




















































































































































































































































Chapter 7

local extrema for multivariate

functions

In this chapter I show how the multivariate Taylor series and the theory of quadratic forms give a
general form of the second derivative test. In particular we recover the second derivative tests of
calculus I and III as special cases. There are technical concerns about remainders and convergence
that I set aside for this chapter. The techniques developed here are not entirely general, there are
exceptional cases but that is not surprising, we had the same trouble in calculus I. If you read the
fine print you’ll find we really only have nice theorems for continuously differentiable functions.
When functions have holes or finite jump discontinuities we have to treat those separately.

7.1 Taylor series for functions of two variables

Our goal here is to find an analogue for Taylor’s Theorem for function from ℝ
n to ℝ. Recall that if

g : U ⊆ ℝ→ ℝ is smooth at a ∈ ℝ then we can compute as many derivatives as we wish, moreover
we can generate the Taylor’s series for g centered at a:

g(a+ ℎ) = g(a) + g′(a)ℎ+
1

2
g′′(a)ℎ2 +

1

3!
g′′(a)ℎ3 + ⋅ ⋅ ⋅ =

∞
∑

n=0

g(n)(a)

n!
ℎn

The equation above assumes that g is analytic at a. In other words, the function actually matches
it’s Taylor series near a. This concept can be made rigorous by discussing the remainder. If one
can show the remainder goes to zero then that proves the function is analytic. (read p117-127 of
Edwards for more on these concepts, I did cover some of that in class this semester, Theorem 6.3
is particularly interesting).

7.1.1 deriving the two-dimensional Taylor formula

The idea is fairly simple: create a function on ℝ with which we can apply the ordinary Taylor series
result. Much like our discussion of directional derivatives we compose a function of two variables
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124 CHAPTER 7. LOCAL EXTREMA FOR MULTIVARIATE FUNCTIONS

with linear path in the domain. Let f : U ⊆ ℝ
2 → ℝ be smooth with smooth partial derivatives

of all orders. Furthermore, let (a, b) ∈ U and construct a line through (a, b) with direction vector
(ℎ1, ℎ2) as usual:

�(t) = (a, b) + t(ℎ1, ℎ2) = (a+ tℎ1, b+ tℎ2)

for t ∈ ℝ. Note �(0) = (a, b) and �′(t) = (ℎ1, ℎ2) = �′(0). Construct g = f ∘� : ℝ → ℝ and
differentiate, note we use the chain rule for functions of several variables in what follows:

g′(t) = (f ∘�)′(t) = f ′(�(t))�′(t)

= ∇f(�(t)) ⋅ (ℎ1, ℎ2)
= ℎ1fx(a+ tℎ1, b+ tℎ2) + ℎ2fy(a+ tℎ1, b+ tℎ2)

Note g′(0) = ℎ1fx(a, b)+ℎ2fy(a, b). Differentiate again (I omit (�(t)) dependence in the last steps),

g′′(t) = ℎ1f
′
x(a+ tℎ1, b+ tℎ2) + ℎ2f

′
y(a+ tℎ1, b+ tℎ2)

= ℎ1∇fx(�(t)) ⋅ (ℎ1, ℎ2) + ℎ2∇fy(�(t)) ⋅ (ℎ1, ℎ2)
= ℎ21fxx + ℎ1ℎ2fyx + ℎ2ℎ1fxy + ℎ22fyy

= ℎ21fxx + 2ℎ1ℎ2fxy + ℎ22fyy

Thus, making explicit the point dependence, g′′(0) = ℎ21fxx(a, b) + 2ℎ1ℎ2fxy(a, b) + ℎ22fyy(a, b). We
may construct the Taylor series for g up to quadratic terms:

g(0 + t) = g(0) + tg′(0) +
1

2
g′′(0) + ⋅ ⋅ ⋅

= f(a, b) + t[ℎ1fx(a, b) + ℎ2fy(a, b)] +
t2

2

[

ℎ21fxx(a, b) + 2ℎ1ℎ2fxy(a, b) + ℎ22fyy(a, b)
]

+ ⋅ ⋅ ⋅

Note that g(t) = f(a+ tℎ1, b+ tℎ2) hence g(1) = f(a+ ℎ1, b+ ℎ2) and consequently,

f(a+ ℎ1, b+ ℎ2) = f(a, b) + ℎ1fx(a, b) + ℎ2fy(a, b)+

+
1

2

[

ℎ21fxx(a, b) + 2ℎ1ℎ2fxy(a, b) + ℎ22fyy(a, b)

]

+ ⋅ ⋅ ⋅

Omitting point dependence on the 2nd derivatives,

f(a+ ℎ1, b+ ℎ2) = f(a, b) + ℎ1fx(a, b) + ℎ2fy(a, b) +
1
2

[

ℎ21fxx + 2ℎ1ℎ2fxy + ℎ22fyy
]

+ ⋅ ⋅ ⋅

Sometimes we’d rather have an expansion about (x, y). To obtain that formula simply substitute
x − a = ℎ1 and y − b = ℎ2. Note that the point (a, b) is fixed in this discussion so the derivatives
are not modified in this substitution,

f(x, y) = f(a, b) + (x− a)fx(a, b) + (y − b)fy(a, b)+

+
1

2

[

(x− a)2fxx(a, b) + 2(x− a)(y − b)fxy(a, b) + (y − b)2fyy(a, b)

]

+ ⋅ ⋅ ⋅
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At this point we ought to recognize the first three terms give the tangent plane to z = f(z, y) at
(a, b, f(a, b)). The higher order terms are nonlinear corrections to the linearization, these quadratic
terms form a quadratic form. If we computed third, fourth or higher order terms we’d find that,
using a = a1 and b = a2 as well as x = x1 and y = x2,

f(x, y) =

∞
∑

n=0

n
∑

i1=0

n
∑

i2=0

⋅ ⋅ ⋅
n

∑

in=0

1

n!

