Chapter 2

analytic geometry

In this chapter I will describe n-dimensional Euclidean space and its essential properties. Much of

this is not much removed from the discussion of vectors in calculus I11. However, we will state as
many things as possible for arbitrarily many finite dimensions. Also, we will make use of matrices
and linear algebra where it is helpful. For those of yon who have not yet taken linear algebra, 1
have included a few exercises in the Problem sets to help elucidate matrix concepts. If you do those
exercises it should help. If you need more examples just ask.

2.1 Euclidean space and vectors

Rene Descartes put forth the idea of what we now call Cuortesian coordinates for the plane several
hundred years ago. The Euclidean concept of geometry predating Descartes seems abstract in
comparison. Try graphing without coordinates. In any event, the definition of Cartesian coordinates
and R™ are intertwined in these notes. If we talk about R™ then we have a preferred coordinate
system because the zero point is at the origin.!

Definition 2.1.1.

We define B = { (w,29,...,an) l@; € B foreachi=1,2,...,n}. If P = (a1, a0,...,0,)
is a point in R” then the j-th Cartesian coordinate of the point P is a;.

Notice that? in terms of sets we can write B2 = R xR and B? = R x B x R. Since points in
R™ are in 1-1 correspondance with vectors in R™ we can add vectors and rescale them by scalar
multiplication. If I wish to emphasize that we are working with vectors I may use the notation
< a,b,c >€ V3 etc... However, we will think of R"® as both a set of points and a set of vectors,
which takes precendence depends on the context.

'some other authors might use R™ is refer to abstract Euclidean space where no origin is given apriori by the
mathematics. Given Euclidean space £ and a choice of an origin O, one can always set-up a 1-1 correspondance with
E™ by mapping the origin to zero in R".

*Technically these are ambiguous since the Cartesian product of sets is nonassociative but in these notes we
identify R x (B x R) and (R x B} x R as the same object. Btw, my Math 200 notes have more on basics of Cartesian
products.
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Definition 2.1.2.

We define V" = {< vy, va,...,0p > | v; € Rforeach i =1,2,...,n}

If v =< vy,ve,..., vy > is a vector in R” then the j-th component of the vector v is v;.
Let v,we V" with v =< 1 >, 1w =< w; > and ¢ € R then we define:

v w =< v+ wy,ve W, ..., Uy + Wh > CU =< O, Cla, ..., Cliy > .

I will refer to V™ as the set of n-dimensional real vectors. The dot-product is used to define angles
and lengths of vectors in V™,

Definition 2.1.3.

IF v =< v,ve,..., 10, > and w =< wy,Wa,...,w, > are vectors in V™ then the dot-
product of v and w is a real number defined by:

T = MWy Ry R e vty

The length (or norm) of a vector v =< vy, vy, ..., v, > is denoted ||v]| and is the real
number defined by:

H.1J|§ = AU - U == 7)%—}—1,-'13.;_..‘_*_1,;“"_

IFv =< vy, w0, 0, >5% 0 and w =< wy,wq,...,w, >7F 0 are vectors in V" then the
angle # between v and w is defined by:

U
i = cos_l( B T )
el [{wl]

The vectors v, w are said to be orthogonal ifl v - w = 0.

Example 2.1.4. . .

@ V.o = vl vl by Vo) = O
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The dot-product has many well-known properties:

Proposition 2.1.5.

Suppose z,y,z € R **! and ¢ € R then
lLz-y=y- -z
2. z-(yt+z)=z-y+x-2
3. clz-y)={cz) y=z"(cy)

4. z-z>0andz-z=0ilz=0

Notice that the formula cos™! [I'Ir_lxﬁilﬂﬂ] needs to be justified since the domain of inverse cosine does

not_contain all real numbers. The inequality that we need for it to be reasonable is. ||'I'm_TI—Fyl?fﬂlSl’

otherwise we would not have a number in the dom(cos™) = range(cos) = [~1,1]. An equivalent
inequality is |z - y| < [|z}| {|y|| which is known as the Cauchy-Schwarz inequality.

Proposition 2.1.6.

Ifz,y € R ™! then |z - y| < ||=||||v]|

These properties are easy to justify for the norm we defined in this section.

Proposition 2.1.7.

Let z,y € B ™*! and suppose ¢ € R then
L Jlez] = {ef ||=]]

2. e+ yll < [l + [yl

Every nonzero vector can be written as a unit vector scalar multiplied by its magnitude.

z € V" such that v # 00 = v = ||v||¢ where ¢ = W}'WITU'

You should recall that we can write any vector in V? as
v=<a,bec>=0a<1,0,0>+b<0,1,0> +e < 0,0,1>=ai +bj + ck

where we defined the i =< 1,0,0 >, 7 =< 0,1,0 >, k& =< 0,0,1 >. You can easily verify that
distinct Cartesian unit-vectors are orthogonal. Sometimes we need to produce a vector which is
orthogonal to a given pair of vectors, it turns out the cross-product is one of two ways to do that
in V3. We will see much later that this is special to three dimensions.
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Definition 2.1.8.

If A =< Ay, As, A3 > and B =< By, B, By > are vectors in V9 then the cross-product
of A and B is a vector A x B which is defined by:

4‘1‘ X _é =< AaBg — AsBs, AaB3 — A B3, A1Ba — AsBy >,

The magnitude of A x B can be shown to satisfy {|A x B|| = [|4]| [} B||sin(#) and the direction can
be deduced by right-hand-rule. The right hand rule for the unit vectors yields:

¥

ixj=k kxi=j, jxk=i

If I wish to discuss both the point and the vector to which it corresponds we may use the notation

P.={a1,09 ey lin)t=>. P =< 01y Qayrny gy >

With this notation we can easily define directed line-segments as the vector which points from one
point to another, also the distance bewtween points is simply the length of the vector which points
from one point to the other:

Definition 2.1.9.

Let P,@@ € R®. The directed line segment from P to ) is p?j = (,—j — B. This vector is
drawn from tail € to the tip P where we densote the direction by drawing an arrowhead.
The distance between P and Q is d(P, Q) =] ;’a I1-

2.1.1 compact notations for vector arithmetic

I prefer the following notations over the hat-notation of the preceding section because this notation
generalizes nicely to n-dimensions.

e1 =< 1,0,0 > eg =< (1,0> e; =< 0,0,1>.

Likewise the I{ronecker delta and the Levi-Civita symbol are at times very convenient for abstract
calculation:

1 i b (40 k) €{(1,2,3),(3,1,2),(2,3,1)}
T =
LV { - J Eijk = -1 (iajs k’) & {(3121 1): (2?17 3)1(11312)}
0 i#7 . :
0 if any index repeats

An equivalent definition for the Levi-civita symbol is simply that €193 = 1 and it is antisymmetric
with respect to the interchange of any pair of indices;

Cijk = €ki = €hkij = —E€kji = €jik = TEikj.
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Now let us restate some earlier results in terms of the Einstein repeated index conventions®, let
A, BeV®and ¢ € R then

A= Apey, standard basis expansion
e - ej = 0 ortheonormal basis

(A+ B); = 4;+ B;  vector addition

(A—~B); = A;— B; vector subtraction

(cff),; = cA; scalar muitiplication
A-B= Ap B, dot product

(/I X fﬁ)k = ¢;;;A4; B; cross product.

All but the last of the above are readily generalized to dimensions other than three by simply
increasing the number of components. However, the cross product is special to three dimensions.

..I.can’t.emphasize.enough.that .the.formulas. given .above.for. the.dot. and.cross. products.can.be
utilized to yield great efficiency in abstract calculations.

Example 2.1.10. . .

Prove Ae(BxCT)=C- (AxE)

K\# (@xéj = ‘A‘i{ (gxﬁ)k

= A\,{ Eiﬁ‘_k %‘CQ;

Sije A, 8.C4
= Cin CL AW S D
€ wdj Gy Au B MJ{'”"_ E‘&" = E*k} == Sy
T G Cxij An B ST S
= C, (\t‘%%é’)ﬁ'
¢ (RxB),

Anetten €.><u.m1{ DU tan  prove =h g, 8 8
'Hf\e,vx Jﬁms r()-cvx,hiw,;a tenm be Uted o eu)'&dwb_ MSV? e

- g iplﬁ oL Pr"t‘imok‘&
LP\K@KC]R - i(‘;k Ry {‘B%C);&
= s&u Emp:h As Bm Cp

':;- - %lmgﬂg P\ 8 C? + gs?g‘u_mp\ @mc

il

—

3there are more details to be seeg in the Appendix if you're curious

——

= ~A; B, Ce + B B C

= -8 + @8

= [®-08-®8)2]  n Relixd)-Be)s -
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2.2 matrices

An m x n matrix is an array of numbers with m-rows and n-columns. We define R ™*" to be the
set of all m x n matrices. The set of all n-dimensional column vectors is R %!, The set of all
n-dimensional row vectors is R'*™. A given matrix A € R ™*® has mn-components Ai;. Notice
that the components are numbers; A;; € R for all 4,7 such that 1 < i <mand 1 £ j < n. We
should not write A = A;; because it is nonesense, however A = [A;;] is quite fine.

Suppose A € R ™*™ note for 1 < j < n we have col;(A) € R™*?! whereas for 1 <i < m we
find row;{A) € R1*™, In other words, an m x n matrix has n columns of length m and n rows of
length m.

Definttion 2.2.1.

Two matrices A and B are equal iff A;; = By; for all i,5. Given matrices A, B with

‘| components A;;, By; and constant ¢ € R we define
(A -+ B),J = ﬂ,’j -+ B-,‘j (CA)U' = (.',.A,jj , for all 4, 7.

The zero matrix in R ™" is denoted () and defined by 0;; = 0 for all 4, j. The additive
inverse of A € R ™" is the matrix —A4 such that A+ (~A) = 0. The components of the
additive inverse malrix are given by (—A}i; = —A;; for all i, y. Likewise, if A € R ™" and
B € R "P then the product AB € R ™*F ig defined by:

n
L
(AB)T_? = >___, ’Aff\'Biutj
k=1
for each 1 <i<mand 1 <7 <p In the case m = p =1 the indices 4, 7 are omitted in the

equation since the matrix product is simply a number which needs no index. The identity
matrix in R "*" is the n x »n square matrix [/ whose components are the Kronecker delta;

T i=j . : . . .
lij =0 = - J The notation I, is sometimes used if the size of the identity matrix
i # ]
needs emphasis, otherwise the size of the matrix 7 is to be understood from the context.
10 1 00
Iy = 01 Iy=|10 1 0
g 01

Let A € R "*". If there exists B € R "™ such that AB = [ and BA = I then we say that
A is invertible and A~! = B. Invertible matrices are also calied nonsingular. If a matrix
has 1o inverse then it is called a noninvertible or singular matrix. Let A £ R ™% then
AT € B ¥ j5 called the transpose of A and is defined by (AT Jjii= Ay forall 1 <i<m
and 1 < § < n. Note dot-product of v,w € V" is given by v - w = v’ w.
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Remark 2.2.2.

Definition 2.2.3.

We will use the convention that points in IR™ are column vectors. However, we will use the
somewhat subtle notation (z,xs,...2n) = [T1, T2, ... z,]". This helps me write R” rather
than R "*! and I don't have to pepper transposes all over the place. If you've read my
linear algebra notes you'll appreciate the wisdom of our convention. Likewise, for the sake
of matrix multiplication, we adopt the subtle convention < @y, @, ... 2, >= [T1, T2, ... :Bn]T
for vectors in V™. Worse yet 1 will later in the course fail to distinguish hetween V" and
R". Most texts adopt the view that points and vectors can be identified. so there is no
distinction made between these sets. We also follow that view, however I reserve the right
to use V™ if | wish to emphasize that | am using vectors. '

Let ¢; € R™ be defined by (e;); = d;;. The size of the vector e; is determined by context.
| We call e; the i-th standard basis vector.

Example 2.2.4. . .

e, e = e = (1,0)
e, € ﬁa? =2 e, = ‘(\/ 0, g) i
A\SO/ ote K—.—; <A'/A"‘/"7 A D = i A-‘ 62

ond K” e;a = i‘ A e-‘ee-}a :Z‘ A S ;}\}50

=
b=y I ‘a

Definition 2.2.5.

Theorem 2.2.6.

The ij-th standard basis matrix for R ™" is denoted Ejj for 1 <i<mand 1 < j < n.
The matrix Ey; is zero in all entries except for the {7, j)-th slot where it has a 1. In other
words, we define (Ej;)p = 6.

Assume A € R ™" and v € R "*! and define (Ej;)i = 80, and (e;), == 6;; as before then,

v = i’unen A= i i: AijEij-
i=1

i=1 j=1

[eA;TA} = row;(A) [Aei] = col;(A) A= (Eg‘)TABJ‘

T T
EijEkz = 5_.;;;E,gg Eij = E{€j € 8 =g -€5 = §ij
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You can look in my linear algebra notes for the details of the theorem. I'll just expand one point
here: Let A € R ™*" then

All Al? Aln.
e
Aml Am? Amn

10 --- 0 01 0 00 0

o0 --- 0 0 0 0 0 0 0

:‘All +A12 . +"'+Amn .
O ! R ¢ : 0
00 --- 0 o060 --- 0 00 1

= AII Eli +A12E12 B i -.A.mnEmn.-..

The calculation above follows from repeated mn-applications of the definition of matrix addition
and another mn-applications of the definition of scalar multiplication of a matrix.

Example 2.2.7. . .

Let A= (& S) ot L

woent Jo seledt K Ga,) *wmpanev{jb
Yhom T wan waald p\% buy €1T o n

[ . " a j .. —_ T .
”Hr\ﬂ Lt + @ 8,8 61 (wéx\'% ) Aié e, A 633/

i

kfor' exo«hmp@j

e he = @,ox[z Hm

:l)::p\kz

Yo dea s Ug‘U(WQ when we s La/
Cj(\}_(}\d\(ﬁiha ‘Foimg G (x) = XTAX .
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2.3 linear transformations

We should recall the precise definition of a linear combination: A linear combination of objects
Ay, Ag, . Agisasum g Ay el 4 - b oAy = ELl c; A; where ¢; € R for each i. Essentially,
a vector space is simply a set of cbjects called "vectors” for which any linear combination of the
vectors is again in the set. In other words, vectors in a vector space can be added by "vector
addition” or rescaled by a so-called "scalar multiplication”. A linear transformation is a mapping
from one vector space to another which preserves linear combinations.

Definition 2.3.1.

Let V, W be vector spaces. If a mapping L : V' — W satishes

T LE R S LG T L e Al g €V

2. Liexy=cL{z}forallz e V and c € R

then we say L is a linear transformation.

Example 2.3.2. . .
L (x) = X.x for X & WZn; thic mesns
3% N I \Rn —s [ Nohw PRIV

L (x+9) = (x+9)- (X+9)

= XX A XWX+ YD

L (x) = mx +b  for L x elld o wivh
ool W\fb oo Aixed conghunds, X9 # 0,

= L)+ X T Liy) = L E‘i
Example 2.3.3 o theoer Since
’ o e con ‘{:H\Lﬁ

MNote L(D-FQ\ = b
buh L (o) +L(c) = brb=7ab |
The funchon L:\Qr——aﬂz whose caroupl/\ (0 o

line need

Example 2.3.4. .. T

L (‘K;,XL} X)) = X, s o mv-ﬁ\t.:ub
Levm R — R, We can show Yhi v bhear
L (xen) = (exy), = Xay, = L+ LIy

L(cx) = (cx), = ¢X, = cL(x)
for oM ox,yp e 27
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Definition 2.3.5.

Let L : B7™* — R™*! be a linear transformation, the matrix 4 € B ™*" gyuch that
L(z) = Az for all x € B ™! is called the standard matrix of L. We denote this by
[L] = A or more compactly, [L 4] = A, we say that L, is the linear transformation induced

by A.

Example 2.3.6. . .

L0y) = Dxed, X9, ) e LR R

noed o 3x2 pwtrie,

Example 2.3.7. . .

L (Xt;\’{“ufxij‘*) -

Lo o | \;’l g

— Cs -3 0 =14
l X, N
o o o | X, 3

LR — © i net lnear

’ﬂr\is mwp?ru\
doo v X (0/0/0/3) ve dhor

Hemeorle: ;«C L{o) # O /W\QN\ Y
ot  Wneor Han shor menon | ‘/\\'\?5 g
D ug.e,f(J (,r:rjrgf{m swie O 1 eosy T Ché’(,!’li'
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Proposition 2.3.8.

Let Vi, Vs, Vi be vector spaces and suppose Ly : Vi — Vy and Ly : V, — V3 are linear

transformations then Lype Ly : Vi — V3 is a linear transformation and if V1, V; are column
spaces then [Lge L] = [Laof[L1].

Example 2.3.9. . .

I{ L: (’X’) ﬁ(%,/Xg\ NG Lz (‘)’(,}Xz} = X, + X

P L, {x06)= |1 ¢ ]H ¢ L=l

X.?

Howee, (L ]= Lo T 0] amt (L= 000
= L=t opyy o)=L el

o

t\i‘f\ unjffm£+ e LN Ca_\_r,w\wht(d @
Ao (,um{}ug'a?%«e o‘Jre_cH?)

