Problem 1 (10pts) **Paul's easy question:** Consider T(x, y, z) = (x + y + z, y + z, z). (a.) Find the standard matrix of T. (b.) Is T surjective? (c.) Is T injective?

Problem 2 (4pts) In our proof that continuously differentiable implies differentiable, we used the ______ Theorem and continuity of the ______

to prove the Frechet quotient has limit zero. (fill in the blanks)

Problem 3 (16pts) Consider $G(x, y) = (x^2 + y^2, xy, x + y)$.

(a.) Find the Jacobian matrix of G

(b.) Find the linearization of G at (4, 2)

Problem 7 (10pts)**Joe's Problem** Let $\gamma(t) = (t, 2t^2, 3t^3, 4t^4)$ for each $t \in \mathbb{R}$ defines a curve in \mathbb{R}^4 . Find the tangent and normal space to the curve at (1, 2, 3, 4). **Problem 4** (10pts) Suppose A is a symmetric real $n \times n$ matrix. Let $R(u) = u^T A u$ for all $u \in S_{n-1}$ (meaning $u \in \mathbb{R}^n$ and ||u|| = 1). Show that Q defined by $Q(x) = x^T A x$ for all $x \in \mathbb{R}^n$ is the only quadratic form on \mathbb{R}^n which restricts to R on the unit-(n-1)-sphere in \mathbb{R}^n .

Problem 5 (15pts) Let D be a diagonal matrix with $D_{ii} > 0$ for each i = 1, 2, ..., n. Show that $\eta(v, w) = v^T D w$ defines an inner product on \mathbb{R}^n .

Problem 6 (20pts) We sketched a proof of the inverse function theorem for functions $F : \mathbb{R}^n \to \mathbb{R}^n$. Let V be a real normed linear space of dimension n

- (a.) conjecture an inverse function theorem for a mapping $G: V \to V$
- (b.) prove your conjecture follows the known theorem for functions on \mathbb{R}^n .

Problem 8 (15pts) Suppose $F: V \to V$ is a differentiable mapping of real normed linear space V with basis $\beta = \{v_1, \ldots, v_n\}$. Given that the differential of F at $p \in V$ satisfies $d_p F(v_i) = (i^2 + 1)v_i$ for $i = 1, 2, \ldots, n$ what can we say the function F near p.

Problem 9 (15pts) Let $F(A) = A^2$ for each $A \in \mathbb{R}^{n \times n}$. Show that F is differentiable on $\mathbb{R}^{n \times n}$.

Problem 10 (15pts) Let $F(A) = A^2$ for each $A \in \mathbb{R}^{n \times n}$. Furthermore, define $G : \mathbb{R} \to \mathbb{R}^{n \times n}$ by $G(t) = \cos(t)I + \sin(t)J$ where I is the identity matrix and J is a given constant matrix. Calculate the differential of $F \circ G$ at time t.

Problem 11 (10pts) Let $f(x, y) = 3 + 10(x - 1)^2 - 4(x - 1)(y - 2) + 6(y - 2)^2 + \cdots$. Determine if f(1, 2) = 3 is a minimum, maximum or a saddle point in view of the given multivariate Taylor expansion.

Problem 12 (10pts) If $D = f_{xx}f_{yy} - f_{xy}^2$ then, given a critical point p of f, explain why D(p) > 0 for f(p) an extreme value. Your argument should take the multivariate Taylor expansion as a given starting point.

Show your work. Thanks! Choose 7, including Problem 7 and 10. 10pts a problem.

- **Problem 1** Let $V = \{A \in \mathbb{R}^{2 \times 2} \mid \text{trace}(A) = 0\}.$ (a.) Find a basis for V
 - (b.) Write the formula for the coordinate map on V.

Problem 2 Let $T : \mathbb{R}^{2 \times 2} \to \mathbb{R}$ be defined by $T(A) = \det(A) = A_{11}A_{22} - A_{12}A_{21}$ for each $A \in \mathbb{R}^{2 \times 2}$. Let $\beta = \{E_{11}, E_{12}, E_{21}, E_{22}\}$ serve as the basis for 2×2 matrices. Find $d_A T(E_{ij})$ for each basis element and use these to construct $d_A T(H)$ for arbitrary $H \in \mathbb{R}^{2 \times 2}$.

- **Problem 3** Let $F(x, y, z) = (x^2 + y^2, y^2 + z^2)$. Find a parametrization(s) of the curve(s) $F^{-1}\{(4, 1)\}$.
- **Problem 4** Suppose $w = x^2 + y^2 z^2$ and $z = x^2 y^2$. Calculate $\left(\frac{\partial w}{\partial x}\right)_{y}$.
- **Problem 5** Find extrema of $f(x, y) = x^2 + y^2$ on the ellipse $x^2/a^2 + y^2/b^2 = 1$. (a, b > 0)
- **Problem 6** Let $x^2 + y^2 = 4$ and $z^2 + w^2 = 49$ define a space M in \mathbb{R}^4 with coordinates (x, y, z, w). Find the tangent and normal space to M at $(1, \sqrt{3}, 0, 7)$
- **Problem 7** Consider $F : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $F(x, y) = (e^{x^2} + y, 2 + e^{x^2} y)$.
 - (a.) calculate the Jacobian of F and calculate its determinant
 - (b.) where can we expect F to have a local inverse?
 - (c.) let G denote F restricted to $U = \{(x, y) \mid x > 0\}$. Find the formula for $G^{-1}(a, b)$
 - (d.) and determine the range of G.
- Problem 8 Consider the system of equations below:

$$t^{2} + x^{2} + y^{2} - z^{2} - w^{2} = 4,$$

$$tx + xy + yz$$

Determine what condition is needed to apply the implicit function theorem to solve for z, w as functions of t, x, y. Given that condition, calculate the partial derivatives of z and w with respect to the independent variables t, x, y.

- **Problem 9** Neji has a defense against attacks which is nearly impenetrable. In particular, his occular Jutsu has a strength which is roughly modelled as $J(\theta, \phi) = \exp\left(\frac{-1}{\theta^2 + (\phi \pi/6)^2}\right)$. Given that θ, ϕ are the usual spherical coordinates, along which ray would a wise opponent attack as to avoid Neji's occular defenses? Assume Neji Hoogerwerf is at the origin.
- **Problem 10** Consider the Lagrangian $L = x^T A x + \lambda (x^T x 1)$ where $x = (x_1, x_2, \dots, x_n)$ and A is a symmetric real $n \times n$ matrix. Show the Euler Lagrange equations imply that x is an eigenvector of A.