∂(n)f(a1, a2)

∂xi1∂xi2 ⋅ ⋅ ⋅ ∂xin
(xi1 − ai1)(xi2 − ai2) ⋅ ⋅ ⋅ (xin − ain)

Let me expand the third order case just for fun:
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Fortunately we’re only really interested in the n = 0, 1, 2 order terms. Conceptually, n = 0 tells us
where to base the tangent plane, n = 1 tell us how to build the tangent plane. We will soon discuss
how n = 2 show us if the tangent plane is at the top or bottom of a hill if we’re at a critical point.
We pause to play with multivariate series:

Example 7.1.1.
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Of course many functions of two variables cannot be separated into a product of a function of x
and a function of y. In those cases we’d have to calculate the Taylor series directly.

Example 7.1.2.
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Example 7.1.3.
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7.2 Taylor series for functions of many variables
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7.3 quadratic forms, conic sections and quadric surfaces

Conic sections and quadratic surfaces are common examples in calculus. For example:

x2 + y2 = 4 level curve; generally has form f(x, y) = k

x2 + 4y2 + z2 = 1 level surface; generally has form F (x, y, z) = k

Our goal is to see what linear algebra and multivariate calculus have to say about conic sections
and quadric surfaces. (these notes borrowed from my linear algebra notes)

7.3.1 quadratic forms and their matrix

We are primarily interested in the application of this discussion to ℝ
2 and ℝ

3, however, these
concepts equally well apply to arbitrarily high finite dimensional problems where the geometry is
not easily pictured.

Definition 7.3.1.

Generally, a quadratic form Q is a function Q : ℝn → ℝ whose formula can be written
Q(x⃗) = x⃗TAx⃗ for all x⃗ ∈ ℝ

n where A ∈ ℝ
n×n such that AT = A. In particular, if

x⃗ = [x, y]T and A =

[

a b
b c

]

then

x⃗TAx⃗ = ax2 + bxy + byx+ cy2 = ax2 + 2bxy + y2.

The n = 3 case is similar,denote A = [Aij ] and x⃗ = [x, y, z]T so that

x⃗TAx⃗ = A11x
2 + 2A12xy + 2A13xz +A22y

2 + 2A23yz +A33z
2.

Generally, if [Aij ] ∈ ℝ
n×n and x⃗ = [xi]

T then the quadratic form

x⃗TAx⃗ =
∑

i,j

Aijxixj =
n

∑

i=1

Aiix
2
i +

∑

i<j

2Aijxixj .

In case you wondering, yes you could write a given quadratic form with a different matrix which
is not symmetric, but we will find it convenient to insist that our matrix is symmetric since that
choice is always possible for a given quadratic form.

You should notice can write a given quadratic form in terms of a dot-product:

x⃗TAx⃗ = x⃗ ⋅ (Ax⃗) = (Ax⃗) ⋅ x⃗ = x⃗TAT x⃗

Some texts actually use the middle equality above to define a symmetric matrix.
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Example 7.3.2.

2x2 + 2xy + 2y2 =
[

x y
]

[

2 1
1 2

] [

x
y

]

Example 7.3.3.

2x2 + 2xy + 3xz − 2y2 − z2 =
[

x y z
]

⎡

⎣

2 1 3/2
1 −2 0
3/2 0 −1

⎤

⎦

⎡

⎣

x
y
z

⎤

⎦

Proposition 7.3.4.

The values of a quadratic form on ℝ
n − {0} is completely determined by it’s values on

the (n − 1)-sphere Sn−1 = {x⃗ ∈ ℝ
n ∣ ∣∣x⃗∣∣ = 1}. In particular, Q(x⃗) = ∣∣x⃗∣∣2Q(x̂) where

x̂ = 1
∣∣x⃗∣∣ x⃗.

Proof: Let Q(x⃗) = x⃗TAx⃗. Notice that we can write any nonzero vector as the product of its
magnitude ∣∣x∣∣ and its direction x̂ = 1

∣∣x⃗∣∣ x⃗,

Q(x⃗) = Q(∣∣x⃗∣∣x̂) = (∣∣x⃗∣∣x̂)TA∣∣x⃗∣∣x̂ = ∣∣x⃗∣∣2x̂TAx̂ = ∣∣x∣∣2Q(x̂).

Therefore Q(x⃗) is simply proportional to Q(x̂) with proportionality constant ∣∣x⃗∣∣2. □

The proposition above is very interesting. It says that if we know how Q works on unit-vectors then
we can extrapolate its action on the remainder of ℝn. If f : S → ℝ then we could say f(S) > 0
iff f(s) > 0 for all s ∈ S. Likewise, f(S) < 0 iff f(s) < 0 for all s ∈ S. The proposition below
follows from the proposition above since ∣∣x⃗∣∣2 ranges over all nonzero positive real numbers in the
equations above.

Proposition 7.3.5.

If Q is a quadratic form on ℝ
n and we denote ℝ

n
∗ = ℝ

n − {0}

1.(negative definite) Q(ℝn
∗ ) < 0 iff Q(Sn−1) < 0

2.(positive definite) Q(ℝn
∗ ) > 0 iff Q(Sn−1) > 0

3.(non-definite) Q(ℝn
∗ ) = ℝ− {0} iff Q(Sn−1) has both positive and negative values.