(LLOLg\) Lx‘rx‘wxa L LL LX*! *y })

= LZ (XUXE

= X, 4%,
= | O Xy
[ 3&){3]
.. [LZUL*X;E‘; §/ O} .
e

@
COm\:)wwij @@@ uegoux -3 8 [\» L:] U-—} L ]
’ﬂf\tg o\,\%ﬁ‘ﬂ“v\ =5 C\r\nzr\ fd& Mw\ﬁvwm_ﬁ

C.Ew\_{,mlvxsi wt “ See T,
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2.4 orthogonal transformations

Orthogonal transformations play a central role in the study of geometry.
Definition 2.4.1.

IFT: R™V — R ™! s a linear transformation such that T(z) - T(y) = z - y for all
z,y € R "% then we say that T' is an orthogonal transformation. The matrix R of
an orthogonal transformation is called an orthogonal matrix and it satisfies RTR = I.
The set of orthogonal matrices is O{n) and the subset of rotation matrices is denoted

SO(n) = {R € O(n)|det(R) = 1}.

The definition above is made so that an orthogonal transformation preserves the lengths of vectors
and the angle between pairs of vectors. Since both of those quantities are defined in terms of the
dot-product it follows that lengths and angles are invariant under a linear transformation since the
dot-product is unchanged. In particular,

[T@IP =T(2) Ta) =z -z ==l = [[T()= el

Likewise, defining # to be the angle between z,y and 67 the angle between T'(z), T(y):

T(x) - T(y)=z y = |[T@)i|T{¥)|| cosér = ||z|||ly||cos @ = cosbr =cosf =

2.5 orthogonal bases

Definition 2.5.1.

A set § of vectors in R "*? is orthogonal iff every pair of vectors in the set is orthogonal.
If 5 is orthogonal and all vectors in S have length one then we say S is orthonormal.

It is easy to see that an orthogonal transformation maps an orthonormal set to another orthonormal
set. Observe that the standard basis {e1, es,...,e,} is an orthonormal set of vectors since e; re; =
;7. When I say the set is a basis for R™ this simply means that it is a set of vectors which spans
R™ by finite linear combinations and is also linearly independent. In case you haven’t had linear,

Definition 2.5.2.

1.5 = {vi.ve. . 05} i Iinéarly independent iff Zle e = 0 implies ¢; = 0 for
i=1,2,... k.

K]

S ={vi,va...,v} is spans W iff for each w € W there exist constants wy,wo, ..., wy,
such that w = Z?:l- Wil

3. /7 is a basis for a vector space V iff it is a Hnearly independent set which spans V.
Moreover, if there are n vectors in 3 then we say dim(V') = n.
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In fact, since the dimension of R™ is known to be n either spanning or linear independence of a set
of n vectors is a suflicient condition to insure a given set of vectors is a basis for R™. In any event,
we can prove that an orthonormal set of vectors is linearly independent. So, to summarize, if we
have a linear transformation T we can construct a new orthonormal basis from the standard basis:

T({e1,...,en}) = {T(e1),... T(en)}

Example 2.5.3. In calculus IIT you hopefully observed (perhaps not in this langouge, but the
patterns were there just waiting to be noticed):

1. a line through the origin is spanned by its direction vector.
2. a plane through the origin is spanned by any two non-paralell vectors that lie in that plane.

-8 three-dimensional-space-is- spanned-by-three-non-coplanar-vectors.—For-ezample; 1y k-span-— -
R3.

2.6 coordinate systems

Definition 2.6.1.

A coordinate system of R” is a set of n functions 7; : B® — B for ¢ = 1,2,...,n such
that we can invert the equations

o= Ti{w 2, .., T to obtain i = xi(F1, T2, ... Tn)

on most of €™ In other words, we can group the functions inio a coordinate map @& =
T = (T1,%a,....%,) and T is a 1-1 correspondance on most of R*. We call Z; the j-th
coordinate of the & coordinate system. For a particular coordinate system we also define
the j-th coordinate axis to be the set of points such that all the other coordinates are zero.
If the coordinate axis is a line for each coordinate then the coordinate system is said to be
rectilinear. If the coordinate axis is not a line for all the coordinates then the coordinate
system is said to be curvelinear. If the coordinate axes have orthgonal unit vecéors then
the coordinate system is said to be an orthogonal coordinate system. Likewise, if the
coordinate curves of a curvelinear coordinate system have orthogonal tangent vectors at all
points then the curvelinear coordinate system is said to give an orthogonal coordinate
system.

Example 2.6.2. .
let -)z:)(-ué ok -"-5‘“-‘—‘ ){"l“é,
Nohie b 48 = AR whereas -;(-q = ~AY hence
we hoave tnuwpe relahing ¢ X = -‘.E(—x—-\-g) g Y= _‘i(.—'ﬁz.;. "lé_)
ﬂ\& toocdinet oxes ore frond bua f-cH-ﬂu} X =0 o 15'".0 ’

x ={s)% -

X oxis has O = e > > U =
— &qﬂ-x.l-_‘
T s hos Xm0 2 ST Ly
L [1X) =0 —_ = X
—-\5\9':.-‘-2_‘3. g%'-\ O‘F _‘5
oy .
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The case of Cartesian coordinates has ® = fd. Conceptually we think of the codomain as a different
space than the domain in general. For example, in the case of polar coordinates on the plane we
have a mapping @ : R?> — R? where a circle in the domain becomes a line in the range. The line in
rf space is a representation of the circle in the view of polar coordinates. Students often confuse
themselves by implicitly insisting that the domain and range of the coordinate map are the same
copy of R™ but this is the wrong concept. Let me illustrate with a few mapping pictures:

A @

- ? - s
AT gL
/| > g

T (x,u) = (6,r) = Chn (24), Xy )
T‘"l (@ ir\) = (‘{“w;@ !Y‘S‘l\f\g)

Example 2.6.3. .

v z z sloc Coocch‘rwjfas
R ﬂaxyww ﬂzer ! ire curve dMhese,

Generally I admit that I'm being a bit vague here because the common useage of the term coordinate
system is a bit vague. Later I'll define a patched manifold and that structure will give a refinement
of the coordinate concept which is unambiguous. That said, common coordinate systems such
as polar, spherical coordinates fail to give coordinates for manifolds unless we add restrictions on
the domain of the coordinate which are not typically imposed in applications. Let me give a few
coordinate systems commonly used in applications so we can constrast those against the coordinate
systems given from orthonormal hases of R™.

C\t\;r\&ff CwQ- Cooﬁifr\di“@;f

Example 2.6.4. .
3 3

T Ry, — Kecs @i‘ii

. ~ tg/)
T o) = (er, ) whe O = be [V
L !y o= )«{z—%—'-’b?’

%

X
A
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Example 2.6.5. Consider R? with the usual x,y coordinates, polar coordinates 7,4 are given
by the polar radius r = v/z? + 42 and polar angle § = tan~!(y/x). These are inverted to give
z = rcos{f) ond y = rsin(f). Notice that 8 is not well defined along x = 0 if we take the given
formula as the definition. Even so the angle af the origin is not well-defined no matter how you
massage the equations. Peolar coordinates are curvelinear coordinates, setting 8 = 0 yields a roy
along the postive T-azis whereas setting r = 0 just yields the origin.

ﬂ\V} A

|

A . —]

=Y D@
note: \a Coiuﬂiw@

e ,;;J;\aw <o foc hi

Example 2.6.6. Consider R3 with the usual x,v, z coordinates, spherical coordinates p,f, ¢
are given by spherical radius p = 1/z2 + y? + 22, polar angle ¢ = tan~!(y/x) and azimuthial
angle ¢ = cos™1(z/\/22+y2 + 22). These are inverted to give x = pcos(f)sin(¢) and y =
psin(f) sin(¢) and z = pcos(¢). Even so the angles can’t be well-defined everywhere. The function
of inverse tangent can never return a polar angle in quadrants II or III because range(tan™!) =
(=7/2,%/2). In order lo find angles in the quadrants with x < 0 we have to adjust the equations by
hand as we are taught in trigonmetry. Spherical coordinates are also curvelinear, there is no coor-
dinate axis for the spherical radius and the angles have rays rather than lines for their coordinate
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Example 2.6.7. Consider R™ with the usual Cartesian coordinates x = (r1,Z2,...,3,). If p € R™
then we can write

P =€) + x9e2 + -+ + zpe, = [er]es] - - [en][ml,wg,...,mn]T

Let T be an orthogonal transformation and define o rotated basis f; by [fi] - |fa] = [e1] - len] R =
R where R € SO(n). Since RTR =1 it follows that R~ = RT and s0 [e1] - |ea] = [f1]-- - |fu)RT.
Note that p = [fi| - |fa]RTp. However, the y-coordinates will satisfy p = [fi|---|faly where
y = [y1,%2,---,¥n] - We deduce, '

y=R"z.

We find thaot if we sel up o rotated coordinate system where the new basis is formed by rototing the
standord basts by B then the new coordinoies relate to the old coordinates by the inverse rotation
RT =R,

~[:et-me-break-down-the-example-in-the n-=2-case:
Example 2.6.8. Let {e1,es} be the standard basis for R2. In invite the reader to check that

—sing
R(&) = [ cosf —sin € SO(2). If our calculation is correct in the previous example the new

sinf?  cosd
coordinate azes should be obiained from the standard basis by the inverse transformation.

z' | | cos@ sin® z | | mcosf+ysing

¥ | | —sinf cosf y | | —zsing+ycosd
The inverse transformations to give x,y in terms of ',y are similar

x| | cosf —sind '] 1 z'cosf ~y'sind

y |~ | sinf  cosf v | | #'sinf+ 5y cosf
Let’s find the equations of the primed coordinate azes.

1. The y azis has equation o' = 0 hence ¢ = —y'sin(f) and y = 1y cos{B) which yields y =
—cot{f)z fory #0

2. Likewise, the ©' axis has equation y' = 0 hence z = 2’ cos(#) and y = z'sin(0) which yields
y = tan(@)x for 2’ # 0.

Therefore the new primed azes are perpendicular to one another and are apparently rotated by angle
f in the clockwise direction as illustrated below.

U\dl ~ 5*%}

VO”%“M‘!FEA Cmerolif\ujfzo
Could alse

ocaw Two

lanes -to

Seg ’Mhs'fomw%m .
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2.7 orthogonal complements

Perhaps you've seen part of this Theoremn before:

Proposition 2.7.1. Pythagorean Theorem in n-dimensions

If z,y € R ®*! are orthogonal vectors then ||z|[2+]||y|{* = ||z-+y||®. Moreover, if 1, T2, - . . Tk
are orthogonal then

[ + fwal[® 4 - -+ [l |* = o + 2o 4+ +a®

The notation W < V is meant to read "W is a subspace of V7. A subspace is a subset of a vector
space which is again a vector space with respect to the operations of V

Proposition 2.7.2. Existence of Orthonormal Basis

I W R ™ then there exists an orthonormal basis of W

The proof of the proposition above relies on an algorthim called Gram-Schmidt orthogonaliza-
tion. That algorithm allows you to take any set of linearly indepedent vectors and replace it with
a new set of vectors which are pairwise orthogonal.

Example 2.7.3. For the record, the standard basis of B ™*! is an orthonormal basis end
v=(v-ej}es +(v-ea)ea+---+(v-en)en

for any vector v in R ™*}.

Definition 2.7.4.

Suppose Wy, We € B ™! then we say Wi is orthogonal to Wy ifl w, - wy = 0 for all
wy € Wy and we € Wa, We denote orthogonality by writing W3 L Wa.

Definition 2.7.5.

Let ¥V be a vector space and Wy, Wa << V. If every v € ¥V can he written as v = wy +wa for a
unique pair of wy € Wy and wy € Wy then we say that 1V is the direct swun of Wi and Ws.
Moreover, we denote the statement *V is a direct sum of Wy and 5" by V = W & Wa.

Proposition 2.7.6.

Let W < R ™*! then
LR™ =waowt.
2. dim(W) +dim(W+) =n,
3. (WhL =W,




I's

28 CHAPTER 2. ANALYTIC GEOMETRY

Basically the cross-product is used in V* to select the perpendicular to a plane formed by two
vectors. The theorem above tells us that if we wished to choose a perpendicular direction for a
2-dimensional plane inside V® then we would have a 5 — 2 = 3-dimensional orthogonal complement
to choose a "normal” for the plane. In other words, the concept of a normal vector to a plane is
not so simple in higher dimensions. We could have a particular plane with two different "normal”
vectors which were orthogonall

Example 2.7.7. . . | '
e XY+ E =0 o nﬁrmj AR

W = S(x,vg,a) 1 X+t 2 =0 }:plm«s_

W, o= %i—d\,‘,i}\ff el }: h}dfi:j@\

R = W, @ W,

W, = Span {41;57]
W, = Span f<1,10}

\Rz:: Wa@ W,

Example 2.7.9. . .
Let "\/\/:2Spm\%(l,l,t/l)j(l/O/O/O)F
= WV, = { sy + % (1o,0,0) ] s, & EHZF
This s o P\ome n Y-dim!'l o spaw. Lett
‘p\“mi EArs* Orv\(\o%ar\kj C,om[a[g,me/v;b,

W, = {\/e\YZL‘ ] Ve W = 0O VW«eW;}

o ed \/ » (\,l,!)}):@ ék \/ e (1,0/0/0)-?0
bet V= (%72 A) ned  xeyiz+d =0 & X=0
\4&1’1(}& l/<\1+z+7\30 '{;3\” V":{-wfvfz/l)e%\/v"z,.
Thas W, = { ojtg}EJﬂ%z) l 4 2 elR §

Y
N T —— -
Thie G A W wew, = I

15 Yot e




Chapter 3
topology and mappings

We begin this chapter by briefly examining all the major concepts of the metric topology for R™.

‘Then we discuss limits for functions and mappings from using the rigorous € ~ § formulation. Far

this chapter and course a "function” has range which is a subset of E. In contrast, a mapping has
a range which is in some subset of R™ for n > 2 if we want to make it interesting!. Continuity
is defined and a number of basic theorems are either proved by me or you. Finally I quote a few
important (and less trivial) theorems about topology and mappings in R,

3.1 functions and mappings

In this section we disucss basic vocabulary for functions and mappings.

Definition 3.1.1.

Let U CR™ and V C R then we say that f: U — V is a function iff f(z) assigns a single
value in V for each input z € U. We say a function is single-valued from domain {7 to
codomain V. We denote dom(f) = U. The range or image of the function is defined by:

range(f) = f(D) ={y € B | Iz € U such that f(x) =y}

We can also say that ” f is a real-valued function of U".

Example 3.1.2. . .

@ fey=x> fr xeR, demlf) = R
@ VR = RX = et for TR dom(3)= R

1 generally prefer the term function for a more abstract concept: 1 would like to say f: A — B is an B-valued
function of A and I don't make any restriction except that A, B must be sets. Anyhow, I'll try to respect the custom
of calculus for this course because it saves us a lot of talking. I will use the term "abstract function” if I don’t wish
to presuppose the codmain contains only real numbers.

29
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A mapping is an abstract function with codmain in R"

Definition 3.1.3.

Let U ¢ B™ and V C ™ then we say that f : U — V is a mapping iff f(x) assigns a
single value in V" for each input © € 7. We say a f is a single-value mapping from domain
U to codomain V. We mean for dom(f) = U to be read that the domain of f is U. The
range or image of the mapping is the set of all possible outputs: we denote

range(f) = f(D} = {y € B" | do € U such that f{z) =y}

Suppose that = =€ dom(f) and f(x) = (fi(x), fo{x),..., fm(z)) then we say that
fivfav oo, i are the component functions of [ and f = (f;) = (f1, f2,--- fm)-

In the case m = 1 we find that the concept of a mapping reduces to a plain-old-function.
. Example 3.1.4. . . |
X: R — R wheee X (r,0) = {Fwsp, "sho>
we hove L mp onovJ’D fun chong
X, (re)y=rwse € ¥ (re) =tranb,

Definition 3.1.5.

A mapping f: U CR™ - V C '™ is said to be injective or 1-1 on § C U iff f(2) = f(y)
implies & = y for all z,y & §. If a mapping is 1-1 on its domain then it is said to be 1-1
or injective. The mapping f is said to be surjective or onto T' C V iff for each v € T
there exists v € U such that f(u) = v; in set notation we can express: f is onto 7" iff
fUY =T. A mapping is said to be surjective or onto iff it is onto its codomain. A mapping
is a bijection or 1-1 correspondance of {7 and V iff f is injective and surjective.

Example 3.1.6. . .
®_ f (x,4) = (ex ) ‘éz, ’&) is onto (0,e0)x [o,00)x {2]
%‘:\:bv‘\ ’\'l\kf'b dom (-H = \?2_ -ro prove Hais led

(a1b,e) € (029 % [°°°\’<'Y and  obrecue Yhab ﬂn(&)pﬁ e[
hee A0 omd b 20 hen @

£ (latey, 45, 2) = (9@ ()% 2) = (a,b, 3)=ls4)

@ %.' K~ (D/w) dhehined {"a %(x)_:ex TR ‘:){}'eclh'on_
9\.\.' \R-—-? \R Mh‘-%o \'Jua k(K\—"‘:Xz U hl.:“‘ef \"" Nar an’b.
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We can also adjust the domain of a given mapping by restriction and extension.

Definition 3.1.7.

