Show your work and justify steps.

Problem 1 [5pts] Let $v, w \in \mathbb{R}^n$. Suppose $v \cdot w = 0$. Show that $||v + w||^2 = ||v||^2 + ||w||^2$.

Problem 2 [5pts] Give an example of a function which is differentiable, but not continuously differentiable at a point.

Problem 3 [5pts] Define what it means for $U \subseteq V$ to be an open set in V where V is a normed linear space with norm $||\cdot||$.

Problem 4 [10pts] Suppose $F(x,y) = (xy, x^2y^2, x^3y^3)$ and $G(a,b,c) = (a+b, \sqrt{b+c})$. If $H = G \circ F$ then calculate H'(x,y). You may leave your answer in terms of the product of two appropriate matrices. However, be sure the entries in the matrices are correct.

Problem 5 [5pts] Find the standard matrix of T(x, y) = (x + 2y, 3x + 4y).

Problem 6 [10pts] Suppose $w = x^2 + y^2 + z^2$ and $z = x^2 + y^2$. Calculate $\left(\frac{\partial w}{\partial x}\right)_y$.

Problem 7 [10pts] If $a \in (0, \infty)$ then it can be shown that

$$\int_{-\infty}^{\infty} e^{-ax^2} \, dx = \sqrt{\frac{\pi}{a}}.$$

Use the fact given above to derive a nice formula for

$$\int_{-\infty}^{\infty} x^4 e^{-ax^2} \, dx.$$

Problem 8 [10pts] Let $F(x, y, z) = (x^2 + y^2 + z^2, x^2)$. Find a parametrization(s) of the curve(s) $F^{-1}\{(4,1)\}$.

Problem 9 [10pts] Suppose $G(x, y, z)$	=(xy,yz). Answer	the following q	questions without	solving any
equations. Instead, use a theorem	n to justify your cla	ims:		

(a.) where is it possible to locally solve G(x, y, z) = (1, 1) for y, z as functions of x

(b.) where is it possible to locally solve G(x, y, z) = (1, 1) for x, z as functions of y

Problem 10 [10pts] Let $F(x, y, z) = (x + y, x^2 + y^2, x^3 + y^3 + z^3)$. Calculate F'(x, y, z) and find where F is locally invertible.

Problem 11 [10pts] Find extrema of $f(x,y) = 2x^2 + 4y^2$ on the unit-circle $x^2 + y^2 = 1$.

Problem 12 [10pts] Let $\Phi(t) = (t, t^2, t^3, t^4)$ for all $t \in \mathbb{R}$. Define $C = \Phi(\mathbb{R})$. Let p = (1, 1, 1, 1). Derive the tangent and normal spaces to C at p; that is calculate T_pC and N_pC . You may describe T_pC and N_pC as a span or as point-sets in \mathbb{R}^4 given by cartesian equations, your choice.

Problem 13 [10pts] Suppose functions of the form $f: \mathbb{R}^3 \to \mathbb{R}$ have multivariate power series expansions centered at p as given below. In each case, identify $\nabla f(p)$ and decide if p is a critical point. If p is a critical point then use the theory of quadratic forms to classify the extrema.

(a.)
$$p = (1, 2, 3),$$

 $f(x, y, z) = 10 + (x-1) + 2(z-3) + (x-1)^2 + (y-2)^2 + \cdots$

(b.)
$$p = (1, 2, 4),$$

$$f(x, y, z) = 3 - (x - 1)^2 - (y - 2)^2 - 4(z - 4)^2 + \cdots$$

(c.)
$$p = (0, 0, 0)$$
, hint, try $\lambda = -1$.
 $f(x, y, z) = 3 + 2xy + 2xz + 2yz \cdots$

Show your work and justify steps.

Problem 17 [10pts] Let V, W be finite dimensional vector spaces with norms $||\cdot||_V$ and $||\cdot||_W$ respectively. Suppose $T: V \to W$ is a linear transformation. Show T is continuous.

Problem 18 [10pts] Suppose $R \in \mathbb{R}$ is a fixed, positive constant. Let $X : \mathbb{R}^3 \to \mathbb{R}^4$ be defined by

 $X(\theta, \phi, \psi) = (R\cos\theta\sin\phi\sin\psi, R\sin\theta\sin\phi\sin\psi, R\cos\phi\sin\psi, R\cos\psi).$

Let $X(\mathbb{R}^3) = V$. Let $F(x, y, z, t) = x^2 + y^2 + z^2 + t^2$. Show that $V = F^{-1}\{R\}$. Let $p = X(\pi/4, \pi/4, \pi/6)$. Find T_pV and N_pV . You may describe T_pC and N_pC as a span or as point-sets in \mathbb{R}^4 given by cartesian equations, your choice.

Problem 19 [10pts] Suppose we wish to find the extrema of $F: \mathbb{R}^n \to \mathbb{R}$ on some compact domain given by $G^{-1}\{0\}$ where $G = (G_1, \ldots, G_p): \mathbb{R}^n \to \mathbb{R}^p$. Consider the function $H(x, \lambda_1, \ldots, \lambda_p) = F(x) - \sum_{i=1}^p \lambda_i G_i(x)$ where $H: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}$. Explain what critical points of H yield.