7.3.2 almost an introduction to eigenvectors

Eigenvectors and eigenvalues play an important role in theory and application. In particular,
eigenvalues and eigenvectors allow us to (if possible) diagonalize a matrix. This essentially is the
problem of choosing coordinates for a particular system which most clearly reveals the true nature
of the system. For example, the fact that 2xy = 1 is a hyperbola is clearly seen once we change
to coordinates whose axes point along the eigenvectors for the quadratic form Q(x, y) = 2xy.
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Likewise, in the study of rotating rigid bodies the eigenvectors of the inertia tensor give the so-
called principle axes of inertia. When a body is set to spin about such an axes through its center
of mass the motion is natural, smooth and does not wobble. The inertia tensor gives a quadratic
form in the angular velocity which represents the rotational kinetic energy. I’ve probably assigned a
homework problem so you can understand this paragraph. In any event, there are many motivations
for studying eigenvalues and vectors. I explain much more theory for e-vectors in the linear course.

Definition 7.3.6.

Let A ∈ ℝ
n×n. If v ∈ ℝ

n×1 is nonzero and Av = �v for some � ∈ ℂ then we say v is an
eigenvector with eigenvalue � of the matrix A.

Proposition 7.3.7.

Let A ∈ ℝ
n×n then � is an eigenvalue of A iff det(A−�I) = 0. We say P (�) = det(A−�I)

the characteristic polynomial and det(A− �I) = 0 is the characteristic equation.

Proof: Suppose � is an eigenvalue of A then there exists a nonzero vector v such that Av = �v
which is equivalent to Av − �v = 0 which is precisely (A − �I)v = 0. Notice that (A − �I)0 = 0
thus the matrix (A − �I) is singular as the equation (A − �I)x = 0 has more than one solution.
Consequently det(A− �I) = 0.

Conversely, suppose det(A − �I) = 0. It follows that (A − �I) is singular. Clearly the system
(A − �I)x = 0 is consistent as x = 0 is a solution hence we know there are infinitely many solu-
tions. In particular there exists at least one vector v ∕= 0 such that (A−�I)v = 0 which means the
vector v satisfies Av = �v. Thus v is an eigenvector with eigenvalue � for A. □

Example 7.3.8. Let A =

[

3 1
3 1

]

find the e-values and e-vectors of A.

det(A− �I) = det

[

3− � 1
3 1− �

]

= (3− �)(1− �)− 3 = �2 − 4� = �(�− 4) = 0

We find �1 = 0 and �2 = 4. Now find the e-vector with e-value �1 = 0, let u1 = [u, v]T denote the
e-vector we wish to find. Calculate,

(A− 0I)u1 =

[

3 1
3 1

] [

u
v

]

=

[

3u+ v
3u+ v

]

=

[

0
0

]

Obviously the equations above are redundant and we have infinitely many solutions of the form

3u+ v = 0 which means v = −3u so we can write, u1 =

[

u
−3u

]

= u

[

1
−3

]

. In applications we

often make a choice to select a particular e-vector. Most modern graphing calculators can calcu-
late e-vectors. It is customary for the e-vectors to be chosen to have length one. That is a useful
choice for certain applications as we will later discuss. If you use a calculator it would likely give
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u1 =
1√
10

[

1
−3

]

although the
√
10 would likely be approximated unless your calculator is smart.

Continuing we wish to find eigenvectors u2 = [u, v]T such that (A − 4I)u2 = 0. Notice that u, v
are disposable variables in this context, I do not mean to connect the formulas from the � = 0 case
with the case considered now.

(A− 4I)u1 =

[

−1 1
3 −3

] [

u
v

]

=

[

−u+ v
3u− 3v

]

=

[

0
0

]

Again the equations are redundant and we have infinitely many solutions of the form v = u. Hence,

u2 =

[

u
u

]

= u

[

1
1

]

is an eigenvector for any u ∈ ℝ such that u ∕= 0.

Theorem 7.3.9.

A matrix A ∈ ℝ
n×n is symmetric iff there exists an orthonormal eigenbasis for A.

There is a geometric proof of this theorem in Edwards1 (see Theorem 8.6 pgs 146-147) . I prove half
of this theorem in my linear algebra notes by a non-geometric argument (full proof is in Appendix C
of Insel,Spence and Friedberg). It might be very interesting to understand the connection between
the geometric verse algebraic arguments. We’ll content ourselves with an example here:

Example 7.3.10. Let A =

⎡

⎣

0 0 0
0 1 2
0 2 1

⎤

⎦. Observe that det(A− �I) = −�(�+ 1)(�− 3) thus �1 =

0, �2 = −1, �3 = 3. We can calculate orthonormal e-vectors of v1 = [1, 0, 0]T , v2 = 1√
2
[0, 1,−1]T

and v3 =
1√
2
[0, 1, 1]T . I invite the reader to check the validity of the following equation:

⎡

⎢

⎣

1 0 0
0 1√

2
−1√
2

0 1√
2

1√
2

⎤

⎥

⎦

⎡

⎣

0 0 0
0 1 2
0 2 1

⎤

⎦

⎡

⎢

⎣

1 0 0
0 1√

2
1√
2

0 −1√
2

1√
2

⎤

⎥

⎦
=

⎡

⎣

0 0 0
0 −1 0
0 0 3

⎤

⎦

Its really neat that to find the inverse of a matrix of orthonormal e-vectors we need only take the

transpose; note

⎡

⎢

⎣

1 0 0
0 1√

2
−1√
2

0 1√
2

1√
2

⎤

⎥

⎦

⎡

⎢

⎣

1 0 0
0 1√

2
1√
2

0 −1√
2

1√
2

⎤

⎥

⎦
=

⎡

⎣

1 0 0
0 1 0
0 0 1

⎤

⎦.