Let f:UCR" =V CR™ be a mapping. If R C U then we define the restriction of f
to R to be the mapping flg : R = V where f|gp(x) = f(z) forallz € R. If U C S and
V' C T then we say a mapping g: § — T is an extension of [ ilf glyum¢p) = f-

When [ say g{dom( 5y = [ this means that these functions have matching domains and they agree
at each point in that domain; glgom(s)(z) = f(z) for all z € dom(f). Once a particular subset
is chosen the restriction to that subset is a unique function. Of course there are usually many
susbets of dom(f so you can imagine many different restictions of a given function. The concept of
extension is more vague, once you pick the enlarged domain and codomain it is not even necessarily
the case that another extension to that same pair of sets will be the same mapping. To obtain
uniqueness for extensions one needs to add more stucture. This is one reason that complex variables
.are interesting, there are cases where the structure of the complex theory forces the extension of a
complex-valued function of a complex variable to be unique. This is very surprising.

Example 3.1.8. . .

O Lt FOd= 43 tan f| 00 =% whee f| (0= -,
dom (4) =R {o,20) (-29,0]

® Let $03 =Mt for Xelom), If 96) = Anlxi for xefR—{c]
/H’\uf\ ‘%\(o o5\ '-:'F Se 2 is an exbkenrivn of 'F

Definition 3.1.9.

Let wyr : B® — U C RB™ be a mapping such that mp:{z) = o for all x € U. We say that piy
is a projection onto /. The identity mapping on U C R" is defined by Idy : U — U
with Fdy{2) = x for all ® € U. We may also denote Idgn = Id, = Id where convenient.
The j-th projection function is 7r; : R* = R defined by (@i, @0, ... z,) = ay

Notice that every identity map is a projection however not every projection is an identity.

Example 3.1.10. . .

let U= I\sz’ {o} = -{ {xv, 8) l %X, € E}y dhie i He x%npla.ne.

z
Sy Ty labe)=(ab o),
| .y
R
:
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Definition 3.1.11.

let f: VCR =+ WCR"and g : 7 CR*" - V C R™ are mappings such that
g(U) € dom{f) then fog : U — W is a mapping defined by (f<g)(z) = f(g(z)) for all
z € U. We say [ is the outside function and g is the inside function. :

Notice that the definition of the composite assumes that the range of the inside function fits nicely
in the domain of the outside function. If domains are not explicitly given then it is customary
to choose the domain of the composite of two functions to be as large as possible. Indeed, the
typical pattern in calculus is that the domain is implicitly indicated by some formula. For example,
g{z) = e“’iT“”ji has implied domain dom(g) = (—00,4) U (4, c0) however if we simply the formula
to give g(z) = €® then the implied domain of R is not correct. Of course we can not make that
simplification unless © # 4. In short, when we do algebra for variables we should be careful to
consider the values which the variables may assume. Often one needs to break a calculation into
cases to avoid division by zero.
Example 3.1.12. . . .

Let X : (0,00 % ("Th, T )=Rbe debined by X (r,6) = (rwi®, rrng).

and Fi (02 xR —> RY be dekved by Fx4)= (\IK"'W‘ > ol (94)).
L°+ (\" B) e cdlom LZ) no‘l\'u. '“M:JO Coof (_'TTA,W/;) = (D} l) whereat sin ("yz TV;.)-: (‘IJU
(F- z')(r,e\ = F(x(re) w!_mmmw ”
= F(rws@,rﬂ‘f\s) ) Swre Z(rfa)
= ('\ﬁ"us"‘—e +rintg , tun™ k;_slr}g)) s ™ dem (F)
= ({2, tun” (hab))
= (r,e)

Definition 3.1.13.

Let f: U CR"™ =V CR™ be a mapping, if there exists a mapping g : f({/) = U such that
fog=Idyyyand go f = Idy then g is the inverse mapping of [ and we denote g = 1.

If a mapping is injective then it can be shown that the inverse mapping is well defined. We define
fHy) = 2 iff f(z) =y and the value £ must be a single value if the function is one-one. When a
function is not one-one then there may be more than one point which maps to a particular point
in the range.

Example 3.1.14. . .
Kt (o,00)% ("W W) —qﬂazo,m)x i be dehned
by X (¢r,8) = (rwso,rsme), We (un show
X is injedve and onb (o, 00) <R Fhus
Maeee exits X (o,00) xR —> dom (E). TIa pochicular,

= (x0) = (B, ke (W)

Nele Aha % 2109 Showr X Zﬂ - Id]
[OIM)X[R.
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Definition 3.1.15.
Let f:UCR" - V CR™ be a mapping. We define a fiber of f over y € range(f) as

f‘l{y} = {2z e U|f(z) = v}

Notice that the inverse image of a set is well-defined even if there is no inverse mapping. Moreover,
it can be shown that the fibers of a mapping are disjoint and their union covers the domain of the
mapping:

W £ = FHyinf Yz =0 U £y = dom(s).
y € range(f)

This means that the fibers of a mapping partition the domain.

~ Example 3.1.16. . . .

Led F (x,\/)”—z. ”'><. ” -Q;r | D./E,Q | (Xt‘f) e d.am(xc) = ['_ol; ].x.'.[o., |]

LR
— down (f)
f el
- XK
Ki
| Y N
Fa err:o*:<({=)": (o]

Definition 3.1.17.

Let f: U CR" = V C R™ be a mapping. Furthermore, suppose that s : {7 — U is a
mapping which is constant on each fiber of f. In other words, for each fiber f~'{y} C U
we have some constant v € U such that s(f~"'{y}) = u. The subset s~ (/) C U is called a
cross section of the fiber partition of f.

How do we construct a cross section for a particular mapping? For particular examples the details
of the formula for the mapping usually suggests some obvious choice. However, in general if you
accept the axiom of choice then you can be comforted in the existence of a cross section even in
the case that there are infinitely many fibers for the mapping.

Example 3.1.18. . . . .
Let F(xyv) = X*+y®  He oM (%y) € R® cwch thih x*+4> = 1,

-
Tha  Fbers ace ciccles, and the oeiopn £ o) = (o0}, let us
P dhne o &M\ bv&

‘F s{r)y= (& ir
//K S 5o ) )\« r(e/f'q/ﬁl it
¥, » T tou o\l o Lt
@&&—/ [ Stbl\]"‘: r“‘\'a o etw/‘{-
S 6,1]

) () y
Nokw £ s = Ve, Ya) = ) §) =ffFein=r
N oke ‘H Vs '\néed{ve be cavst  each fiker ir cedmed Yo o \MM{:.

sleyn
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Proposition 3.1.19.

Let f : U CR"™ = V C R™ be a mapping. The restriction of f to a cross section §
of U is an injective function. The mapping f : U — f(U) is a surjection. The mapping
fls = 8§ = f(U) is a bijection. -

The proposition above tells us that we can take any mapping and cut down the domain and/or
codomain to reduce the function to an injection, surjection or bijection. If you look for it you'll see
this result behind the scenes in other courses. For example, in linear algebra if we throw out the
kernel of a linear mapping then we get an injection. The idea of a local inverse is also important
to the study of calculus.
Example 3.1.20. . . Let 1 (0,1)x[01] IR be debmed 6"&
P (xyv) = X is net ente R, |
. Co . ~1 - } [
ond 4 net injectve  Sinca FhxT = {xix o)1l Veu
tun  chedt S [o, 1) =3 dom (F] with s{x) = (X, Vo) is a fechwn
O'F 'F- More ovte, f= ['o‘l-)x£°a|]'“’"5 [o!l] is ento  wnd -F!S (s,1)
1

‘ ‘e b e oy
Definition 3.1.21. ' o '&ed\'n ’

Let f: U0 CR" — V CR'™ be a mapping then we say a mapping g is a local inverse of f
iff there exits § C U such that g = (f|s) 7"

Usually we can find local inverses for functions in calculus. For example, f(z) = sin(z) is not 1-1
therefore it is not invertible. However, it does have a local inverse g(y) = sin™!(y). If we were
more pedantic we wouldn't write sin™'(y). Instead we would write g(y) = (sin ![ -1 E])_l(y) since
the inverse sine is actually just a local inverse. To construct a local inverse for sgmg mapping we
must locate some subset of the domain upon which the mapping is injective. Then relative to that
subset we can reverse the mapping. The inverse mapping theorem (which we'll study mid-course)
will tell us more about the existence of local inverses for a given mapping.

Definition 3.1.22.

Let f: U, CR" =+ Vi CRPand g: Uy CR" — Vo € RY be a mappings then (f,g) is a
mapping from Uy to Vi x Va defined by (f, g)(x) = (f(z), g(z)) for all © € Uy.

There's more than meets the eye in the definition above. Let me expand it a bit here:

(f,g)(-’L) = (fl (:L‘), f2(m)!' ":fp(m)’gl(ngZ(m): e 19{](3")) where x = ($1:$27-- -swn)

You might notice that Edwards uses 7 for the identity mapping whereas I use Id. His notation is
quite reasonable given that the identity is the cartesian product of all the projection maps:

T = (X1, T2,..., )

I've had courses where we simply used the coordinate notation itself for projections, in that nota-
tion have formulas such as z(a,b,¢) = a, z;(a) = e; and z;(e;) = d;;.
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Example 3.1.23. . .

© [:R — RT b dehmd by fieva)= (97
%; ﬂzg———a i be defined bvé %0y 2) = Nexy, 2)

6C7 c:)) d \123-—-3 \{23 1’\&5 (-F/ %)(;{’J - ('F(’?)) %(f))

& T [Tag—-a lEz be  dehned b‘a 'IT-xy (X,VIE) = (x,¥)
e
TT: R R be  defnd by T, (xyz) = E

. \/uw Con Sl ..(T]—;..'“ -ﬁ-%)_: IOI/]?? P

The constructions thus far in this section have not relied on the particular properties of real
vectors. If you look at the definitions they really only depend on an understanding of sets, points
and subsets. In contrast, the definition given below defines the sum of two mappings, the scalar
product of a mapping and a constant or a function, and the dot-product of two mappings.

Definition 3.1.24.

Let f,g: U CEB* = R™ be amappings and ¢ € R and I I/ = R a function. We define:
1. f+ g is a mapping from U to B™ where (f + g}(z) = f(@) +glz) forall z € U.

2. hf is a mapping from U to BR™ where (hf)(z) = h(2)f(z) for all z € U.

o)

. ef is a mapping from U to B™ where {¢f)(z) = cf (z} for all z € U.

LN

g is a function of U where (f - g){(x}) = f(2) - g(x) for all 2 € U.

We cannot hope to define the product and quotient of mappings to be another new mapping
because we do not know how to define the product or quotient of vectors for arbitrary dimensions.
In contrast, we can define the product of matrix-valued maps or of complex-valued maps because
we have a way to multiply matrices and complex numbers. If the range of a function allows for
some type of product it generally makes sense to define a corresponding operation on functions
which map into that range.
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Definition 3.1.25.

Let f,g:U € B" = C be complex-valued functions. We define:
1. fgis a complex-valued function defined by (fg)(z) = f(z)g(x) for all z € U.

2. 0 ¢ g(U) then f/g is a complex-valued function defined by (f/g)(x) = f(x)/g(x)
forall z € U.

Example 3.1.26. . .

fe) = el = (O +ish® dne F:IR— C
a(g) = 3+:6

. '(CDIS""'“’-'SV}?'@)(:?*‘ 28} U
et + 35l +18es@ - O 60O
3cs @~ BB +1 (3550 6 * @cqg),

¥t

1

Definition 3.1.27.

let AB. UCR—-R™"and X : U CRE -+ R"™P be matrix-valued functions and
f:UCR =R We define:
1. A+ B is a matrix-valued function defined by (A4 B){x) = A{x) + B(z) for all x € U.

2. AX is a matrix-valued function defined by (AX)(x) = A(x)B(z) for all z € U.

3. [A is a matrix-valued function defined by (fAY &) = fx)Alx) fér all v € U.

The calculus of matrices is important to physics and differential equations.

Example 3.1.28. . .

o
2 ) - et r
Le—[- A/B.‘//?*"'"B//?z 5e d&gw{ éy AW: i—tz‘/ &‘(3[,1"/:/142 )(--TJ

3 £ 1+et  a+i
(heB)tH) = AW+t = [} t=]+/; j;]:/i;z gt

1A et etiat* £ +att
= AX}B () = =
(Ae) (*) (} ) [J’f ]tz][tt ;{_3] l_tei"‘!'jq }{.2+/f$ .

sint QAShi ]
[ia‘rsmi £2sint .

Let €4 = siat

FAYn = PR = st )

1}



3.2, ELEMENTARY TOPOLOGY AND LIMITS 37

3.2 elementary topology and limits

In this section we describe the metric topology for R™. In the study of functions of one real variable
we often need to refer to open or closed intervals. The definition that follows generalizes those
concepts to n-dimensions. I have included a short discussion of general topology in the Appendix
if you’d like to learn more about the term.

Definition 3.2.1.

An open ball of radius ¢ centered at a € R” is the subset all points in B" which are less
than e units from «, we denote this open ball hy

Ba)={z e R" | ||z —a|| < €}
The closed ball of radius € centered at o & B" is likewise defined

Bi(o) = {x € B" | fle ~al| < ¢}

Notice that in the n = 1 case we observe an open ball is an open interval: let a € R,
Bfa)={zecR |||z —¢a|ll]<e}={zeR||lz—al<e}=(a—¢€,a+¢)

In the n = 2 case we observe that an open ball is an open disk: let (a,b) € RZ,

Be((a,b) = {(,9) € B [ ||(z,9) ~ (@,b) | < e} = {(z,1) € B® | V&~ a)° + {y — b)® < €}

For n = 3 an open-ball is a sphere without the outer shell. In contrast, a closed ballinn =3 is a
solid sphere which includes the outer shell of the sphere.

Definition 3.2.2.

Let D C E". We say y € D is an interior point of D2 iff there exists some open ball
centered at y which is completely contained in D). We say ¥ € R" is a limit point of D iff
every open ball centered at y contains points in D — {y}. We say y € R" is a boundary
point of D il every open ball centered at y containg points not in D and other points which
are in D — {y}. We say y € D is an isolated point of D if there exist open balls about
y which do not contain other points in D). The set of all interior points of [J is called the
interior of D). Likewise the set of all bounddly points for D is denoted J0. The closure
of I is defined to be D' = DU {y EIR | ¥ a limit point}

If yow're like me the paragraph above doesn’t help much until 1 see the picture helow. All the terms
are aptly named. The term "limit point” is given becanse those points are the ones for which it is
natural to define a limit.

U, it el onm heribr P+‘-

Example 3.2.3. . . f
% oJ; . O Y %, o bwmd points
. 0'% ptd’wui wa&f/t e R
D\:Ei? @ ba is s ;\o\kuj Pf) wb

t,

O\rhum Ut)\

® W, & 90, V. is beandery P
Yeeis
o g:r r @ T Loed im t'nne‘-)‘\“‘g deotr

- '\‘
?0\1‘\ v

i inktodr l'\o\e..
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Definition 3.2.4.

Let A C R” is an open set iff {for each € A there exists € > 0 such that @ € B {z) and
Be(r) € A Let B CR" is an closed set iff its complement R" - B={x ¢ R" |z ¢ B}
is an open set.

Notice that R — [a,b] = (oo, a) U (b, 00). It is not hard to prove that open intervals are open hence
we find that a closed interval is a closed set. Likewise it is not hard to prove that open balls are
open sets and closed balls are closed sets. | may ask you to prove the following proposition in the
homeworlk.

Proposition 3.2.5.

A closed set contains all its limit points, that is 4 C B is closed iff A = A.

Example 3.2.6. . .
@ (U-lb\ hM \imar'l‘ pufnlrs X=a € x=b. Ht.rwt.w.r, 0‘-,\7 é [fﬁ-\ b)
ond  we  wnote  thab (o, b) is not o closed set,

@ (a by = YA,\)) which is o cliced set. Closed Mlenvalo ave closed Sedr,

In caleculus T the limit of a function is defined in terms of deleted open intervals centered about the
limit point. We can define the limit of a mapping in terms of deleted open balls centered at the
limit point.

Definition 3.2.7.

Let f: U CR" =V CE™ be a mapping. We say that f has limit b € B™ at limit point a
of U iff for each € > 0 there exists a & > 0 such that » € R" with 0 < ||z — al|| < § implies
[If(z) — b|| < e. In such a case we can denote the above by stating that

lim flz)=1b

L

In calculus I the limit of a function is defined in terms of deleted open intervals centered about the
limit point. We now define the limit of a mapping in terms of deleted open balls centered at the
limit point. The term ”deleted” refers to the fact that we assume 0 < ||z ~ a|| which means we
do not consider £ = a in the limiting process. In other words, the limit of a mapping considers
values close to the limit point but not necessarily the limit point itself. The case that the function
is defined at the limit point is special, when the limit and the mapping agree then we say the
mapping is continuous at that point.

Example 3.2.8.
In Calenbug T w/e Prou-e_ ’ﬁf\"i’ ﬁ\ﬁmbr\:hunb_ 'R&hr_,‘h'un:
ore  conBinuous on A thtecior  of Aheic fomams. Eoc examp (e
) = er Cos CX)/ Stn (x)/ P (x) (Po\ianomlcj) are  andiavous on R
whereans  C(x) = %L':"—l} is Gnatinvews for X< M such thed ix) £ o,

OL«. o be honest we dont prove ol Ahese %\h%s hUPEMlca we

of  east show e shudents fhow —t’hu—b wuca/\do fma o Pr:fu-(_ 'l"‘n—;
Sbi‘b'ﬂ- .
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Definition 3.2.9.

