y^3)$ for all $(x,y) \in \mathbb{R}^2$. Show F is locally invertible at all points in the plane except one. Find the inverse for F restricted to the sector $-\pi/3 < \theta < \pi/3$ for r > 0 (I use the usual polar coordinates in the plane)

- **Problem 24** Consider $\gamma(t) = (t, t^2/2, 4, -t)$ for $t \in \mathbb{R}$. Let $C = \gamma(\mathbb{R})$. Find the tangent and normal space to C at $\gamma(2)$.
- **Problem 25** Consider $F(x, y, z, w) = (x^2 + y^2, z^2 w^2)$. Define $M = F^{-1}(5, -7)$.
 - (a.) Find the tangent space and normal space to M at the point p = (1, 2, 3, 4).
 - (b.) Find a parametrization of M near p=(1,2,3,4) and find T_pM via a calculation involving the parametrization
- **Problem 26** Consider $F(x, y, z, t) = x^2 + y^2 + z^2 t^2$. Let $M = F^{-1}(0)$ and $p = (1, \sqrt{2}, \sqrt{3}, \sqrt{6})$.
 - (a.) Find the normal space to M at p,
 - **(b.)** Find a parametrization of M and use it to calculate T_pM .
- **Problem 27** Let $S_R(x_o, y_o)$ be the circle of radius R centered at (x_o, y_o) .
 - (a.) Find a parametrization of $M = S_R(x_o, y_o) \times S_A(x_1, y_1) \subseteq \mathbb{R}^4$. Find the tangent space at an arbitrary point in M
 - (b.) Express $M = S_R(x_o, y_o) \times S_A(x_1, y_1) \subseteq \mathbb{R}^4$ as the level-set of an appropriate function. Find the normal space to M at an arbitrary point on M.
- **Problem 28** Use the method of Lagrange multipliers to find the distance between the unit-circle $x^2 + y^2 = 1$ and the line x + y = 4.
- **Problem 29** Find the highest and lowest points on the ellipse of intersection of the cylinder $x^2 + y^2 = 1$ and the plane x + y + z = 1.
- **Problem 30** Use the method of Lagrange multipliers to find the minimum distance from the origin to the curve of intersection of the surfaces $z^2 = x^2 + y^2$ and x 2z = 3.
- **Problem 31** Let A be a symmetric matrix; $A^T = A$. Define $Q(x) = x^T A x$ for each $x \in \mathbb{R}^n$. Apply the method of Lagrange multipliers to find the condition for min/max of Q restricted to $S_{n-1} = \{x \in \mathbb{R}^n \mid ||x|| = 1\}$ (here I use $||x||^2 = x^T x$, that is ||x|| is the Euclidean norm).
- **Problem 32** add problem in lecture here.