7.3.3 quadratic form examples

Example 7.3.11. Consider the quadric form Q(x, y) = x2 + y2. You can check for yourself that
z = Q(x, y) is a cone and Q has positive outputs for all inputs except (0, 0). Notice that Q(v) = ∣∣v∣∣2

1think about it, there is a 1-1 correspondance between symmetric matrices and quadratic forms
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so it is clear that Q(S1) = 1. We find agreement with the preceding proposition.

Next, think about the application of Q(x, y) to level curves; x2 + y2 = k is simply a circle of radius√
k or just the origin.

Finally, let’s take a moment to write Q(x, y) = [x, y]

[

1 0
0 1

] [

x
y

]

in this case the matrix is

diagonal and we note that the e-values are �1 = �2 = 1.

Example 7.3.12. Consider the quadric form Q(x, y) = x2 − 2y2. You can check for yourself that
z = Q(x, y) is a hyperboloid and Q has non-definite outputs since sometimes the x2 term dom-
inates whereas other points have −2y2 as the dominent term. Notice that Q(1, 0) = 1 whereas
Q(0, 1) = −2 hence we find Q(S1) contains both positive and negative values and consequently we
find agreement with the preceding proposition.

Next, think about the application of Q(x, y) to level curves; x2 − 2y2 = k yields either hyperbolas
which open vertically (k > 0) or horizontally (k < 0) or a pair of lines y = ±x

2 in the k = 0 case.

Finally, let’s take a moment to write Q(x, y) = [x, y]

[

1 0
0 −2

] [

x
y

]

in this case the matrix is

diagonal and we note that the e-values are �1 = 1 and �2 = −2.

Example 7.3.13. Consider the quadric form Q(x, y) = 3x2. You can check for yourself that
z = Q(x, y) is parabola-shaped trough along the y-axis. In this case Q has positive outputs for all
inputs except (0, y), we would call this form positive semi-definite. A short calculation reveals
that Q(S1) = [0, 3] thus we again find agreement with the preceding proposition (case 3).
Next, think about the application of Q(x, y) to level curves; 3x2 = k is a pair of vertical lines:
x = ±

√

k/3 or just the y-axis.

Finally, let’s take a moment to write Q(x, y) = [x, y]

[

3 0
0 0

] [

x
y

]

in this case the matrix is

diagonal and we note that the e-values are �1 = 3 and �2 = 0.

Example 7.3.14. Consider the quadric form Q(x, y, z) = x2 + 2y2 + 3z2. Think about the appli-
cation of Q(x, y, z) to level surfaces; x2 + 2y2 + 3z2 = k is an ellipsoid.

Finally, let’s take a moment to write Q(x, y, z) = [x, y, z]

⎡

⎣

1 0 0
0 2 0
0 0 3

⎤

⎦

⎡

⎣

x
y
z

⎤

⎦ in this case the matrix

is diagonal and we note that the e-values are �1 = 1 and �2 = 2 and �3 = 3.

The examples given thus far are the simplest cases. We don’t really need linear algebra to un-
derstand them. In contrast, e-vectors and e-values will prove a useful tool to unravel the later
examples.
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Proposition 7.3.15.

If Q is a quadratic form on ℝ
n with matrix A and e-values �1, �2, . . . , �n with orthonormal

e-vectors v1, v2, . . . , vn then
Q(vi) = �i

2

for i = 1, 2, . . . , n. Moreover, if P = [v1∣v2∣ ⋅ ⋅ ⋅ ∣vn] then

Q(x⃗) = (P T x⃗)TP TAPP T x⃗ = �1y
2
1 + �2y

2
2 + ⋅ ⋅ ⋅+ �ny

2
n

where we defined y⃗ = P T x⃗.

Let me restate the proposition above in simple terms: we can transform a given quadratic form to
a diagonal form by finding orthonormalized e-vectors and performing the appropriate coordinate
transformation. Since P is formed from orthonormal e-vectors we know that P will be either a
rotation or reflection. This proposition says we can remove ”cross-terms” by transforming the
quadratic forms with an appropriate rotation.

Example 7.3.16. Consider the quadric form Q(x, y) = 2x2 + 2xy + 2y2. It’s not immediately
obvious (to me) what the level curves Q(x, y) = k look like. We’ll make use of the preceding

proposition to understand those graphs. Notice Q(x, y) = [x, y]

[

2 1
1 2

] [

x
y

]

. Denote the matrix

of the form by A and calculate the e-values/vectors:

det(A− �I) = det

[

2− � 1
1 2− �

]

= (�− 2)2 − 1 = �2 − 4�+ 3 = (�− 1)(�− 3) = 0

Therefore, the e-values are �1 = 1 and �2 = 3.

(A− I)u⃗1 =

[

1 1
1 1

] [

u
v

]

=

[

0
0

]

⇒ u⃗1 =
1√
2

[

1
−1

]

I just solved u+ v = 0 to give v = −u choose u = 1 then normalize to get the vector above. Next,

(A− 3I)u⃗2 =

[

−1 1
1 −1

] [

u
v

]

=

[

0
0

]

⇒ u⃗2 =
1√
2

[

1
1

]

I just solved u − v = 0 to give v = u choose u = 1 then normalize to get the vector above. Let
P = [u⃗1∣u⃗2] and introduce new coordinates y⃗ = [x̄, ȳ]T defined by y⃗ = P T x⃗. Note these can be
inverted by multiplication by P to give x⃗ = P y⃗. Observe that

P =
1

2

[

1 1
−1 1

]

⇒ x = 1
2(x̄+ ȳ)

y = 1
2(−x̄+ ȳ)

or
x̄ = 1

2(x− y)
ȳ = 1

2(x+ y)

The proposition preceding this example shows that substitution of the formulas above into Q yield2:

Q̃(x̄, ȳ) = x̄2 + 3ȳ2

2technically Q̃(x̄, ȳ) is Q(x(x̄, ȳ), y(x̄, ȳ))
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It is clear that in the barred coordinate system the level curve Q(x, y) = k is an ellipse. If we draw
the barred coordinate system superposed over the xy-coordinate system then you’ll see that the graph
of Q(x, y) = 2x2 + 2xy + 2y2 = k is an ellipse rotated by 45 degrees.