Let f: U CR" = V CR™ be a mapping. If o € U is a limit point of f then we say that f
is continuous at o iff

Jim f(z} = f(a)

If @ € U is an isolated point then we also say that f is continous at e. The mapping f is
continous on S iff it is continous at cach point in S. The mapping f is continuous iff
it is continuous on its domain.

Notice that in the m = n == 1 case we recover the definition of continuous funcéions from cale. 1.

Proposition 3.2.10.

Let f: U CR" — V C R™ be a mapping with component functions fi, fa,..., fin hence
F=(f1,fa....fm)- Ha €U is a limit point of f then

T--ra

]J'_Iflf(:c)=b = lim f;(z) =b; for each j =1,2,... m.

We can analyze the limit of a mapping by analyzing the limits of the component functions:

Example 3.2.11. . .

Lt £09= (5, sty , X)) e £=0, 0 1)
whane  £64 = IXT A0 =sin0d , K= T A e R-{0)

/pl'm‘][:()():-" '-J?": o

X35
,;f_/_,; (th(x)) = 0 Xﬂ_’r:"o (J';i fth/ %}ﬁ) = (O/ °, /)
Xx-f;\o ( -Igl_x‘) = 1

The following follows immediately from the preceding proposition.

Proposition 3.2.12.

Suppose that f: U/ CR™ = V € R™ is a mapping with component functions fi, fa, ..., fin.
Let o € U be a limit point of f then f is continous at a iff f; is continuous at a for

J=12,...,m. Moreover, f is continuous on S iff all the component functions of f are
continuous on S. Finally, a mapping f is continous iff all of its component functions are
continuous. .

The proof of the proposition is in Edwards, it's his Theorem 7.2. It’s about time I proved something.
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Proposition 3.2.13.

|The projection functions are continuous. The identity mapping is continuous.

Proof: Let ¢ > 0 and choose § = e, If @ € B® such that 0 < ju — a]| < 6 then it {ollows that
lie — ai| < e.. Therefore, fimg.,q & = @ which means that lim, ., fd{x) = Id(a) for all @ € R™.
Hence Id is continnons on B which means fd is continuous. Since the projection functions are
component functions of the identity mapping it follows that the projection functions are also con-

0]

tinuows (using the previons proposition). O

Definition 3.2.14.

The sum and product are functions from R? to B defined by

cs(xyy) =ty opley) =y o

Proposition 3.2.15.

|The sumn and product functions are continuous.

Preparing for the proof: Let the limit point be {(a,b). Consider what we wish to show: given a
point (z,y} such that 0 < |{{z,y) — {a,b)]| < & we wish to show that

ls(z,y) —(a+b)| <€ or for the product |p(z,y) — (ab)| < ¢
follow for appropriate choices of §. Think about the sum for a moment,
ls(r,y) — (@ +b) =le+y—a—bl <|zv—al+|y—b]

I just used the triangle inequality for the absolute value of real numbers. We see that if we could
somehow get control of [z — ¢| and ly — b| then we’d be getting closer to the prize. We have control
of 0 < ||{z,y) — (a,b)|| < & notice this reduces to

e —a,y—bll<§ = VE—aP+u—b02<s

it is clear that (z — a)® < 62 since if it was otherwise the inequality above would be violated as

adding a nonegative quantity (y — b)* only increases the radicand resulting in the squareroot to be

larger than 4. Hence we may assume (z—a)? < §2 and since 4 > 0 it follows | [z — a| < & | Likewise,

ly — b < d| Thus

|s(@,) ~ (a-+b)| = |z +y—a—b| < |z—a]+|y— b <25

We see for the sum proof we can choose § = ¢/2 and it will work out nicely.
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Proofi Let ¢ > 0 and let («.b) € RB® Choose § = ¢/2 and suppose (z.y) € R? such that
Hir,y) — (a,b)]] < 4. Observe that
e y) — (b)) <6 = [[(x—ay=IF <& = |o—al*+y~b? <5
It follows |x — a} < § and |y — b] < §. Thus
[str,y) —(a+di =l t+y—a-b<|v—al+ly—bl<d+d=25=¢

Therefore, limg, .40 $(2,y) = a + b and it follows that the sum function if continuous at (a, b).
But, (a,b) is an arbitrary point thus s is continuous on B? hence the sum function is continuous. CJ.

Preparing for the proof of continuity of the product funcfion: I'll coentinue to use the same
notation as above. We need to study |p(z,y) — (ab)| = |zy — ab| < e. Consider that

o |zy = ab| = |zy = ya +ya = ab] = |y(z =a) + a(y —b)| < yllz —a|+ |ally =b] .. .

We know that | —a| < § and |y—b| < . There is one less obvious factor to bound in the expression.
What should we do about [y|?. I leave it to the reader to show that:

ly —b] < 6 = ly| < |b| + &

Now put it all together and hopefully we'll be able to "solve” for .
vy — abl =< |yliz — a] + la|ly — b] < (|b] + 8)6 + |a|d = &% + d(la] + {b]) " =" e

I put solve in quotes because we have considerably more freedom in our quest for finding 6. We
could just as well find § which makes the ” = ” become an <. That said let’s pursue equality,

5 _ ol = (bl & v/(al F )" + 4
2

4

& + 8(lal + b)) —e =0

Since €, |al, |b] > 0 it follows that «/(a| + |b])? -+ 4e < /(|a| + [b])2 = |a[+|b}| hence the (+) solution
to the quadratic equation yields a positive & namely:

5 — —lal = 1ol + /(lal + [b])” + 4€
2

Yowsers, | almost made this a homework. There may be an easier route. You might notice we have
run across a few little lemmas (I've boxed the punch lines for the lemmas) which are doubtless
useful in other € — d proofs. We should collect those once we'’re finished with this proof.

Proof: Let ¢ > 0 and let (a,b) € B®. By the calenlations that prepared for the proof we know that
the lollowing quantity is positive, hence choose

ol =+ /AT
- 9

=0,
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Note that?,

ey — ub| = oy — yo+ya —abl = |yl — o)+ aly —b)| algebra
< |ylle = al + |aliy — b triangle inequality
< (b} + ) + |ald by the boxed lemmas
= & 4 d(lel+ 0D algebra
= £

where we know that last step follows due to the steps leading to the boxed equation in the proof
preparation. Therefore, limg, o0 P(7,¥) = ab. and it follows that the product function if con-
tinous at (a,b}. But, (a.b) is an arbitrary point thus p is continuous on R? hence the product
function is continuous. [,

- Lemma 3.2.16.

Assume 4§ > 0.
1. fa,z € R then |z —a| <d = |z|<|a|+4d

2. Ifz,ac R then ||z —a||<d = |zj—qgjl<dforj=12,...n

The proof of the proposition above i3 mostly contained in the remarks of the preceding two pages.

Example 3.2.17. . .
led -F(X,Y)T' x4 Ya. We see b o &hﬂw(jjm{(zaﬂ‘%a):daéai
Neke £ = XX = IK1°5 Reedl dhe Canehy Schunb
L egundiy 17w = Wvliwll Coludote
\£(%)- £(R)| = | %% - B-R| = |&-R)-(X+R)

You tan chech, (B-R)- (R+R) = B.X-RZ+ %

:Ee;b E>O ond = =

Supposs XEM® sumch thob [R-K)< 8 Hhan
\f@)-fR)| < IK-R]||X+R) = §(8§+A) = €.

v Qi F0D) =FUA),
= A

?my notation is that when we stack inequalities the inequality in a particular line refers only to the immediate
vertical successor.

Nole .« | X4R] € KN + 1A

ey
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Proposition 3.2.18.

Let f: VCRP -+ R™ and g: U CR" —+ R” be mappings. Suppose that
limg_,, g(z} = b and suppose that f is continuous at & then

lim (f = g)(z) = /(Jim g(z)).

iT—ra T—ra

The proof is in Edwards, see pages 46-47. Notice that the proposition above immediately gives us
the important result below:

Proposition 3.2.19.

Let f and g be mappings such that feg is well-defined. The composite function feg is
continuous for points a € dorn{f = g) such that the following two conditions hold:

1. g is continuous at a

2. f is continuous at g(a).

I make use of the earlier proposition that a mapping is continuous iff its component functions are
continuous throughout the examples that follow. For example, I know (Id, Id) is continuous since
Id was previously proved continuous.

Example 3.2.20. Note that if f = po(Id, Id) then f(z) = (pﬂ(fd, Id))(a:) = p((Id, Id)(:::)) =
p(z,x) = x2. Therefore, the quadratic function f(z) = x® is continuous on R as it is the composite
of continuous funclions.

Example 3.2.21. Note that if f = pe(pe(Id, Id),Id) then f(z) = p(z®,z) = z*. Therefore, the
cubic function f(z) = x® is continuous on R as it is the composite of continuous functions.

Example 3.2.22. The power function is inductively defined by x* = = and 2" = zz™ ! for all
n € N. We can prove f(x) = z™ is continous by induction on n. We proved the n = 1 case
previously. Assume inductively that f{z) = ™! is continuous. Notice that

" = wz" ! = wf(z) = plw, f(w)) = (pe (Id, f))(x).

Therefore, using the induction hypothesis, we see that g{x) = ™ is the composite of continuous
functions thus it is continuous. We conclude that f(x) = x™ is continuous for alln € N.

We can play similar games with the sum function to prove that sums of power functions are
continuous. In your homework you will prove constant functions are continuous. Putting all of
these things together gives us the well-known result that polynomials are continuous on R.
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Proposition 3.2.23.

Let @ be a limit point of mappings f,g : U € R* — V C R and suppose ¢ € R. If
lim; ., f{z) = b1 € R and limy_, g(z}) = b2 € R then

L limgse (f(2) + g(x) = limyye f(2) + lime—, g(x).
2. hmm—m(f(m)g(w)) = (h.mm—%a f(CE)) (lim:!:-m, Q(E))
3. limgoe(ef(z)) = climza f(z).

Moreover, if f, g are continuous then f - g, fg and cf are continuous.

Proof: Edwards proves (1.} carefully on pg. 48. I'll do (2.) here: we are given that If lim,_, f{2) =
by € B and limg.,, g{e) = b € B thus by Proposition 3.2.11 we find liw, . (f. g)(2) = (&, b2},
Consider then,

e {f(e)gle)) = 1im_,,;m,(p(j“. g)) defn. of product function
= p(limg—a(f. ) since p is continuons
= p(by, b} by Proposition 3.2.11.
= bba definition of product function

( lim, .y, j"(.’::)) ( im, ., g{:r:)) .

In your homewaork yvou proved that lim,_,, ¢ = ¢ thus item (3.} follows from (2.). 0.

The propaosition that follows does follow immediately from the propoesition above, however I give a
proof that again llustrates the idea we used in the examples. Reinterpreting a given function as a
composite of more basic functions is a useful theoretical and calculational technique.

Proposition 3.2.24.

Assume f,g: U CR® =V CR are continuous functions at ¢ € U and suppose ¢ € B.
1. f -+ g is continuous at a.
2. fg is continuous at a

3. ¢f is continuous at a.

Moreover, if f, g are continuous then f -+ g, fg and c¢f are continuous.

Proof: Observe that (f + g)(») = (s=(f,g)){x) and (fo)lz) = (p-(f.g))(x). We're given that
f, g are continuous at o and we know s, p are continuous on all of B* thus the composite functions
s={f,q) and pe{f,g) are continuous at a and the proof of items (1.} and (2.) is complete. To
prove {3.) I refer the reader to their homework where it was shown that A(z) =cforallw € U is a
continuous function. We then find (3.} follows from (2.) by setting g = h (lunction multiplication
commutes for real-valued functions). U
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We can use induction arguments to extend these results to arbitrarily many products and sums of
power functions.To prove continuity of algebraic functions we’d need to do some more work with
quotient and root functions. T'll stop here for the moment, perhaps I'll ask you to prove a few more
fundamentals from calculus I. T haven’t delved into the definition of exponential or log functions
not to mention sine or cosine. We will assume that the basic functions of calculus are continuous
on the interior of their respective domains. Basically if the formula for a function can be evaluated
at the limit point then the function is continuous.

It’s not hard to see that the comments above extend to functions of several variables and map-
pings. If the formula for a mapping is comprised of finite sums and products of power func-
tions then we can prove such a mapping is continuous using the techniques developed in this
section. If we have a mapping with a more complicated formula built from elementary func-
tions then that mapping will be continuous provided its component functions have formulas which
are sensibly calculated at the limit point. In other words, if you are willing to believe me that
“sin(z}, cos(z), e, In{z), cosh(z), sinh(z), /7, =, ... are continuous on the interior of their domains
then it’s not hard to prove: ’

1
f(:an,Z) = (Slﬂ($)+e$+ \/COSh(.’L‘g)-’r p'y_i_em’ COSh(ijz)’ ze +yz)>

is a continuous mapping at points where the radicands of the square root functions are nonnegative.
It wouldn’t be very fun to write explicitly but it is clear that this mapping is the Cartesian product
of functions which are the sum, product and composite of continuous functions.

Definition 3.2.25.

A polynomial in n-variables has the form:

o

o P E . S O 18
f(-lll: L. 7-1:71) = Citda,eninl] Ty 0o Ty
tpda, =0

where only finitely many coefficients ¢;, ;, . ;, # 0. We denote the set of multinomials in
n-variables as R(xy, xq, ..., 2p).

Polynomials are R{z). Polynomials in two variables are R(z, y), for example,

flz,y) =ax+by deg(f) = 1, linear function
fHz,y) =az+by+c deg(f) = 1, afline function
flz,y) = az®+bay + o deg(f)=2, quadratic form
flz,y) =ax®+bry+cy® +de+ey+g deg(f)=2

If all the terms in the polynomial have the same number of variables then it is said to be ho-
mogeneous. In the list above only the linear function and the quadratic form were homoge-
neous. Returning to the topic of the previous chapter for a moment we should note that a linear
transformation has component functions which are homogeneous linear polynomials: suppose that
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L : R® —+ R™ is a linear transformation with matrix A € R ™*™ then in the notation of this chapter
we have L = (L, La,..., L) where

Lj(.‘r) = (A:L) cej = Ajlilil -+ Ajgwg +---+ AanUn

It is clear that such functions are continuous since they are the sum of products of continuous func-
tions. Therefore, linear transformations are continuous with respect to the usual metric topology
on R™.

Remark 3.2.26,

There are other topologies possible for B™. For example, one can prove that
[l = Joa) + Jua| + -+ + [un]

gives a-norm-on K™ and the theorems we proved transfer over almost without-change by |-
just trading || - || for || - ||;. The unit "ball” becomes a diamond for the 1-norm. There are
many other norms which can be constructed, infinitely many it turns out. However, it has
been shown that the topology of all these different norms is equivalent. This means that
open sets generated from different norms will be the same class of sets. For example, if
vou can fit an open disk around every point in a set then it’s clear you can just as well fit
an open diamond and vice-versa. One of the things that makes infinite dimensional linear
algebra more fun is the fact that the topology generated by distinet norms need not be
equivalent for infinite dimensions. There is a difference between the open sets generated by
the Euclidean norm verses those generated by the 1-norm. Incidentally, my thesis work is
mostly built over the 1-norm. It makes the supernumbers happy.

3.3 compact sets and continuous images

It should be noted that the sets R™ and the empty set ) are both open and closed (these are the
only such sets in the metric topology, other sets are either open, closed or neither open nor closed).

Theorem 3.3.1.

The mapping f : dom(f) ¢ R" -+ R™ is continuous iff f~1(¥/) is open in dom(f) for all
open sets U C R™. Additionally, f is continuous iff f~1{U) is closed for each closed set U
in R™.

Notice this theorem makes no explicit reference to the norm. It turns out this theorem is used as
the very definition of continuity in more abstract topological settings.

1 leave the proof of the closed case to the reader. I tackel the open case here:

Froof: (=} Suppose [ is continnous and U7 is open in B™ then for cach £ € U there exists an open
hall B.(z) C /. Ifx € f~1{I7) then there exists y € U7 such that f(2) = ¥ and hence there exists an
open ball about B.(y) C U. I propose that f~'(B.(y)) is an open subset of f~1{U/) which contains
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x. Note that y € B.(y) thus f(x) = y implies z & f~1(B.{y)} as according to the definition of
inverse image. We seek to show f~YB.(y)) < f~HU}. Suppose v € f~H{B.()). It follows that
there exists w € B.(y) such that f(w) = v. Note that B.(y) € U therefore w € B, (y} implies
w € U and so v € f~HU) as w € U has f(w) = v. We have shown that an arbitrary element in
FHBAyY) is also in f7HU) hence f~H{B(y)) © F-HU).

(<) Assume that f71({/} is open in dom(f) for each open set U7 € B™. Let a € dom(f). Assume
¢ > (0 and note that B.(f(a)) is an open seb in R™ therefore f1(B(f{a))) is open in dom([).
Note a € f~1(B(f(a)) since f{u) € B (f{u)). Thus e is a point in the open set f~1{B.(f(a)))
so there exists a § > 0 such that Bs{a) C 1B (f(«)) C dom(f). Suppose that r € Bs{a) note
that Bs(a) C f~YHB.(f(n))) hence x € f~HB.(f(a))). It follows that there exists y € B.{f(a))
sich that f{x) = y thus {|f(x) — f(a)|] < e. Thus, lm,, f(2) = f(a) for each « € dom(f) and we
conclude that f is continuous. [

Definition 3.3.2.

