Матн 332

Same instructions as Tour 1. Thanks!

- **Problem 49** Consider $F: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $F(r, \theta, \phi) = (r \cos \theta \sin \phi, r \sin \theta \sin \phi, r \cos \phi)$. View r, θ, ϕ as Cartesian coordinates on the domain of F and view x, y, z as coordinates for the codomain of F. In particular, this indicates $F^1 = x$ and $F^2 = y$ and $F^3 = z$. Find $F^*(\beta)$ where $\beta = \frac{1}{x^2 + y^2} [-ydx + xdy]$.
- **Problem 50** (Lee p.389 Problem 11) Let ω below defined for $(x, y, z) \neq 0$,

$$\omega = \frac{x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}$$

Calculate $d\omega$. Is ω closed? Is ω exact? Express ω in spherical coordinates (pull-back dx, dy, dz etc. to $d\rho, d\phi, d\theta$ etc.)

- **Problem 51** Renteln Exercises 3.32 and 3.33 page 97. (pull-backs)
- **Problem 52** Renteln Exercise 3.35 page 98. (relation of push-forward to Jacobian matrix)
- **Problem 53** Let U be open subset of \mathbb{R}^n . Suppose ω_1 is a closed differential form on $U \subseteq \mathbb{R}^n$ and suppose ω_2 is an exact differential form on $U \subseteq \mathbb{R}^n$. Show $\omega_1 \wedge \omega_2$ is exact.
- Problem 54 Problem from Lecture to be added here.
- **Problem 55** Problem from Lecture to be added here.
- **Problem 56** Problem from Lecture to be added here.
- **Problem 57** Problem from Lecture to be added here.
- **Problem 58** Problem from Lecture to be added here.
- **Problem 59** Problem from Lecture to be added here.
- **Problem 60** Problem from Lecture to be added here.
- **Problem 61** Renteln Exercise 6.3 page 166. (verify Stokes' theorem)
- **Problem 62** Renteln Exercise 6.4 page 166. (integral of exact or closed)
- **Problem 63** Renteln Exercise 6.5 page 166. (connection between d^2 and ∂^2)
- **Problem 64** Exercise 6.8 and 6.9 on page 171-172 of Renteln (a natural homomorphism powered by IBP on forms)