Example 7.3.17. Consider the quadric form Q(x, y) = x2+2xy+y2. It’s not immediately obvious
(to me) what the level curves Q(x, y) = k look like. We’ll make use of the preceding proposition to

understand those graphs. Notice Q(x, y) = [x, y]

[

1 1
1 1

] [

x
y

]

. Denote the matrix of the form by

A and calculate the e-values/vectors:

det(A− �I) = det

[

1− � 1
1 1− �

]

= (�− 1)2 − 1 = �2 − 2� = �(�− 2) = 0

Therefore, the e-values are �1 = 0 and �2 = 2.

(A− 0)u⃗1 =

[

1 1
1 1

] [

u
v

]

=

[

0
0

]

⇒ u⃗1 =
1√
2

[

1
−1

]

I just solved u+ v = 0 to give v = −u choose u = 1 then normalize to get the vector above. Next,

(A− 2I)u⃗2 =

[

−1 1
1 −1

] [

u
v

]

=

[

0
0

]

⇒ u⃗2 =
1√
2

[

1
1

]

I just solved u − v = 0 to give v = u choose u = 1 then normalize to get the vector above. Let
P = [u⃗1∣u⃗2] and introduce new coordinates y⃗ = [x̄, ȳ]T defined by y⃗ = P T x⃗. Note these can be
inverted by multiplication by P to give x⃗ = P y⃗. Observe that

P =
1

2

[

1 1
−1 1

]

⇒ x = 1
2(x̄+ ȳ)

y = 1
2(−x̄+ ȳ)

or
x̄ = 1

2(x− y)
ȳ = 1

2(x+ y)

The proposition preceding this example shows that substitution of the formulas above into Q yield:

Q̃(x̄, ȳ) = 2ȳ2

It is clear that in the barred coordinate system the level curve Q(x, y) = k is a pair of paralell
lines. If we draw the barred coordinate system superposed over the xy-coordinate system then you’ll
see that the graph of Q(x, y) = x2 + 2xy + y2 = k is a line with slope −1. Indeed, with a little
algebraic insight we could have anticipated this result since Q(x, y) = (x+y)2 so Q(x, y) = k implies
x+ y =

√
k thus y =

√
k − x.

Example 7.3.18. Consider the quadric form Q(x, y) = 4xy. It’s not immediately obvious (to
me) what the level curves Q(x, y) = k look like. We’ll make use of the preceding proposition to

understand those graphs. Notice Q(x, y) = [x, y]

[

0 2
0 2

] [

x
y

]

. Denote the matrix of the form by

A and calculate the e-values/vectors:

det(A− �I) = det

[

−� 2
2 −�

]

= �2 − 4 = (�+ 2)(�− 2) = 0
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Therefore, the e-values are �1 = −2 and �2 = 2.

(A+ 2I)u⃗1 =

[

2 2
2 2

] [

u
v

]

=

[

0
0

]

⇒ u⃗1 =
1√
2

[

1
−1

]

I just solved u+ v = 0 to give v = −u choose u = 1 then normalize to get the vector above. Next,

(A− 2I)u⃗2 =

[

−2 2
2 −2

] [

u
v

]

=

[

0
0

]

⇒ u⃗2 =
1√
2

[

1
1

]

I just solved u − v = 0 to give v = u choose u = 1 then normalize to get the vector above. Let
P = [u⃗1∣u⃗2] and introduce new coordinates y⃗ = [x̄, ȳ]T defined by y⃗ = P T x⃗. Note these can be
inverted by multiplication by P to give x⃗ = P y⃗. Observe that

P =
1

2

[

1 1
−1 1

]

⇒ x = 1
2(x̄+ ȳ)

y = 1
2(−x̄+ ȳ)

or
x̄ = 1

2(x− y)
ȳ = 1

2(x+ y)

The proposition preceding this example shows that substitution of the formulas above into Q yield:

Q̃(x̄, ȳ) = −2x̄2 + 2ȳ2

It is clear that in the barred coordinate system the level curve Q(x, y) = k is a hyperbola. If we
draw the barred coordinate system superposed over the xy-coordinate system then you’ll see that the
graph of Q(x, y) = 4xy = k is a hyperbola rotated by 45 degrees.

Remark 7.3.19.

I made the preceding triple of examples all involved the same rotation. This is purely for my
lecturing convenience. In practice the rotation could be by all sorts of angles. In addition,
you might notice that a different ordering of the e-values would result in a redefinition of
the barred coordinates. 3

We ought to do at least one 3-dimensional example.

Example 7.3.20. Consider the quadric form defined below:

Q(x, y, z) = [x, y, z]

⎡

⎣

6 −2 0
−2 6 0
0 0 5

⎤

⎦

⎡

⎣

x
y
z

⎤

⎦

Denote the matrix of the form by A and calculate the e-values/vectors:

det(A− �I) = det

⎡

⎣

6− � −2 0
−2 6− � 0
0 0 5− �

⎤

⎦

= [(�− 6)2 − 4](5− �)

= (5− �)[�2 − 12�+ 32](5− �)