A mapping 5 from N to R" is called a sequence and we usually denate S(n) = 5, for all
n € N. If {a,}52, is a sequence then we say liny,oe a, = L iff for each ¢ > 0 there exists
N € N such that for all n > N we have |la,, — L|| < ¢

A sequence of vectors is not so different than a sequence of numbers. A sequence in R™ is just a list
of vectors instead of a list of numbers and our concept of distance is provided by the norm rather
than the absolute value function.

Example 3.3.3. . .
] -
o, = < % ’ "‘An'(n)? 3>
On > <o, I 3 as  Vte——s o0

+

\/ou\ ton  calodate thae ll\fv\.'t)r o‘p a veetor — valued S'Q%AAM\UZ
b-—a 'h.k.\'ng | twaike of Ahe umpdneu—i’o S'e.g\;ue,ncm )

Definition 3.3.4.

A set € C R™ is said to be compact iff every sequence of points in C contains a convergent
subsegence in ' which converges to a point in C

The Bolzano-Weiierstrauss theorem says that every closed interval is compact. It’s not hard to
see that every closed ball in R™ is compact. | now collect the interesting results from pg. 52 of
Fdwards' text: note that to say a set is bounded simply means that it is possible to surround the
whole set with some sufficiently large open ball.
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Proposition 3.3.5.

1. Compact subsets of R" are closed and bounded.

2. Closed subsets of a compact set are compact.

U]

. The cartesian product of compact sets gives a compact set.

4. A subset of R is compact iff it is closed and bounded.

The proof in Edwards is very understandable and the idea of a compact set is really encapsulated
by item (4.).

Proposition 3.3.6.

[Let C be a compact subset of R" and f : dom(f) — B™ a continuous mapping with |
C C dom(f}, it follows that f(C) is a compact subset of R™.

The proposition above simply says that the continuous image of compact sets is compact. We
finally come fo the real reason I am mentioning these topological theorems in this course.

Proposition 3.3.7.

If D is a compact set in B™ and f : D -+ R is a continuous function then f attains a minimum
and maximum value on D. In other words, there exist at least two points a,b € D such
that f{a) < f(z) < f(b) for all x € D.

Since a closed ball is bounded we have that it is compact and the theorem above tells us that if
we take any continuous function then the image of a closed ball under the continuous function
will have absclute extreme values relative to the closed ball. This result is important to our later
efforts to locate min/max values for functions of several variables. The idea will be that we can
approximate the function locally by a quadratic form and the local extreme values will be found
by evaluating the quadratic form over the unit-n-sphere.

Definition 3.3.8.

Let f: U CRE" = B be a mapping. We say f is uniformly continuous ifl for each e > 0
there exists a 6 > 0 such that =,y € U with ||z — y|| < § we find [|f(x) — f(¥)l] <e.

Proposition 3.3.9.

lIf f:C — R is a continuous mapping and ' is compact then f is uniformly continuous.

The Heine-Borel theorem gives a topological refinement of the definition of compactness we gave
earlier in this section. Our definition is equivalent to the following: a compact set is a set for
which every open cover has a finite subcover. An open cover of a set is simply a family
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of open sets whose unions cover the given set. Theorem 8.10 in Edwards states that if we have a
sequence of nested subset in R™ which contains a compact set:

VicVeCVyC... where CcUVn
n=1

then if we go far enough out in the sequence we'll be able to find Vy such that ¢ C V. In other
words, we can find a finite cover for C'. The finite-cover definition is prefered in the abstract setting
because it makes no reference to the norm or distance function. In graduate topology you’ll learn
how to think about open sets and continuity without reference to a norm or distance function. Of
course it's better to use the norm and distance function in this course because not using it would
just resuit in a silly needless abstraction which made all the geometry opaque. We have an idea of
distance and we're going to use it in this course.

3.4 continuous surfaces

We are often interested in a subset of R™. A particular subset may be a set of points, a curve, a
two-dimensional surface, or generally a p-dimensional surface for p < m. There are more patho-
logical subsets in general, you might have a subset which is one-dimensional in one sector and
two-dimensional in another; for example, § = ({0} x R)U B1(0) C R2. What dimensionality would

you ascribe to 87 I give the following defintion to help refine our idea of a p-dimensional continuous
surface inside R™.

Definition 3.4.1.

Let § € B™. We say S is continuous surface of dimension p iff there exists a finite
covering of 5 say Ufmi V; = § such that V; = ®;(U;) for a continuous bijection @; : U; - V;
with continuous inverse and {/; homeomorphic to B? for all ¢ = 1,2,...,k We define
homeomorphic to B? to mean that there exisis a continuous bijection with continuous
inverse from U; to B?. In addition, we insist that on the intersections V3 NV, # 0 the
mappings $;, &) are continuously compatible. If V; NV} # # then the mappings ®;, Oy
are sald to be continuously compatible iff (I)J"-“l o @, iz continuous when restricted to
(I),‘Tl(\/} A V,). Finally we say two subsets IV C R™ and W C RB™ are homeomorphic iff
there exists a continuous bijection from V to W and we write V = W in this case,

You might expect we could just use bijectivity to define dimension of a subset but there are
some very strange constructions that forbid such simple thinking. For example, Cantor showed
that there is one-one mapping of R onto [0,1] x [0, 1]-the unit square. The existence of such a
mapping prompts us to state that R and R? share the same cardnality. The concept of cardnality
ignores dimensionality, it purely focuses on the more basic set-theoretic nature of a given set.
Cardnality® ignores the difference between R and R". Later Netto showed that such mappings
were not continuous. So, you might be tempted to say that a p-dimensional surface is a continuous

31 have an introductory chapter on this topic in my math 200 notes
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image of RP. However, in 1890 Peano was able to construct a (I!!} continuous mapping of the unit-
interval {0, 1] onto the unit square [0, 1] % [0,1]. Peano’s construction was not a one-one mapping.
You can gather from these results that we need both bijectivity and continuity to capture our usual
idea of dimensionality. The curves that Cantor and Peano constructed are called space filling
curves. You might look in Han Sagan’s text Space Filling Curves if you’d like to see more on this
topic.

Example 3.4.2. Lines are one-dimensional surfaces. A line in B™ with direction v # 0 € ™
passing through a € R™ has the form L, = {a +tv | t € R}. Note F(i) = a+ tv is a continuous
mapping from B into BR™. In this silly caose we have Uy = R and & = Id so clearly D, is a
continuous bijection and the image F(R) = Ly is a continuous one-dimensional surface.

Example 3.4.3. A plane Pin B™ with point a € R™ containing linearly independent vectors
i, " € R™ has the form P = {a + s@ + 7 | (s,t) € R®}. Notice that F(s,t) = a -+ si + tif provides
@ continuous bijection from R? to P hence P is a two-dimensional continuous surface in R™.

Example 3.4.4. Suppose that L : R" — R™ is a linear transformation. I claim that range(L) <
R™ is a continuous surface of dimension rank{L). If the mairiz of L is A then the dimension of
the surface L{R) is precisely the number of linearly independent colurmn vectors.

All the examples thus far were examples of flat surfaces. Usually curved surfaces require more
attention.

Example 3.4.5. The open ball of radius one in R™ centered at the origin is homeomorphic to
I&™. To prove this assertion we need to provide a continuous bijection with continuous inverse from
B1{0) to R™. A moments thought suggests

x ol _
&(z) = ¢ llell tan == x € Bi(0) such that z # 0

0 T = {}
might work. The idea is that the point z € B1(0) maps o the point which lies along the same

ray eminating from the origin but a distance tan% along the ray. Note thet as ||z]] = 1 we

find tan# — oa. This map takes the unit-boll and stretches it to cover R™. It is clear that

® is continuous since each component function of ® is the product and composite of continuous
functions. It is clear that ®(x) = 0 iff x = 0. Thus, te prove 1 — 1 suppose that ®(z) = D(y) for
z,y € B1(0) such that x,y # 0. It follows that ||D(z)|| = {|P(y)||. Hence,

B 1l I 7]
tan 5 = tan 5

F4

But =,y € B1(0) thus ||z||,|iy]]| < 1 so we find 0 < ﬂglﬂ—l,% < 5. Tangent is one-one on
the open interval (0,7/2) hence ﬂgﬂ-l = ﬂ—lgili therefore ||z|| = |lyl]. Consider the vector eguation
®(z) = ®{y), replace ||y|| with ||z}| since we proved they're equal,

z owlell _y 7l

— tan = tan
(] 2 |f|] 2
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multiply both sides by the nonzero quantity ||z||/ tan % to find x = y. We have shown that @ is
injective. The inverse mapping is given by

~Liyy = 2tan‘1(||'u}|) 7
e (]

for v € R™ such that v # 0 and ®1(0) = 0. This map takes the vector v and compresses il into the
unit-ball. Notice that the vector length approaches infinitity the inverse maps closer und closer to
the boundary of the ball as the inverse tangent tends to 7/2 as its input tends to infinity. I invite
the reader to verify that this is indeed the inverse of ®, you need to show that ®(®(v) = v for all
v & R® and @Y ®(z)} = = for all z € B1{0).

Remark 3.4.6.

which define a continuous surface. You could call the &; continuous patches if you wish.
A smooth surface will be defined in terms of smooth patches or perhaps in terms of the
inverse maps ® U.which are called coordinate maps. We need to define a few ideas about
differentiability before we can give the definifion for a smooth surface. In fact the concept
of a surface and the deflinition of the derivative in some sense are inseparable. For this
reagon I have begun the discussion of surfaces in this chapter.

I assume that the closed unit-ball B(0) is homeomorphic to B? in the example below. I leave it to
the reader supply proof of that claim.

Example 3.4.7. I claim that the unit-two-sphere §% is a two-dimensional continuous surface in
R3. We define

2= 9B1(0) = {(z,y,2) € R¥ | ¥ + 3 + 2° = 1}

We can write §° = §T U S~ where we define the upper hemisphere St and the lower hemisphere
ST in the usual manner:

St ={{z,y,2) €8% | z2>0} 8§ ={(z,y,2) € 5% | z<0}
The eguator 15 at the intersection,
E=8"n8" ={{z,y,2) € §%|z =0} = §' x {0}
Define mappings Oy, : m C R? = S* as follows:
Byp(z,y) = (2 y £V/1-27—42)
where (z,y) € B2 such that ° + y* < 1. I claim the inverse mappings are

@;1(.'19,3;,2) = ( T, Y )

The example above gives us license to use open balls as the domains for the mappings|



52 CHAPTER 3. TOPOLOGY AND MAPPINGS

for all (z,y,z) € 8. Let’s check to see if my claim is correct in the (+) case. Let (z,y,z) € ST,
q)+((b;1($!y1 Z)) = (I)_;_(.’L','y) = ( T, ¥ v 1—a?— y2 ) = (.’lﬁ,y,z)

since (z,v,2) € ST implies z = /1 ~x?~y*>. The (-) case is similar. Likewise let (z,y) €
B1(0) ¢ R? and calculate

(ﬁ:l(@“(m!yn = (I):l( Ty Y, — WV 1 —a? ___yg ) == ('r‘—'r':-y)

It follows that ©.. are bijections and it is clear from their formulas that they are continuous map-
pings. We should check if these are compatible patches. Consider the mapping QD;I od_ . A typical
point in the ®”Y(E) should have the form (z,y) € §1 which means x> + y* = 1, consider then

(@31 = @Yz, y) = 23w,y —v/1 — 22 —y?) = (2,y)

thus <I>;I o _ is5 the identily mapping which is continuous. We find that the two-sphere is a con-
tinuous two-dimensional surface.

Example 3.4.8. Let U be homeomorphic to RP. The image of a continvous mapping F : U7 - R™
is @ p-dimensional continuous surfece in B™. In this case compatibility is trivially satisfied.

Remark 3.4.9.

A p-dimensional surface is locally modeled by RP. You can imagine pasting p-space over the
surface. Bijectivity and continuity insure that the pasting is not pathological as in Cantors’
bijective mapping of [0, 1] onto R" or Peano’s continuous mapping of [0, 1] ento [0, 1] % {0, 1}
In a later chapter we'll add the criteria of differentiability of the mapping. This will make
the pasting keep from getting crinkled up at a point. TFor example, a cone is a continuous
surface however it is not a smooth surface due to the point of the cone




Chapter 4

geometry of curves

¥ the curve is assigned a sense of direction then we call it an oriented curve. A particular curve
can be parametrized by many different paths. You can think of a parametrization of a curve as a
process of pasting a Hexible numberline onto the curve.

Definition 4.0.10.

Let €' ¢ B™ be an oriented curve which starts at P and ends at Q. We say that + : [a, b] —
R" is a smooth non-stop parametrization of C' if y([a,b]) = C, y(a) = P, v(b) = Q,
and v is smooth with +/(¢) # 0 for all ¢ € [a,b]. We will typically call v a path from P to
(7 which covers the curve C.

I have limited the definition to curves with endpoints however the definition for curves which go
on without end is very similar. You can just drop one or both of the endpoint conditions.

4.1 arclength
Let’s begin by analyzing the tangent vector to a path in three dimensional space. Denote 7 =
(%, y,2) where z,y, z € C*®([q, b], R) and calculate that

) = 1 o e dy i
YO =g =<Gd @ >

Multiplying by dt yields
d . dy dz
Y (t)dt = Gdt =< %&, L 42 > gy

The arclength ds subtended from time t to time ¢ + di is simply the length of the vector ~/(t)dt
which yields,

ds = ||y (t)dt]| = /&~ + 4" 4 £74t

You can think of this as the length of a tiny bit of string that is laid out along the curve from
the point y(¢) to the point «(t + dt). Of course this infinitesimal notation is just shorthand for an
explicit limiting processes. If we sum together all the little bits of arclength we will arrive at the
total arclength of the curve. In fact, this is how we define the arclength of a curve. The preceding
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discussion was in 3 dimensions but the formulas stated in terms of the norm generalizes naturally
to R™.

Definition 4.1.1.

Let =y : [a,b] = R™ be a smooth, non-stop path which covers the oriented curve C. The
arclength function of v is a function s : [a,b] — R where

"t
5= [ Il

for each t € [a,b]. If 4 is a smooth non-stop path such that ||3/(¢)|| = 1 then we say that %
is a unit-speed curve. Moreover, we say 7 is parametrized with respect to arclength.

The arclength function has many special properties. Notice that item (1.) below is actually just
the statement that the speed is the magnitude of the velocity vector.

Proposition 4.1.2.

Let v : [a,b] = R™ be a smooth, non-stop path which covers the oriented curve . The
arclength function of v denoted by sy : [a,b] ~+ R has the following properties:

L g (sy(w)) = ||7 (w)|| %2,
2. L2 5 0 for all t € (a,b),
3. sy is a 1-1 function,

4. sy has inverse s> : s5y([e,0]) = [a, b].

Proof: We begin with (1.). We apply the fundamental theorem of calculus:

dit

d oo d Y T,
syt = G [ Il = 11 ()l 5

for all w € (a,b). For (2.), set w = ¢ and recall that ||[7/'(¢)|]| = 0 il v/(#) = 0 however we were
given that «+ is non-stop so +'(¢) # 0. We find dd% > 0 for all £ € (a,0) and consequently the
arclength function is an increasing function on (a,b). For (3.), suppose (towards a contradiction)

that s, {x) = s4(y) where a < z < y < b. Note that v smooth implies s, is differentiable with

- continuous derivative on-(a,b)-therefore-the mean value theorem applies -and-we-can-deduce that-— - - o

there is some point on ¢ € (2, y) such that ‘s’w(c) = 0, which is impossible, therefore (3.) follows. If
a function is 1-1 then we can construct the inverse pointwise by simply going backwards for each
point mapped to in the range; &7 Yiz) = y iff s5,{y) = x. The fact that s, is single-valued follows
from (3.}. O
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If we are given a curve C covered by a path + (which is smooth and non-stop but may not be
unit-speed) then we can reparametrize the curve C with a unit-speed path ¥ as follows:

F{(s) = v(s7(s))

where s ! is the inverse of the arclength function.

Proposition 4.1.3.

If v is a smooth non-stop path then the path ¥ defined by 5(s) =y(s5 1(s)} is unit-speed.

Proof: Differentiate %(¢) with respect to ¢, we use the chain-rule,
e d o — (g d i -
F(1) = (s () = 7 (577 () L (57 (1),

Hence #/(2) = +'(s3! ))dr {s71(t)). Recall that if a function is increasing on an interval then its
inverse is IlI\LWhQ mcwamng hence, by (2.} of the previous proposition, we can pull the positive
constant, 4 r('” L)) out of the norni. We find, using item (1.) in the previous proposition,

| @1 = 1 (55 MG (57 H(0)) = sy (s7H1)) = () = 1.

Therefore, the curve % is unit-speed. We have ds/dt = 1 when ¢ = s (this last sentence is simply a
sumimary of the careful argument we just concluded). O

Remark 4.1.4.

While there are many paths which cover a particular oriented curve the unit-speed path is
unique and we'll see that formulas for unit-speed curves are particularly simple.

Example 4.1.5.

