Problem 1 (10pts) Paul's easy question: Consider $T(x, y, z)=(x+y+z, y+z, z)$.
(a.) Find the standard matrix of T. (b.) Is T surjective? (c.) Is T injective?

Problem 2 (4pts) In our proof that continuously differentiable implies differentiable, we used the ___ Theorem and continuity of the \qquad to prove the Frechet quotient has limit zero. (fill in the blanks)

Problem 3 (16pts) Consider $G(x, y)=\left(x^{2}+y^{2}, x y, x+y\right)$.
(a.) Find the Jacobian matrix of G
(b.) Find the linearization of G at $(4,2)$

Problem 7 (10pts)Joe's Problem Let $\gamma(t)=\left(t, 2 t^{2}, 3 t^{3}, 4 t^{4}\right)$ for each $t \in \mathbb{R}$ defines a curve in \mathbb{R}^{4}. Find the tangent and normal space to the curve at ($1,2,3,4$).

Problem 4 (10pts) Suppose A is a symmetric real $n \times n$ matrix.
Let $R(u)=u^{T} A u$ for all $u \in S_{n-1}$ (meaning $u \in \mathbb{R}^{n}$ and $\|u\|=1$).
Show that Q defined by $Q(x)=x^{T} A x$ for all $x \in \mathbb{R}^{n}$ is the only quadratic form on \mathbb{R}^{n} which restricts to R on the unit- $(n-1)$-sphere in \mathbb{R}^{n}.

Problem 5 (15pts) Let D be a diagonal matrix with $D_{i i}>0$ for each $i=1,2, \ldots, n$. Show that $\eta(v, w)=v^{T} D w$ defines an inner product on \mathbb{R}^{n}.

Problem 6 (20pts) We sketched a proof of the inverse function theorem for functions $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Let V be a real normed linear space of dimension n
(a.) conjecture an inverse function theorem for a mapping $G: V \rightarrow V$
(b.) prove your conjecture follows the known theorem for functions on \mathbb{R}^{n}.

Problem 8 (15pts) Suppose $F: V \rightarrow V$ is a differentiable mapping of real normed linear space V with basis $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$. Given that the differential of F at $p \in V$ satisfies $d_{p} F\left(v_{i}\right)=$ $\left(i^{2}+1\right) v_{i}$ for $i=1,2, \ldots, n$ what can we say the function F near p.

Problem 9 (15pts) Let $F(A)=A^{2}$ for each $A \in \mathbb{R}^{n \times n}$. Show that F is differentiable on $\mathbb{R}^{n \times n}$.

Problem 10 (15pts) Let $F(A)=A^{2}$ for each $A \in \mathbb{R}^{n \times n}$. Furthermore, define $G: \mathbb{R} \rightarrow \mathbb{R}^{n \times n}$ by $G(t)=\cos (t) I+\sin (t) J$ where I is the identity matrix and J is a given constant matrix. Calculate the differential of $F \circ G$ at time t.

Problem 11 (10pts) Let $f(x, y)=3+10(x-1)^{2}-4(x-1)(y-2)+6(y-2)^{2}+\cdots$. Determine if $f(1,2)=3$ is a minimum, maximum or a saddle point in view of the given multivariate Taylor expansion.

Problem 12 (10pts) If $D=f_{x x} f_{y y}-f_{x y}^{2}$ then, given a critical point p of f, explain why $D(p)>0$ for $f(p)$ an extreme value. Your argument should take the multivariate Taylor expansion as a given starting point.

Show your work. Thanks! Choose 7, including Problem 7 and 10. 10pts a problem.

Problem 1 Let $V=\left\{A \in \mathbb{R}^{2 \times 2} \mid \operatorname{trace}(A)=0\right\}$.
(a.) Find a basis for V
(b.) Write the formula for the coordinate map on V.

Problem 2 Let $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ be defined by $T(A)=\operatorname{det}(A)=A_{11} A_{22}-A_{12} A_{21}$ for each $A \in \mathbb{R}^{2 \times 2}$. Let $\beta=\left\{E_{11}, E_{12}, E_{21}, E_{22}\right\}$ serve as the basis for 2×2 matrices. Find $d_{A} T\left(E_{i j}\right)$ for each basis element and use these to construct $d_{A} T(H)$ for arbitrary $H \in \mathbb{R}^{2 \times 2}$.

Problem 3 Let $F(x, y, z)=\left(x^{2}+y^{2}, y^{2}+z^{2}\right)$. Find a parametrization(s) of the curve(s) $F^{-1}\{(4,1)\}$.
Problem 4 Suppose $w=x^{2}+y^{2}-z^{2}$ and $z=x^{2}-y^{2}$. Calculate $\left(\frac{\partial w}{\partial x}\right)_{y}$.
Problem 5 Find extrema of $f(x, y)=x^{2}+y^{2}$ on the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1 .(a, b>0)$
Problem 6 Let $x^{2}+y^{2}=4$ and $z^{2}+w^{2}=49$ define a space M in \mathbb{R}^{4} with coordinates (x, y, z, w). Find the tangent and normal space to M at $(1, \sqrt{3}, 0,7)$

Problem 7 Consider $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $F(x, y)=\left(e^{x^{2}}+y, 2+e^{x^{2}}-y\right)$.
(a.) calculate the Jacobian of F and calculate its determinant
(b.) where can we expect F to have a local inverse ?
(c.) let G denote F restricted to $U=\{(x, y) \mid x>0\}$. Find the formula for $G^{-1}(a, b)$
(d.) and determine the range of G.

Problem 8 Consider the system of equations below:

$$
\begin{aligned}
& t^{2}+x^{2}+y^{2}-z^{2}-w^{2}=4 \\
& t x+x y+y z
\end{aligned}
$$

Determine what condition is needed to apply the implicit function theorem to solve for z, w as functions of t, x, y. Given that condition, calculate the partial derivatives of z and w with respect to the independent variables t, x, y.

Problem 9 Neji has a defense against attacks which is nearly impenetrable. In particular, his occular Jutsu has a strength which is roughly modelled as $J(\theta, \phi)=\exp \left(\frac{-1}{\theta^{2}+(\phi-\pi / 6)^{2}}\right)$. Given that θ, ϕ are the usual spherical coordinates, along which ray would a wise opponent attack as to avoid Neji's occular defenses? Assume Neji Hoogerwerf is at the origin.

Problem 10 Consider the Lagrangian $L=x^{T} A x+\lambda\left(x^{T} x-1\right)$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and A is a symmetric real $n \times n$ matrix. Show the Euler Lagrange equations imply that x is an eigenvector of A.