= (�− 4)(�− 8)(5− �)
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Therefore, the e-values are �1 = 4, �2 = 8 and �3 = 5. After some calculation we find the following
orthonormal e-vectors for A:

u⃗1 =
1√
2

⎡

⎣

1
1
0

⎤

⎦ u⃗2 =
1√
2

⎡

⎣

1
−1
0

⎤

⎦ u⃗3 =

⎡

⎣

0
0
1

⎤

⎦

Let P = [u⃗1∣u⃗2∣u⃗3] and introduce new coordinates y⃗ = [x̄, ȳ, z̄]T defined by y⃗ = P T x⃗. Note these
can be inverted by multiplication by P to give x⃗ = P y⃗. Observe that

P =
1√
2

⎡

⎣

1 1 0
−1 1 0

0 0
√
2

⎤

⎦ ⇒
x = 1

2(x̄+ ȳ)
y = 1

2(−x̄+ ȳ)
z = z̄

or
x̄ = 1

2(x− y)
ȳ = 1

2(x+ y)
z̄ = z

The proposition preceding this example shows that substitution of the formulas above into Q yield:

Q̃(x̄, ȳ, z̄) = 4x̄2 + 8ȳ2 + 5z̄2

It is clear that in the barred coordinate system the level surface Q(x, y, z) = k is an ellipsoid. If we
draw the barred coordinate system superposed over the xyz-coordinate system then you’ll see that
the graph of Q(x, y, z) = k is an ellipsoid rotated by 45 degrees around the z − axis.

Remark 7.3.21.

There is a connection between the shape of level curves Q(x1, x2, . . . , xn) = k and the graph
xn+1 = f(x1, x2, . . . , xn) of f . I’ll discuss n = 2 but these comments equally well apply to
w = f(x, y, z) or higher dimensional examples. Consider a critical point (a, b) for f(x, y)
then the Taylor expansion about (a, b) has the form

f(a+ ℎ, b+ k) = f(a, b) +Q(ℎ, k)

where Q(ℎ, k) = 1
2ℎ

2fxx(a, b)+ℎkfxy(a, b)+
1
2ℎ

2fyy(a, b) = [ℎ, k][Q](ℎ, k). Since [Q]T = [Q]
we can find orthonormal e-vectors u⃗1, u⃗2 for [Q] with e-values �1 and �2 respective. Using
U = [u⃗1∣u⃗2] we can introduce rotated coordinates (ℎ̄, k̄) = U(ℎ, k). These will give

Q(ℎ̄, k̄) = �1ℎ̄
2 + �2k̄

2

Clearly if �1 > 0 and �2 > 0 then f(a, b) yields the local minimum whereas if �1 < 0 and
�2 < 0 then f(a, b) yields the local maximum. Edwards discusses these matters on pgs.
148-153. In short, supposing f ≈ f(p) +Q, if all the e-values of Q are positive then f has
a local minimum of f(p) at p whereas if all the e-values of Q are negative then f reaches
a local maximum of f(p) at p. Otherwise Q has both positive and negative e-values and
we say Q is non-definite and the function has a saddle point. If all the e-values of Q are
positive then Q is said to be positive-definite whereas if all the e-values of Q are negative
then Q is said to be negative-definite. Edwards gives a few nice tests for ascertaining if
a matrix is positive definite without explicit computation of e-values.
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7.4 local extrema from eigenvalues and quadratic forms

We have all the tools we need, let’s put them to use now.

Example 7.4.1.
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Example 7.4.2.
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Example 7.4.3.
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Example 7.4.4.
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Chapter 8

on manifolds and multipliers

In this chapter we show the application of the most difficult results in this course, namely the
implicit and inverse mapping theorems. Our first application is in the construction of manifolds
as graphs or level sets. Then once we have a convenient concept of a manifold we discuss the idea
of Lagrange multipliers. The heart of the method combines orthogonal complements from linear
algebra along side the construction of tangent spaces in this course. Hopefully this chapter will
help you understand why the implicit and inverse mapping theorems are so useful and also why
we need manifolds to make sense of our problems. The patching definition for a manifold is not of
much use in this chapter although we will mention how it connects to the other two formulations
of a manifold in ℝ

m in the context of a special case.

8.1 surfaces in ℝ
3

Manifolds or surfaces play a role similar to functions in this course. Our goal is not the study of
manifolds alone but it’s hard to give a complete account of differentiation unless we have some idea
of what is a tangent plane. This subsection does break from the larger pattern of thought in this
chapter. I include it here to try to remind how surfaces and tangent planes are described in ℝ

3. We
need some amount of generalization beyond this section because the solution of max/min problems
with constraints will take us into higher dimensional surfaces even for problems that only involve
two or three spatial dimensions. We treat those questions in the next chapter.

There are three main methods to describe surfaces:

1. As a graph: S = {(x, y, z) ∣ z = f(x, y) where (x, y) ∈ dom(f)}.

2. As a level surface: S = {(x, y, z) ∣ F (x, y, z) = 0}

3. As a parametrized surface: S = {X(u, v) ∣ (u, v) ∈ dom(X)}

145
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Let me remind you we found the tangent plane at (xo, yo, zo) ∈ S for each of these formalisms as
follows (continuing to use the same notation as above):

1. For the graph: z = zo + f(xo, yo) + fx(xo, yo)(x− xo) + fy(xo, yo)(y − yo).

2. For the level surface: plane through (xo, yo, zo) with normal (∇F )(xo, yo, zo)

3. For the parametrized surface: find (uo, vo) withX(uo, vo) = (xo, yo, zo), the tangent
plane goes through X(uo, vo) and has normal N(uo, vo) = Xu(uo, vo)×Xv(uo, vo).

Perhaps you recall that the normal vector field to the surface S was important in the formulation
of surface integrals to calculate the flux of vector fields.

Example 8.1.1. The plane through the point r⃗o with normal n⃗ =< a, b, c > can be described as:

1. all r⃗ ∈ ℝ
3 such that (r⃗ − r⃗o) ⋅ n⃗ = 0.