Vet = (Ret, 3, Reaxy £ t=0, R20

éki - (n@gmﬁ:g @g Rwsf> ‘f"”;»f’&“%a
dk

ol . ,
S() = S 55 du = 5 Rdu = pu| = AL =5
¢]

4
. , | _, »
For example, S(om) = amR (mete serve . J

Nole £ = /& henw we gon Tep s e iEe Ve

Y(s) = T(%) = L Res(%4), 3, Ron(74)>

a

2
Uik~ Speed peronshiehl, of carve,

iy
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4.2 vector fields along a path

Definition 4.2.1.

Let C C RY be an oriented curve which starts at P and ends at Q. A vector field along
the curve C is a function from ¢ — V3. You can visualize this as attaching a vector to
each point on C.

The tangent (T), normal(N) and binormal (B) vector fields defined below will allow us to identify
when two oriented curves have the same shape.

Example 4.2.2. N
Fo)
(‘;‘glﬁ veetor “ﬁ@(ﬁ:j

@\;%ﬁ?‘é"\% g
o
C MS#@

Jé?*éﬁ’tﬁ}f ‘:,,_,;é)
each peint e €,

?Gﬂ ) 7 [4?)

Definition 4.2.3.

Let v : {a,b] = B® be a path from P to @ in R®, The tangent vector field of ~ is a
mapping T [a, b —+ V3 defined by

1
|l @)l

for each ¢ € la, b]. Likewise, if T'(¢) # 0 for all t € [a,b] then the normal vector field of
7 is a mapping N : [a,b] ~» V3 defined by

T(t) =

¥ (#)

1
@)l

for each ¢ € [o, b]. Finaily, if T7'(t) # 0 for all t € {a,b] then the binormal vector field of
7 is defined by B(t) = T(t) x N(¢) for all ¢ € [a,b]

N{t) = 7 T'()

_Example 4.2.4. Let R > 0 and suppose y(t) = (Rcos(t), Bsin(i),0) for 0 <t < 2r. Weean

calculate
+'(t) =< —Rsin(t}, Reos(t),0 > = Yl =R

Hence T(t) =< —sin{t), cos(t),0 > and we can calculate,

T'(t) =< —cos(t), —sin(t),0 > = ||[T'®)]i=1.



4.2. VECTOR FIELDS ALONG A PATH - a7

Thus N(t) =< —cos(t), —sin(t),0 >. Finally we calculate the binormal vector field,

B(t) =T(t) x N(t) = [~sin(t)e; + cos(t)ea] x [— cos(t)e; — sin(t)eq]
= [sin®(t)e; x ep — cos?(t)es X e;
= [sin®(t) + cos®(t)]e; X en
=e3;=<0,0,1>

Notice that T- N = N - B =T - B = 0. For a particular value of t the vectors {T(t), N(t), B(t)}
give an orthogonal set of unit vectors, they provide ¢ comouving frame for ~. It can be shown that
the tongent and normal vectors span the plane in which the path travels for times infintesimally
close to t. This plane is called the osculating plane. The binormal vector gives the normal to the
osculating plane. The curve considered in this example hos a rather boring osculating plane since
B is constant. This curve is just a circle in the ry-plane which is traversed ol constant speed.

\ Z

S
3 >
7 e / A

x & et

7&) COL{"‘JE; e lo A
:’{\«é ""%Dl_ [o N AW

&

Example 4.2.5. Notice that s(t) = Rt in the preceding ezample. It follows that
¥(s) = (Rcos(s/R), Rsin(s/R),0) for 0 < s < 2w R is the unit-speed path for curve.
We can calculate

¥ (s) =< —sin(s/R),cos(s/R),0 > = [[¥(s)|| =1

Hence T(s) =< —sin(s/R),cos(s/R),0 > and we can also calculate,
T'(s) = + < —cos(s/R), —sin{s/R),0 > = 1T @®)|] = 1/R.
Thus N(s) =< — cos(s/R), —sin{s/R),0 >. Note B=T x N =< 0,0,1> as before.

Example 4.2.6. Let m, R > 0 and suppose v(t) = (Rcos(t), Rsin(t),mt) for 0 <t < 2w, We can
calculate

v'(t} =< —Rsin(t), Reos(t),m > = ||7'(¢)|| = vV R? + m2.

Hence T(t) = \/}_IELW < —Rsin{t), Rcos(t),m > and we can calculate,

Thus N(t) =< — cos(t), —sin(t),0 >. Finally we calculate the binormal vector field,

B{t)=T{(t)x N(t) = JJ;W{_R sin(t)e; -+ R cos(t)en -+ meg] % [~ cos(t)e; — sin(t)es]
= —\/ﬁ < msin(t), —-mcos(t), B >
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We again observe that T-N =N -B =1T-B = 0. The osculating plane is moving for this curve,
note the t-dependence. This curve does not stay in a single plane, it is not a planor curve. In fact
this is a circular heliz with radius R and slope m. 4

L

1#’1%?\ x\t:‘ﬂm GvE
pleng a
W‘o'h

Example 4.2.7. Lets reparametrize the heliz as a unit-speed path. Notice that 5,(t) = tv R? 4+ m?
thus we should replace t with s/v R? +m? to obtein 5(s). Let a = 1/vR2 +m? and
¥(s) = (R cos(as), Rsin{as),ams) for 0 < s < 27V RE2 + m?. We can calculate

[P

¥'(s) =< —Rasin(as), Racos(as),am > = |[F(s)||=aVR2+m2=1.

Hence T(s) = a < —Rsin(as), Rcos(as), m > and we can calculate,

T'(s) = Ra® < —cos(as), —sin(as),0 > = ||T'(s)|| = Re® = yorrems

Thus N(s) =< —cos(as), —sin(as), 0 >. Nezt, calculate the binormal vector field,

B(s)=T(s)x N(s) =a<—R sin(as), K cos(as), m > x < —cos{as), —sin(as),0 >

= \/Rzlmg < msin(as), —mcos(as), R >

Hopefully you can start to see that the unit-speed path shares the same T, N, B frame at arclength
s as the previous example with t = s/ R? + m?.

4.3 Frenet Serret equations

We now prepare to prove the Frenet Serret formulas for the T, N, B frame fields. It turns out that
for nonlinear curves the T, N, B vector fields always provide an orthonormal frame. Moreover, for
nonlinear curves, we'll see that the torsion and curvature capture the geometry of the curve.
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Proposition 4.3.1.

If v is a path with tangent, normal and binormal vector fields T,N and B then
{T'(t), N(t), B(t)} is an orthonormal set of vectors for each t € dom(-y).

Proof: It is clear from B(t) = T(t) x N(t) that T(t) - B{t) = N{t) - B(t) = 0. Furthermore, it is
also clear that these vectors have length one due to their construction as unit vectors. In particular
this means that T'(¢) - T(t) = 1. We can diflerentiate this to obtain { by the product rule for
dot-products)

T - TE)+TE)-T'(y=0 = 27 -T'(t) =0

Divide by ||77(£)!| to obtain T'(¢) - N(¢) = 0. [

We omit the explicit #-dependence for the dicussion to follow here, also you should assume the
vector fields are all derived from a particular path v. Since T, N, B are nonzero and point in three
mutually distinct directions it follows that any other vector can be written as a linear combination
of T,N,B. This means! if v € V3 then there exist ¢, ¢, cs such that v = ;T + caN + c3B.
The orthonormality is very nice because it tells us we can calculate the coefficients in terms of
dot-products with T, N and B:

v=cT4+eaN+tesB = cg=v- T, co=v-N,c3=v-B

We will make much use of the observations above in the calculations that follow. Suppose that

T =1 T+ e1a N -+ c13B

N = CQIT + CQQN -4~ ngB

B = C31T -+ ngN + 633B.
We observed previously that 7”7 - T = 0 thus ¢;; = 0. 1t is easy to show N'- N =0 and B'- B =0
thus co2 = 0 and c33. Furthermore, we defined N = WI:E—,”T’ hence ¢33 = 0. Note that

T = c1aN = %TI = Cl9 = ”T’]l

To summarize what we've learned so far:

T = ClzN
N' = C21T + Cg3B
B = cs1 L+ ega N,

We'd like to find some condition on the remaining coefficients. Consider that:

B =T'xN+TxN a product rule

B=TxN =
= B =[c1aN]| X N+ T X [enT + co3B] using previous eqn.
B T
= B = —gyN you can show N =8B x T
= cg1T +egalN = —coaN refer to previous eqn.
= c3; = 0 and €32 = —co3. using LI of {T', N}

You might recognize [v]p = [e1, ¢2, c3]T as the coordinate vector with respect to the basis g = {T, N, B}
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We have reduced the initial set of equations to the following:

T = 612N
N' = Cng + C23B
B’ = —ngN.

The equations above encourage us to define the eurvature and torsion as follows:

Definition 4.3.2.

Let ' be a curve which is covered by the unit-speed path 5 then we define the curvature &
and torsion 7 as follows:

dT dB -
o(8) = ||=Z = e« N{g
W)= ||| == Nes)
One of your homework questions is to show that ca) = —ey5. Given the result you will prove in the
homework we find the famous Frenet-Serret equations:
%ﬂﬁﬁ %:—Hf-l-‘rﬁ ‘é—fz—’rﬁ.

We had to use the arclength parameterization to insure that the formulas above unambiguously
define the curvature and the torsion. In fact, if we take a particular (unoriented) curve then there
are two choices for orienting the curve. You can show that that the torsion and curvature are
independent of the choice of orientation. Naturally the total arclength is also independent of the
orientation of a given curve.

Curvature, torsion can also be calculated in terms of a path which is not unit speed. We simply
replace s with the arclength function s,(f) and make use of the chain rule. Notice that dF/dt =
(ds/dt}{dF/ds) hence,

dT _ dsdl dN _ dsdN dB _

dt T dtds’ dt  dids' dt
Or if you prefer, use the dot-notation ds/di = § to write:

(&

ds
di

£

8

14T _ df 1dN _ dN 1dB _ dB

5dt  ds' §dt T ds' §dt  ds

Substituting these into the unit-speed Frenet Serret formulas yield:

df _ 4, aN _ i : a8 _ _;
SF = 8kN o = skl + 878 = sTN.

-where--f(s;f(t)): T{(t); ]’\?(Slr(t)) =N(t) and E(sn,(t)) =-B(t).-Likewise deduce® that— - - = o e

dar

w(t) = 3|5

§

1) = —% (%‘? - N(t))

*I'm using the somewhat ambiguous notation x(t) = x(s,(t)) and 7(¢) = 7{s,(t)). We do this often in applications
of calculus. Ask me if you'd like further clarification on this point.
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4.4 curvature, torsion and the osculating plane

In the preceding section we saw how the calculus and linear algebra suggest we define curvature
and torsion. We now stop to analyze the geometric meaning of those definitions.

4.4.1 curvature

Let use begin with the curvature. Assume -y is a non-stop smooth path,

dT
dt
Infinitesimally this equation gives ||dT|| = kédt = x%dt = xds. But this is a strange equation
since ||T']| = 1. So what does this mean? Perhaps we should add some more detail to resolve this
puzzle; let dT = T(t + dt) — T(t).
T <]

. ; . B _ -
m}wﬁﬁ(ﬁﬂ) T(M) 4T = T(e+dk) - T (@)

Notice that
[T\ = [T(t+dt) — T(t)] - [T(t + dt) — T(2)]
=T(t+dt)-TE+dt)y+T(t) T(t) —2T(t) - T{t + dt)
=T(t+dt)- Tt +dt)y+T(t) T(t)—27T(¢) - T{t + dt)
= 2(1 - cos(¢)))

where we define ¢ to be the angle between T(t) and T'(t + dt). This angle measures the change
in direction of the tangent vector at ¢ goes to ¢ -+ df. Since this is a small change in time it is
reasonable to expect the angle ¢ is small thus cos{¢) = 1 — %gbz and we find that

14T1| = v/2(1 — cos(@) = /2(1 — 1 + 3¢?) = /¢ = |¢)|

Therefore, ||dT|| = xds = |¢| and we find |k = id— '

dep

Remark 4.4.1.

to the curve. We say the the reciprocal of the curvature is the radius of curvature r = %

'This makes sense as ds = |1/xk|d@ suggests that a circle of radius 1/x fits snuggly against
the path at time . We form the osculating circle at each point along the path by
placing a circle of radius 1/x tangent to the unit-tangent vector in the plane
with normal B(t). We probably should draw a picture of this. -

-+ The-eurvature-measures-the-infinitesimal-change-in the-direction-of-the-unit-tangent-vector |- - -
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4.4.2 osculating plane and circle

It was claimed that the "infinitesimal” motion of the path resides in a plane with normal B. Suppose
that at some time ¢, the path reaches the point v(t,) = F,. Infinitesimally the tangent line matches
the path and we can write the parametric equation for the tangent line as follows:

1{t) = v(to) + ty'(to) = P, + tu, 1)

where we used that +/(¢) = §T(¢t) and we evaluated at t = %, to define 4(t,) = v, and T(¢,) = Tp.
The normal line through P, has parametric equations (using N, = N(t,)):

n(X) = B, + AN,

We learned in the last section that the path bends away from the tangent line along a circle whose
radius is 1/k,. We find the infinitesimal motion resides in the plane spanned by 7, and N, which
has normal T}, x N, = B(t,). The tangent line and the normal line are perpendicular and could be
thought of as a zy-coordinate axes in the osculating plane. The osculating circle is found with its
center on the normal line a distance of 1/&, from P,. Thus the center of the circle is at:

Qa:Po_“,"};No

T'll think of constructing z,y, 2z coordinates based at P, with respect to the T,, N,, B, frame. We
suppose 7 be a point on the osculating circle and z,y, z to be the coefficients in ¥ = P, + 2T, +
yN, + zB,. Since the circle is in the plane based at P, with normal B, we should set z = 0 for our
circle thus ¥ = 27 + yN.

17~ Qollf =& = 2T+ y+ SINJIP = &
Therefore, by the pythagorean theorem for orthogonal vectors, the x,y, z equations for the oscu-
lating circle are simply® :

b
30f course if we already use x, v, z in a dilferent context then we should use other symbals for the equation of the
osculating circle.
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Finally, notice that if the torsion is zero then the Frenet Serret formulas simplify to:

dT _ AN _ dB _
T = selN S = —8rT = 0.

we see that B is a constant vector field and motion will remain in the osculating plane. The change
in the normal vector causes a change in the tangent vector and vice-versa however the binormal
vector is not coupled to T or N.

Remark 4.4.2,

The torsion measures the infinitesimal change in the direction of the binormal vector relative
to the normal vector of the curve. Because the normal vector is in the planr- of infinitesimal
motion and the binormal is perpendicular to that plane we can say that the torsion measures
how the path lifts or twists up off the plane of infinitesimal motion. Furthermore, we can
expect path which is trapped in a particular plane (these are called planar curves) will
have torsion which is identically zero. We should also expect that the torsion for something
like a helix will be nonzero everywhere since the motion is always twisting up off the plane
of infinitesimal motion. It is probable you will examine these questions in your homework.

4.5 acceleration and velocity

Let's see how the preceding section is useful in the analysis of the motion of physical objects. In the
study of dynamics or the physics of motion the critical objects of interest are the position, velocity
and acceleration vectors. Once a force is supplied we can in principle solve Newton’s Second Law
F = mA and find the equation of motion ¥ = #(t). Moreover, since the map ¢ — 7(¢) is a path
we can analyze the velocity and acceleration in terms of the Frenet Frame {T, N, B}. To keep it
interesting we'll assume the motion is non-stop and smooth so that the analysis of the last section
applies.

{for now the next two pages are stolen from a course I took from Dr. R.Q. Fulp some years
back)
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4.6 Keplers’ laws of planetary motion
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Chapter 5

Euclidean structures and physics

Although much was known about the physical world prior to Newton that lnowledge was highly
unorganized and formulated in such a way that is was difficult to use and understand!. The advent
of Newton changed all that. In 1665-1666 Newton transformed the way people thought about
the physical world, years later he published his many ideas in ”Principia mathematica philosphiae
naturalia” (1686). His contribution was to formulate three basic laws or principles which along
with his universal law of gravitation would prove sufficient to derive and explain all mechanical
systems both on earth and in the heavens known at the time. These basic laws may be stated as
follows:

1. Newton’s First Law: Every particle persists in its state of rest or of uniform
motion in a straight line unless it is compelled to change that state by impressed forces.

2. Newton’s Second Law: The rate of change of motion is proportional to the
motive force impressed; and is made in the direction of the straight line in which that
force is impressed.

3. Newton’s Third Law: To every action there is an equal reaction; or the mu-
tual actions of two bodies upon each other are always equal but oppositely directed.

Until the early part of the last century Newton’s laws proved adeguate. We now know, however
that they are only accurate within prescribed limits. They do not apply for things that are very
small like an atom or for things that are very fast like cosmic rays or light itself. Nevertheless
Newton’s laws are valid for the majority of our common macroscopic experiences in everyday life.

%What follows is borrowed from Chapter 6 of my Mathematical Models in Physics notes which is turn borrowed
from my advisor Dr. R.O. Fulp’s notes [or Math 430 at NCSU. I probably will not cover all of this in lecture but I
thought 1t might be interesting to those of you who are more physically minded. I have repeated some mathematical
definitions in this chapter in the interest of making this chapter more readable. This chapter gives you an example
of the practice of Mathematical Physics. One common idea in Mathematical Physics is to take known physics and
reformulate it in a proper mathematical context. Physicists don’t tend to care aboui domains or existence so if we
are to understand their calculations then we need to do some work in most cases.
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It is implicitly presumed in the formulation of Newton’s laws that we have a concept of a straight
line, of uniform motion, of force and the like. Newton realized that Euclidean geometry was a
necessity in his model of the physical world. In a more critical formulation of Newtonian mechanics
one must address the issues imphlicit in the above formulation of Newton’s laws. This is what
we attempt in this chapter, we seek to craft a mathematically rigorous systematic statement of
Newtonian mechanics.

5.1 Euclidean geometry

Note: we abandon the more careful notation of the previous chapters in what follows.
In a nutshell we are setting R® = V3, this is usually done in physics. We can identify
a given point with a vector that eminates from the origin to the point in question. It
will be clear from the context if a point or a vector is intended.

Nowadays Euclidean geometry is imposed on a vector space via an inner product structure. Let
T1,T2, T3, Y1, Y2, ¥3. € € R. As we discussed R? is the set of 3-tuples and it is a vector space with
respect to the operations,

(w1, T2, 23) + (Y1, Y2, ¥3) = (T1 + y1, 22 + Y2, 33 + y3)

c(z, z2,x3) = (cxy, cxg, cT3)

where x1, T2, T3, Y1, Y2, ¥3,¢ € R. Also we have the dot-product,
(z1, 22, %3) (Y1, ¥2,¥3) = T191 + Tt + z3y3

from which the length of a vector & = (x1, 22, 23) € R® can be calculated,
2| =V -z = /2] + 25 + a3
meaning |z|? = z - z. Also if 2,5 € R? are nonzero vectors then the angle between them is defined

by the formula,
g:COS_l(:ﬂ.y)
|yl

In particular nonzero vectors x and y are perpendicular or orthogonal iff 8 = 90° which is so iff
cos(f) = 0 which is turn true if z -y = 0.

Definition 5.1.1.

A function L : B? —+ B3 is said to be a linear transformation if and only if there is a
3 x 3 matrix A such that L(z) = Az for all z € B3, Here Az indicates multiplication by
the matrix A on the column vector x
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Definition 5.1.2.

An orthogonal transformation is a linear transformation £, : B? — R* which satisfies
L{z) L{y) =z -y

for all z,y € R®. Such a transformation is also called an linear isometry of the Buclidean
metric.

The term isometry means the same measure, you can see why that’s appropriate from the following,
|L(@)]? = L(z) - L{z) = 2 - = = |z’

for all & € R®. Taking the square root of both sides yields |L(z)| = |z}; an orthogonal transformation
preserves the lengths of vectors in R? Using what we just learned its easy to show orthogonal
transformations preserve angles as well,

_ L@ Iy _ sy

|L() L) [zlly]
Hence taking the inverse cosine of each side reveals that the angle ; between L(z) and L{y) is
equal to the angle § between z and y; #; = . Orthogonal transformations preserve angles.

Definition 5.1.3.

cos{fr)

= cos(6)

We say [ € R? is a line if there exist ,v € R? such that

l={aeR™" lz=a+1lv, € R}

Proposition 5.1.4.

If L is an orthonormal transformation then L(l) is also a line in R3.

To prove this we simply need to find new o’ and »' in R* to demonstrate that L(l) is a line. Take
a point on the line, z €1 :
L(z) = L(a+tv)
= L(a) +tL(v)
thus L(z) is on a line described by = = L(a} + tL(v), so we can choose o’ = L(e) and v' = L{v) it
turns out; L(l) = {z e R? | z = &’ + t'}.

(5.1)

If one has a coordinate system with unit vectors z, 7, k along three mutually orthogonal axes then an
orthogonal transformation will create three new mutually orthogonal unit vectors L(i) = 2, L(j) =
_'}",L(!E) = k' upon which one could lay out new coordinate axes. In this way orthogonal transfor-
mations give us a way of constructing new "rotated” coordinate systems from a given coordinate
system. Moreover, it turns out that Newton's laws are preserved ( have the same form ) under
orthogonal transformations. Transformations which are not orthogonal can greatly distort the form
of Newton’s laws.
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Remark 5.1.5.

If we view vectors in B® as column vectors then the dot-product of z with y can be written

as z -y = 'y for all 2, € B3, Recall that =7 is the transpose of z, it changes the column

vector x to the corresponding row vector xT.

Let us consider an orthogonal transformation L : R® — R® where L(z) = Az. What condition on
the matrix A follows from the the L being an orthogonal transformation ?

L(z)-Lly)=z-y = (Az)"(4y) =ay
= 2T (AT Ay ==zTy
= 2T(AT Ay = =TIy
= 2T(ATA - Iy =0.

(5.2)

But T (ATA—~ Iy =0 for all z,y € R® if ATA—T =0 or ATA=1. Thus L is orthogonal iff its
matrix A satisfies AT A = I. This is in turn equivalent to A having an inverse and A~ = AT.

Proposition 5.1.6.

The set of orthogonal transformations on B3 is denoted ((3). The operation of function
composition on O(3) makes it a group. Likewise we also denote the set of all orthogonal
matrices by O(3), PR '

: OB)={AchR¥™ | ATA=1}

it is also a group under matrix multiplication.

Usually we will mean the matrix version, it should be clear from the context, it's really just a
question of notation since we know that I and A contain the same information thanks to linear
algebra. Recall that every linear transformation L on a finite dimensional vector space can be
represented by matrix multiplication of some matrix A.

Proposition 5.1.7.

The set of special orthogonal matrices on R? is dencted SO(3),
0(3) = {A e B33 | ATA =1 and det(4) = 1}

it is also a group under matrix multiplication and thus it is a subgroup of O(3). It is shown
in standard linear algebra course that every special orthogonal matrix rotates R® about
some line. Thus, we will often refer to SO(3) as the group of rotations.

There are other transformations that do not change the geometry of R3.

Definition 5.1.8.

A translation is a function T : B — B? defined by T'(z) = = + v where v is some fixed
vector in B3 and w is allowed to vary over 3.
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Clearly translations do not change the distance between two points z,y € RY,
|T(z) - T(y)| = |z +v— (y—v)| = |z —y| = distance between z and y.

Also if z,y, z are points in R? and # is the angle between y — = and z — z then 8 is also the angle
between T'(y) — T'(x) and T(z) — T(z). Geometrically this is trivial, if we shift all points by the
same vector then the difference vectors between points are unchanged thus the lengths and angles
between vectors connecting points in R? are unchanged.

Definition 5.1.9.

A function ¢ : B® — B3 is called a rigid metion if there exists a vector + € B? and a
rotation matrix A € SO(3) such that ¢(z) = Az + r.

A rigid motion is the composite of a translation and a rotation therefore it will clearly preserve
lengths and angles in B3, So rigid motions are precisely those transformations which preserve
Euclidean geometry and consequently they are the transformations which will preserve Newton’s
laws. If Newton'’s laws hold in one coordinate system then we will find Newton’s laws are also valid
in a new coordinate system iff it is related to the original coordinate system by a rigid motion. We
now proceed to provide a careful exposition of the ingredients needed to give a rigorous formulation
of Newton's laws.

Definition 5.1.10.

We say that £ is an Euclidean structure on a set S iff £ is a family of bijections from S
onto B3 such that,

(1.) &,Y € & then X o Y~ is a rigid motion.

(2.) if X € £ and ¢ is a rigid motion then do A € &,

Also a Newtonian space is an ordered pair (5, &) where 5 is a set and £ is an Euclidean

structure on 5.

Notice that if X,Y € & then there exists an A € SO(3) and a vector » € R3 so that we have
X(p) = AY(p) + r for every p € S. Explicitly in cartesian coordinates on R? this means,

[X1(p), Xa(p), Xa ()" = ADA(p), Ya(p), Va(@)]T + [r1,m2, 73"

Newtonian space is the mathematical model of space which is needed in order to properly formulate
Newtonian mechanics. The first of Newton’s laws states that an object which is subject to no forces
must move along a straight line. This means that some observer should be able to show that the
object moves along a line in space. We take this to mean that the observer chooses an inertial
frame and makes measurements to decide wether or not the object executes straight line motion
in the coordinates defined by that frame. If the observations are to be frame independent then the
notion of a straight line in space should be independent of which inertial coordinate system is used
to make the measurements. We intend to identify inertial coordinate systems as precisely those
elements of €. Thus we need to show that if ! is a line as measured by A’ € £ then [ is also a line
as measured by Y € £.
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 Definition 5.1.11.

Let (5, &) be a Newtonian space. A subset [ of S is said to be a line in S iff X'(I) is a line
in R? for some choice of X' € £.

The theorem below shows us that the choice made in the definition above is not special. In fact our
definition of a line in § is coordinate independent. Mathematicians almost always work towards
formulating geometry in a way which is independent of the coordinates employed, this is known as
the coordinate free approach. Physicists in contrast almost always work in coordinates.

Theorem 5.1.12.

If I is a line in a Newtonian space (S,&) then V(1) is a line in R? for every Y € £.

Proof: Because [ is a line in the S we know there exists X' € £ and X'(I) isalinein B, Let Y € &
observe that,

Y{§) = (Vo X oX)(l) = (Yo X ) X))

Now since X, Y € £ we have that Yo X lisa rigid motion on R3. Thus if we can show that rigid
motions take lines to lines in R? the proof will be complete. We know that there exist A € § O(3)
and r € R3 such that (Yo X 1)(z) = Az +7 letz € X)) ={sr e R |z =p+tg t e
R and p,q are fixed vectors in R®}, consider

(YoX')z) =Ar+r
=Alp+tg)+r
= (Ap+r) +tAg
=p +tq letting p’ = Ap -+ and ¢’ = Aqg.

(5.3)

The above hold for all z € A'(f), clearly we can see the line has mapped to a new line Y(I) = {z €
R* |z =p +tq ,t € R}. Thus we find what we had hoped for, lines are independent of the frame
chosen from £ in the sense that a line is always a line no matter which element of £ describes it.

Definition 5.1.13.

An observer is a function from an interval I € R intoe £ We think of such a function

A2 I — & as being a time-varying coordinate system on 5. For each ¢ € I we denote X'(¢)
by A ; thus &) : 5~ B3 for cach t € T and Ay(p) = [Xi1(p), Xial(p), Xa(p)] for all p € 8.

Assume that a material particle or more generally a ”point particle” moves in space S in such a
way that at time { the particle is centered at the point (¢t). Then the mapping v: I — § will be
called the trajectory of the particle.
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Definition 5.1.14.

Let us consider a particle with trajectory « : I — S. Further assume we have an observer
AT - E with t — &) then: '

(1.) Ay(+y(t)) is the position vector of the particle at time ¢ € [ relative to the observer .

(2.) %[k‘t(fy(t))]if,zlu is called the wvelocity of the particle at time ¢, € I relative
to the observer X, it is denoted vy (io)- :

(3.) éiTi[‘jf}(’Y(t))]!t.ng is called the acceleration of the particle at time ¢, € [

relative to the observer A, it is denoted ax (&,).

Notice that position, velocity and acceleration are only defined with respect to an observer. We
now will calculate how position, velocity and acceleration of a particle with trajectory v : f — 8
relative to observer V : I — £ compare to those of another observer X : I — £. To begin we note
that each particular £ € I we have A}, Y, € £ thus there exists a rotation matrix A(t) € SO(3) and
a vector v(t) € R® such that,
Ye(p) = A(t) X (p) -+ (t)

for all p € 5. As we let t vary we will in general find that A(t) and r(f) vary, in other words we
have A a matrix-valued function of time given by ¢t = A(f) and r a vector-valued function of time
given by ¢ — r(t). Also note that the origin of the coordinate coordinate system X (p) = 0 moves
to Y(p) = r(t), this shows that the correct interpretation of r(t) is that it is the position of the old
coordinate’s origin in the new coordinate system. Consider then p = (%),

Ve(v(8)) = A(@) A {y(t)) + r(t) (5.4)

this equation shows how the position of the particle in X coordinates transforms to the new position
in Y coordinates. We should not think that the particle has moved under this transformation,
rather we have just changed our viewpoint of where the particle resides. Now move on to the
transformation of velocity, (we assume the reader is familiar with differentiating matrix valued
functions of a real variable, in short we just differentiate component-wise)

OREEANCIO)
= 2{AWA((D) + (1) (5.5)
= SAW]X(70) + A LG ()] + (2] |
= A () + At)oxt) +1(2).

Recalling the dot notation for time derivatives and introducing vy = X o,

vy = Ayy + Avy + 7. (5.6)

We observe that the velocity according to various observes depends not only on the trajectory itself,
but also the time evolution of the observer itself. The case A = I is more familiar, since A = 0 we
have,

vy = vy + 7 =vy + 7. (5.7)
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The velocity according to the observer )V moving with velocity 7 relative to A" is the sum of the

velocity according to A and the velocity of the observer Y. Obviously when A # T the story is
more comphcated, but the case A = I should be familiar from freshman mechanics.
Now calculate how the accelerations are connected,

ay(t) J = [V ()]

S [A'OX (1) + Alt)va (D) +T(L‘)] (5.8)
—A”( X (v(8)) + A B £ [ (v (EN] + A (va(t) + AR) Evx (£)] +77(2)
= A"(0)X(v(1)) + 24 (Hhux (¢) + +A(t)ax (t) + 7 (2)

Therefore we relate acceleration in X to the acceleration in Y as follows,

ay = Aay + ¥+ Avy + 2Auy. (5.9)

The equation above explaing many things, if you take the junior level classical mechanics course
you’ll see what those things are. This equation does not look like the one used in mechanics for
noninertial frames, it is nevertheless the same and if you're interested I'll show you.

Qthpuo NJ.M MS
GI‘\C{ Oq{' CMT[':/

Example 5.1.15.

Example 5.1.16.
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Definition 5.1.17.

is an observer. We say the particle is in a state of rest relative to the observer X if
vy == %[A’t('y(t))] = 0. We say the particle experiences uniformm rectilinear motion
relative to the observer X il t — X;(v(¢)) is a straight line in R? with velocity vector some
nonzero constant vector.

We now give a rigorous definition for the existence of force, a little later we’ll say how to calculate
it..
Definition 5.1.18.

A particle experiences a force relative to an observer X' iff the particle is neither in a
state of vest nor is it in uniform rectilinear motion relative to X. Otherwise we say the
particle experiences no force relative to .

Definition 5.1.19.

An observer A" : I — £ is said to be an inertial observer iff there exists X, € £, 4 € SO(3),
v,w € R? such that Xy = AX, +tv+w for all t € I. A particle is called a free particle iff
it experiences no acceleration relative to an inertial observer.

Observe that a constant mapping into £ is an inertial observer and that general inertial observers
are observers which are in motion relative to a "stationary observer” but the motion is "constant
velocity” motion. We will refer to a constant mapping A : I — £ as a stationary observer.

Theorem 5.1.20.

IfX:1-»E&andY:I— £ are inertial observers then there exists A € SO(3) , v,w € R3
such that }; = A&, +tv+w for all £ € I. Moreover if a particle experiences no acceleration
relative to A then it experiences no acceleration relative to Y.

Proof: Since A and Y are inertial we have that there exist A, and ), in £ and fixed vectors
Uy, Wy, Vy, Wy € R? and particular rotation matrices A,, Ay, € SO(3) such that

Ay = Ap Xy + vy + wy ytszyn+th+wy'

Further note that since A, Y, € £ there exists fixed @ € SO(3) and u € R? such that ¥, = QX, +u.
Thus, noting that X, = AZ1(X) — tvy, — w,) for the fourth line,

Yo = AyYo + tuy + wy
= Ay (QX, + u) + tu, + wy
= A,QX, + Ayu + vy +wy (5.10)
= A, QAT A — tug — wy) + tuy, + Ayu + wy
= AyQA;IXt + tluy — A, QAL vy] — A, QA wy + Ayu 4wy

Thus define A = 4,QA; € SO(3), v = vy — A, QA v, and w = —A,QAZ w, + Ayu + wy.
Clearly v,w € R® and it is a short calculation to show that A € SO(3), we've left it as an exercise



82 CHAPTER 5. EUCLIDEAN STRUCTURES AND PHYSICS

to the reader but it follows immediately if we already know that SO(3) is a group under matrix

multiplication { we have not proved this yet ) “C'c;il.ecting our thoughts we have established the first
half of the theorem, there exist A € SO(3) and v,w € B3 such that,

yt = A.i\:}_ +tv+w

Now to complete the theorem consider a particle with trajectory v : I — § such that ay = 0. Then
by eqn.[5.9] we find, using our construction of A, v, w above,

ay = Aay + 7+ A.”M.’ + QAUX
= AD+ 0 + Oyx + 2(0)vx (5.11)
= (.

Therefore if the acceleration is zero relative to a particular inertial frame then it is zero for all
inertial frames.

Consider that if a particle is either in a state of rest or uniform rectilinear motion then we can
express it's trajectory - relative to an observer X : I — § by

X(v() = o+ w

for all ¢t € I and fixed v,w € R3. In fact if » = 0 the particle is in a state of rest, whereas if v # 0
the particle is in a state of uniform rectilinear motion. Moreover,

vx(t)=tv+w <= vy =v < ay =0.

Therefore we have shown that according to any inertial frame a particle that has zero acceleration
‘necessarily travels in rectilinear motion or stays at rest,

Let us again ponder Newton’s laws.