2. all (x, y, z) ∈ ℝ
3 such that a(x− xo) + b(y − yo) + c(z − zo) = 0

3. if c ∕= 0, the graph z = f3(x, y) where f3(x, y) = zo +
a
c
(x− xo) +

b
c
(y − yo)

4. if b ∕= 0, the graph y = f3(x, z) where f2(x, z) = yo +
a
b
(x− xo) +

c
b
(z − zo)

5. if a ∕= 0, the graph x = f1(y, z) where f1(y, z) = xo +
b
a
(y − yo) +

c
a
(z − zo)

6. given any two linearly independent vectors a⃗, b⃗ in the plane, the plane is the image of the
mapping X : ℝ2 → ℝ

3 defined by X(u, v) = r⃗o + ua⃗+ v⃗b

Example 8.1.2. The sphere of radius R centered about the origin can be described as:

1. all (x, y, z) ∈ ℝ
3 such that F (x, y, z) = x2 + y2 + z2 = R2

2. the graphs of z = f±(x, y) where f±(x, y) = ±
√

R2 − x2 − y2

3. for (u, v) ∈ [0, 2�]× [0, �], X(u, v) = (R cosu sin v,R sinu sin v,R cos v)

You may recall that the level surface concept allowed by far the easiest computation of the normal
of the tangent plane for a particular point. For example, ∇F =< 2x, 2y, 2z > in the preceding
example. Contrast that to calculation of Xu×Xv where the × denotes the dreaded cross-product.
Of course each formalism has its place in calculus III.
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Remark 8.1.3.

In this warm-up section we have hopefully observed this much about surfaces in ℝ
3:

1. the tangent plane is always 2-dimensional, it is really a plane in the traditional sense
of the term.

2. the normal to the tangent plane is always 1-dimensional, the normal through a par-
ticular point on the surface is just a line which is orthogonal to all possible tangents
through the point.

3. the dimension of the tangent plane and normal give the total dimension of the ambient
space; 2 + 1 = 3.

8.2 manifolds as level sets

We will focus almost exclusively on the level surface formulation of a manifold in the remainder of
this chapter. We say M ⊆ ℝ

n is a manifold of dimension p ≤ n if M has a p-dimensional tangent
plane for each point on M . In other words, M is a p-dimensional manifold if it can be locally
approximated by ℝ

p at each point on M . Moreover, the set of all vectors normal to the tangent
space will be n− p dimensional.

These are general concepts which encompasses lines, planes volumes and much much more. Let me
illustrate by example:

Example 8.2.1. Let g : ℝ2 → ℝ be defined by g(x, y) = y − x − 1 note that g(x, y) = 0 gives the
line y−x−1 = 0 commonly written as y = x+1; note that the line has direction vector < −1, 1 >.
Furthermore, ∇g =< 1,−1 > which is orthogonal to < −1, 1 >.

Example 8.2.2. Let g : ℝ3 → ℝ be defined by g(x, y, z) = y − x− 1 note that g(x, y, z) = 0 gives
the plane y−x−1 = 0. Furthermore, ∇g =< 1,−1, 0 > which gives the normal to the plane g = 0.

Example 8.2.3. Let g : ℝ4 → ℝ be defined by g(x, y, z, t) = y − x − 1 note that g(x, y, z, t) = 0
gives the hyperplane y − x − 1 = 0. Furthermore, ∇g =< 1,−1, 0, 0 > which gives the normal to
the hyperplane g = 0. What does that mean? It means that if I take any vector in the hyperplane
it is orthogonal to < 1,−1, 0, 0 >. Let r⃗1, r⃗2 be points in the solution set of g(x, y, z, t) = 0. Denote
r⃗1 = (x1, y1, z1, t1) and r⃗1 = (x2, y2, z2, t2), we have y1 = x1 +1 and y2 = x2 +1. The vector in the
hyperplane is found from the difference of these points:

v⃗ = r⃗2 − r⃗1 = (x2, x2 + 1, z2, t2)− (x1, x1 + 1, z1, t1) = (x2 − x1, x2 − x1, z2 − z1, t2 − t1).

It’s easy to see that v⃗ ⋅ ∇g = 0 hence ∇g is perpendicular to an arbitrary vector in the hyperplane
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If you’ve begun to develop an intuition for the story we’re telling this last example ought to bug
you a bit. Why is the difference of points a tangent vector? What happened to the set of all
tangent vectors pasted together or the differential or the column space of the derivative? All those
concepts still apply but since we were looking at a linear space the space itself matched the tangent
hyperplane. The point of the triple of examples above is just to constrast the nature of the equation
g = 0 in various contexts. We find the dimension of the ambient space changes the dimension of
the level set. Basically, we have one equation g = 0 and n-unknowns then the inverse image of zero
gives us a (n− 1)-dimensional manifold. If we wanted to obtain a n− 2 dimensional manifold then
we would need two equations which were independent. Before we get to that perhaps I should give
a curvy example.

Example 8.2.4. Let g : ℝ4 → ℝ be defined by g(x, y, z, t) = t+x2+y2−2z2 note that g(x, y, z, t) = 0
gives a three dimensional subset of ℝ4, let’s call it M . Notice ∇g =< 2x, 2y,−4z, 1 > is nonzero
everywhere. Let’s focus on the point (2, 2, 1, 0) note that g(2, 2, 1, 0) = 0 thus the point is on M .
The tangent plane at (2, 2, 1, 0) is formed from the union of all tangent vectors to g = 0 at the
point (2, 2, 1, 0). To find the equation of the tangent plane we suppose 
 : ℝ → M is a curve with

′ ∕= 0 and 
(0) = (2, 2, 1, 0). By assumption g(
(s)) = 0 since 
(s) ∈ M for all s ∈ ℝ. Define

′(0) =< a, b, c, d >, we find a condition from the chain-rule applied to g ∘ 
 = 0 at s = 0,

d

ds

(

g ∘ 
(s)
)

=
(

∇g
)

(
(s)) ⋅ 
′(s) = 0 ⇒ ∇g(2, 2, 1, 0) ⋅ < a, b, c, d >= 0

⇒ < 4, 4,−4, 1 > ⋅ < a, b, c, d >= 0

⇒ 4a+ 4b− 4c+ d = 0

Thus the equation of the tangent plane is 4(x − 2) + 4(y − 2) − 4(z − 1) + t = 0. In invite the
reader to find a vector in the tangent plane and check it is orthogonal to ∇g(2, 2, 1, 0). However,
this should not be surprising, the condition the chain rule just gave us is just the statement that
< a, b, c, d >∈ Null(∇g(2, 2, 1, 0)T ) and that is precisely the set of vector orthogonal to ∇g(2, 2, 1, 0).

One more example before we dive into the theory of Lagrange multipliers. (which is little more
than this section applied to word problems plus the powerful orthogonal complement theorem from
linear algebra)

Example 8.2.5. Let G : ℝ4 → ℝ
2 be defined by G(x, y, z, t) = (z+ x2 + y2− 2, z+ y2 + t2− 2). In

this case G(x, y, z, t) = (0, 0) gives a two-dimensional manifold in ℝ
4 let’s call it M . Notice that

G1 = 0 gives z + x2 + y2 = 2 and G2 = 0 gives z + y2 + t2 = 2 thus G = 0 gives the intersection of
both of these three dimensional manifolds in ℝ

4 (no I can’t ”see” it either). Note,

∇G1 =< 2x, 2y, 1, 0 > ∇G2 =< 0, 2y, 1, 2t >

It turns out that the inverse mapping theorem says G = 0 describes a manifold of dimension 2 if
the gradient vectors above form a linearly independent set of vectors. For the example considered
here the gradient vectors are linearly dependent at the origin since ∇G1(0) = ∇G2(0) = (0, 0, 1, 0).
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In fact, these gradient vectors are colinear along along the plane x = t = 0 since ∇G1(0, y, z, 0) =
∇G2(0, y, z, 0) =< 0, 2y, 1, 0 >. We again seek to contrast the tangent plane and its normal at
some particular point. Choose (1, 1, 0, 1) which is in M since G(1, 1, 0, 1) = (0 + 1 + 1 − 2, 0 +
1 + 1 − 2) = (0, 0). Suppose that 
 : ℝ → M is a path in M which has 
(0) = (1, 1, 0, 1) whereas

′(0) =< a, b, c, d >. Note that ∇G1(1, 1, 0, 1) =< 2, 2, 1, 0 > and ∇G2(1, 1, 0, 1) =< 0, 2, 1, 1 >.
Applying the chain rule to both G1 and G2 yields:

(G1 ∘ 
)′(0) = ∇G1(
(0))⋅ < a, b, c, d >= 0 ⇒ < 2, 2, 1, 0 > ⋅ < a, b, c, d >= 0

(G2 ∘ 
)′(0) = ∇G2(
(0))⋅ < a, b, c, d >= 0 ⇒ < 0, 2, 1, 1 > ⋅ < a, b, c, d >= 0

This is two equations and four unknowns, we can solve it and write the vector in terms of two free
variables correspondant to the fact the tangent space is two-dimensional. Perhaps it’s easier to use
matrix techiques to organize the calculation:

[

2 2 1 0
0 2 1 1

]

⎡

⎢

⎢

⎣

a
b
c
d

⎤

⎥

⎥

⎦

=

[

0
0

]

We calculate, rref

[

2 2 1 0
0 2 1 1

]

=

[

1 0 0 −1/2
0 1 1/2 1/2

]

. It’s natural to chose c, d as free vari-

ables then we can read that a = d/2 and b = −c/2− d/2 hence

< a, b, c, d >=< d/2,−c/2− d/2, c, d >= c
2 < 0,−1, 2, 0 > +d

2 < 1,−1, 0, 2 >

We can see a basis for the tangent space. In fact, I can give parametric equations for the tangent
space as follows:

X(u, v) = (1, 1, 0, 1) + u < 0,−1, 2, 0 > +v < 1,−1, 0, 2 >

Not surprisingly the basis vectors of the tangent space are perpendicular to the gradient vectors
∇G1(1, 1, 0, 1) =< 2, 2, 1, 0 > and ∇G2(1, 1, 0, 1) =< 0, 2, 1, 1 > which span the normal plane

Np to the tangent plane Tp at p = (1, 1, 0, 1). We find that Tp is orthogonal to Np. In summary
T⊥p = Np and Tp ⊕ Np = ℝ

4. This is just a fancy way of saying that the normal and the tangent
plane only intersect at zero and they together span the entire ambient space.

Remark 8.2.6.

The reason I am bothering with these seemingly bizarre examples is that the method of
Lagrange multipliers comes down to the observation that both the constraint and objective
function’s gradient vectors should be normal to the tangent plane of the constraint surface.
This means they must both reside in the normal to the tangent plane and hence they will
either be colinear or for several constraints they will be linearly dependent. The geometry
we consider here justifies the method. Linear algebra supplies the harder part which is
that if two vectors are both orthogonal to the tangent plane then they must both be in
the orthogonal complement to the tangent plane. The heart of the method of Lagrange
multipliers is the orthogonal complement theory from linear algebra. Of course, you can be
heartless and still sucessfully apply the method of Lagrange.
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8.3 Lagrange multiplier method for one constraint
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8.4 Lagrange multiplier method for several constraints
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