1. Newton’s First Law Every particle persists in its state of rest or of uniform
motion in a straight line unless it is compelled to change that state by impressed forces.

2. Newton’s Second Law The rate of change of motion is proportional to the
motive force impressed; and is made in the direction of the straight line in which that
force is impressed.

3. Newton’s Third Law To every action there is an equal reaction; or the mu-
tual actions of two bodies upon each other are always equal but oppositely directed.

It is easy to see that if the first law holds relative to one observer then it does not hold relative
to another observer which is rotating relative to the first observer. So a more precise formulation
of the first law would be that it holds relative to some observer, or some class of observers, but
not relative to all observers. We have just shown that if X is an inertial observer then a particle is
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either in a state of resi or uniform rectilinear motion relotive to X iff its acceleration is zero. If v is
~ the trajectory of the particle the second law says that the force F acting on the body is proportional
to m(dvy/dt) = may. Thus the second law says that a body has zero acceleration iff the force
acting on the body is zero ( assuming m # 0 ). It seems to follow that the first law is a conse-
quence of the second law. What then does the first law say that is not contained in the second law ?

The answer is that the first law is not o mathematical aviom but a physical principle. 1t says
it should be possible to physically construct, at least in principle, a set of coordinate systems at
each instant of time which may be modeled by the mathematical construct we have been calling
an inertial observer. Thus the first law can be reformulated to read:

There exists an inertial observer

The second law is also subject to criticism. When one speaks of the force on a body what is
it that one is describing? Intuitively we think of a force as something which pushes or pulls the
particle off its natural course.

The truth is that a course which seems natural to one observer may not appear natural to
another. One usvally models forces as vectors. These vectors provide the push or pull. The
components of a vector in this context are observer dependent. The second law could almost be
relegated to a definition. The force on a particle at time t would be defined to be max(t) relative
to the observer X'. Generally physicists require that the second law hold only for inertial observers.
One reason for this is that if Fiy is the force on a particle according to an inertial observer X and
Fy, is the force on the same particle measured relative to the inertial observer ) then we claim
Fy = AFy where & and Y are related by

YVi=AX, +tv+w

for v,w € R® and A € S0O(3) and for all t. Consider a particle traveling the trajectory v we find
it’s accelerations as measured by /' and Y are related by,

ay = Aa;g

where we have used eqn.[5.9] for the special case that A is a fixed rotation matrix and r = tv + w.
Multiply by the mass to obtain that may = A(maxy) thus Fyy = AFy. Thus the form of Newton’s
law is maintained under admissible transformations of ohserver.

Remark 5.1.21.

The invariance of the form of Newton’s laws in any inertial frame is known as the Galilean
relativity principle. It states that no inertial frame is preferred in the sense that the physical
laws are the same no matter which inertial frame you take observations from. This claim
is limited to mechanical or electrostatic forces. The force between to moving charges due
to a magnetic field does not act along the straight line connecting those charges. This
exception was important to Einstein conceptually. Notice that if no frame is preferred then
we can never, taking observations solely within an inertial frame, deduce the velocity of
that frame. Rather we only can deduce relative velocities by comparlng observations from
different frames.
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In contrast, if one defines the force relative to one observer Z which is rotating relative to X by
I’z = ynaz then one obtains a much more complex relation between Fy and Fy which involves the
force on the particle due to rotation. Such forces are called fictitious forces as they arise from the
choice of noninertial coordinates, not a genuine force.

Example 5.1.22. ..

5.2 noninertial frames, a case study of circular motion

Some argue that any force proportional to mass may be viewed as a fictitious force, for example
Hooke’s law is F=kx, so you can see that the spring force is genuine. On the other hand gravity
looks like F' = mg near the surface of the earth so some would argue that it is fictitious, however the
conclusion of that thought takes us outside the realm of classical mechanics and the mathematics
of this course. Anyway, if you are in a noninertial frame then for all intents and purposes fictitious
forces are very real. The most familiar of these is probably the centrifugal force. Most introductory
physics texts cast aspersion on the concept of centrifugal force (radially outward directed) because
it is not a force observed from an inertial frame, rather it is a force due to noninertial motion.
They say the centripetal (center seeking) force is really what maintains the motion and that there
is no such thing as centrifugal force. I doubt most people are convinced by such arguments because
it really feels like there is a force that wants to throw you out of a car when you take a hard
turn. If there is no force then how can we feel it 7 The desire of some to declare this force to be
"fictional” stems from there belief that everything should be understood from the perspective of an
inertial frame. Mathematically that is a convenient belief, but it certainly doesn’t fit with everday
experience. Ok, enough semantics. Lets examine circular motion in some depth.

For notational simplicity let us take R® to be physical space and the identity mapping X = id
to give us a stationary coordinate system on R®. Consider then the motion of a particle moving
in a circle of radius R about the origin at a constant angular velocity of w in the counterclockwise
direction in the zy-plane. We will drop the third dimension for the most part throughout since it
does not enter the calculations. If we assume that the particle begins at (R, 0) at time zero then it
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. follows that we can parametrize its path via the equations,

z(t) = Rcos(wt)
y(t) = Rsin(wt) (5.12)

this parametrization is geometric in nature and follows from the picture below, remember we took
w constant so that 6 = wi
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Now it is convenient to write 7(t) = (x(f),y(t)). Let us derive what the acceleration is for the
particle, differentiate twice to obtain

() = (2"(t),y" ()
= (—Rwcos(wt), —Ruw?sin(wt))

= —wi (t)

Now for pure circular motion the tangential velocity v is related to the angular velocity w by
v = whR. In other words w = v/ R, radians per second is given by the length per second divided by
the length of a radius. Substituting that into the last equation yields that,

a(t) = ™ (t) = ——=7r(t) (5.13)

The picture below summarizes our findings thus far.
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Now define a second coordinate system that has its origin based at the rotating particle. We'll call
this new frame ) whereas we have labeled the standard frame X. Let p € R3 be an arbitrary point
then the following picture reveals how the descriptions of X' and Y are related.
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Clearly we find,
X(p) = Y(p) + 1) (5.14)

note that the frames X' and ) are not related by an rigid motion since 7 is not a constant function.

Suppose that v is the trajectory of a particle in R?, lets compare the acceleration of «y in frame X’
to that of it in J;.

== ax(t) ="(t) = ay, () +7(t) '
If we consider the special case of v(¢) = r(t) we find the curious but trivial result that Y,(r(2)) = 0
and consequently ay, (¢) = 0. Perhaps a picture is helpful,
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We have radically different pictures of the motion of the rotating particle, in the X’ picture the
particle is accelerated and using our earlier calculation,

on the other hand in the }; frame the mass just sits at the origin with ay g == 0. Since F = rma
we would conclude (ignoring our restriction to inertial frames for a moment) that the particle has
an external force on it in the A" frame but not in the Y frame. This clearly throws a wrench in
the universality of the force concept, it is for this reason that we must restrict to inertial frames if
we are to make nice broad sweeping statements as we have been able to in earlier sections. If we
allowed noninertial frames in the basic set-up then it would be difficult to ever figure out what if
any forces were in fact genuine. Dwelling on these matters actually led Einstein to his theory of
general relativity where noninertial frames play a central role in the theory.

Anyway, lets think more about the circle. The relation we found in the A frame does not tell
us how the particle is remaining in circular motion, rather only that if it is then it must have an
acceleration which points towards the center of the circle with precisely the magnitude mv?/R. 1
believe we have all worked problems based on this basic relation. An obvious question remains,
which force makes the particle go in a circle? Well, we have not said enough about the particle
yet to give a definitive answer to that question. In fact many forces could accomplish the task.
You might imagine the particle is tethered by a string to the central peoint, or perhaps it is stuck
in a circular contraption and the contact forces with the walls of the contraption are providing the
force. A more interesting possibility for us is that the particle carries a charge and it is subject to
a magnetic feld in the z-direction. Further let us assume that the initial position of the charge ¢
is (mv/qB,0,0) and the initial velocity of the charged particle is v in the negative y-direction. I’'ll
work this one out one paper because ] can.
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It is curious that magnetic forces cannot be included in the Galilean relativity. For if the velocity
of a charge is zero in one frame but not zero in another then does that mean that the particle has a
non-zero force or no force? In the rest frame of the constant velocity charge apparently there is no
magnetic force, yet in another inertially related frame where the charge is in motion there would
be a magnetic force. How can this be? The problem with our thinking is we have not asked how
the magnetic field transforms for one thing, but more fundamentally we will find that you cannot
separate the magnetic force from the electric force. Later we’ll come to a better understanding of
this, there is no nice way of addressing it in Newtonian mechanics that I know of. It is an inherently

relativistic problem, and Einstein attributes it as one of his motivating factors in dreaming up his
special relativity.
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"What led me more or less directly to the special theory of relativity was the conviction
that the electromotive force acting on a body in motion in a magnetic field was nothing
else but an electric field”

Albert Einstein, 1952,
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Chapter 6

differentiation

In this chapter we define differentiation of mappings. I follow Edwards fairly closely, his approach
is efficient and his langauge clarifies concepts which are easily confused. Susan Colley’s text Vector
Caleulus is another good introductory text which describes much of the mathematics in this chapter.
When I teach calculus III 1 do touch on the main thrust of this chapter but 1 shy away from proofs
and real use of linear algebra. That is not the case here.

6.1 derivatives and differentials

In this section we motivate the general definition of the derivative for mappings from RB" to R™.
Naturally this definition must somehow encompass the differentiation concepls we've already dis-
cussed in the calculus sequence: let’s recall a few exatnples to set the stage,
1. derivatives of functions of B, for example f(z) = 2* has f'(z) = 2z
2. derivatives of mappings of B, for example f(t} = (¢,¢%,#%) has f'(t) =< 1,2¢,3t% >.
3. f:dom(f) C R? -+ R has directional derivative (D, f){(p) = (V)(p} - u
- A o of of
where Vf = grad(f) =< 3=, i
4. X :UcCR:, — Riy: parametrizes a surface X{U) and N{u,v) = —C% X ‘2}—3 gives the normal
vector feld to the surface.

We'd like to understand how these derivatives may be connected in some larger context. If we could
find such a setting then that gives us a way to state theorems about derivatives in an efficient and
general manner. We also should hope to gain a deeper insight into the geometry of differentiation.

o1
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6.1.1 derivatives of functions of a real variable

Let’s revisit the start of Calculus I. We begin by defining the change in a function f between the
point a and a + h:

Af = fla-+h)— f(a).
We can approximate this change for small values of h by replacing the function with a line. Recall
that the line closest to the function at that point is the tangent line which has slope f/(a) which
we define below.
Definition 6.1.1.
suppose f: U C R — B then we say that [ has derivative f'(a) defined by the limit below
(i the limit exists, otherwise we say f is not dilferentiable at a)

f'(a) = lim fla+h)— f(a)

h—0 h

If f has a derivative at a then it also has a differential df, : B — B at e which is a function
defined by df,(h) = hf'(a). Finally, if  has derivative f’{a) at « then the tangent line to
the curve has equation y = f{a) + f'(a)(@ — a).

Notice that the derivative at a point is a number whereas the differential at a point is a linear
map!. Also, the tangent line is a ” paralell translate” of the line through the origin with slope fla).

Example 6.1.2. . .

Definition 6.1.3.
Suppose [ U7 C R — B and suppose ['(v) exists for each v € V < 7. We say that f has
derivative [ : V' C B — B defined by

f'(r) = lim Fla+h)— fr)

h—0 h

for cach r ¢ V.

In words, the derivative function is defined pointwise by the derivative at a point.

'We will maintain a similar distinction in the higher dimensional cases so T want to draw your attention to the
distinetion in terminology from the outset.
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Proposition 6.1.4.

Suppose ¢ € dom(f) where f : dom(f) C R — B and e € dom(f’) then df, is a linear
transformation from R to B,

Proof: Let ¢,h k€ B and o € dom( ") which simply means [{a) is well-defined. Note that:
dfyleh + k) = (ch + E)Yf(a) = chf/(a) + ki {a) = edf (B) + df. (k)

for all e, h, k thus df, is linear transformation. iJ

The differential is likewise defined to be the differential form df : dom(f) — L{R,R) = R”

where df (a) = df, and df, is a linear function from R to B. We'll study differential forms in more

depth in a later section.

6.1.2 derivatives of vector-valued functions of a real variable

A vector-valued function of a real variable is a mapping from a subset of R to some subset R"™.
In this section we discuss how to differentiate such functions as well as a few interesting theorems
which are known for the various vector products.

We can revisit the start of Caleulus III. We begin by defining the change in a vector-valued function
f between the inputs a and a -+ At

Af = fla+h) = f(a).

This is a vector. We can approximate this change for small values of h by replacing the space curve
a — f(a) with a line t — f(a) + ¢f'(a) in R™. The direction vector of the tangent line is f'(a)
which we define below.

Definition 6.1.5.

Suppose f: U ¢ B — R then we say that f has dervivative /(a) defined by the limit below
(if the limit exists, otherwise we say f is not differentiable at a)

fa) = Him fla+h) = [(a)

fi=+0 h

We define J" to be the function defined pointwise by the limit above for all such values as
the limit converges. Il f has a derivative at o then it also has a differential df, ' R — B”
at ¢ which is a mapping defined by df,(h) = hf'(a). The vector-valued-differential form df

is defined pointwise by df (a) = df, for all a € dom([f").

The tangent line is a " paralell translate” of the line through the origin with direction-vector f'(a).
In particular, if f has a derivative of f'(a) at a then the tangent line to the curve has parametric
equation 7{(t) = f(a) + tf'(a).
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Proposition 6.1.6.

Suppose a € dom(f) where [ : dom(f} C R — R" and a € dom(f’) then the differential df,
is a linear transformation from B to R™.

The proof is almost identical to the proof for real-valued functions of a real variable. Note:
dfo(ch + k) = (ch+ k) f(a) = chf'(a) + kf'(a) = cdfa(h) -+ df. (k)

for all h, %k, ¢ € B hence df, is a linear transformation.

6.1.3 directional derivatives

Let m = n, the image of a injective continuous mapping #' : dom(F) C R* — R™ gives an n-
dimensional continuous surface in R™ provided the mapping F satisfy the topological requirement
dom(F') = R". This topological fine print is just a way to avoid certain pathological cases like space
filling curves. We proved in Example 3.4.7 that the unit-sphere is a continuous surface. The proof
that the sphere of radius 2 is a continuous surface is similar. In the example that follows we'll see
how curves on the surface provide a definition for the tangent plane.

Example 6.1.7. The sphere of radius 2 cenlered at the origin has equation x° + y> + 2% = 4. We
can view the top-half of the sphere as the image of the mapping F : B2 — B® where

Flo,y)=(m y, Vi—a>—y?).

The tangent plane o the sphere at some point on the sphere can be defined as the set of all tangent
vectors to curves on the sphere which pass through the point: let S be the sphere and p € S then
the tangent space to p is infuilively defines as follows:

1,5 =4~ (0) | v: R~ 5, a smooth curve with ~(0) = p}

A line in the direction of < a,b > through (1,1) in B> has parametric representation 7(t) =
(14 at, 1+ 0t). We can construct curves on the sphere that pass through F(1,1) = (1,1,v2) by
simply mapping the lines in the plane to curves on the sphere; ¥(t) = F(#(t)) which gives

(t) = ( L+ at, 1+ b, \/4—(1+at)2—(1+bt)2)

Now, not all curves through p have the same form as «v(t) above but it is fairly clear thatl if we
allow (a,b) to trace out all possible directions in R* then we should cover T,S. A short calculation
reveals that

7' (0) =< a,b, ;—,;-(a +b) >

These are vectors we should envision as attached to the poini (1,1, \/5) A generic poini in the
tangent plane to the point should have the form p+ +'(0). This gives equations:

w=1+a, y=1+b, 3=\/:_%(a+b)
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we can find the Cortesian equolion for the plane by eliminating a, b

a=x -1, b=y-1 = z=\/§wfg($+yw2) = z+y+v2 =4

We find the tangent plane to the sphere 22 + y* 4+ 2% = 4 has normal < 1,1,V2 > af the point

(1,1,/2).

Of course there are easier ways to calculate the equalion for a tangent plane. The directional
derivative of a mapping F at a poini a € dom(F) along v is defined to be the derivative of the
curve v(t) = F(a + tv). In other words, the directional derivaiive gives you the instantaneous
vector-rate of change in the mapping F at the point ¢ along ». In the case that m = 1 then
F idom(F) CR" — R and the directional derivative gives the instantaneous rate of change of the
function F at the point a along v. You probably insisted that [[u]| = 1 in caleulus TIT but we make
no such demand here. We define the directional derivative for mappings and vectors of non-unit
length.

Definition 6.1.8.

Let. F' i dom{F} CRB” — B and suppose the limit below exists for o € dormi{F) and v € B
i]]{ i1 we . de {;m llw dn echonai derzv*zhve of F at u aleﬁg iz tu b D F{ r;) e l‘ B whm @

CP(ad ) — Fla)
.U,,f* fﬁ) = T ((r IH ”} W) o
[ ~oh

f-% I,Z Y- 7

@,F'(fﬂ
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The directional derivative D, F(a) is homogenous in v.

Proposition 6.1.9.

Let F:domn(F) C R™ — R™ then if D, F(a) exists in R™ then D, F(a) = cD,F{a)

See Edwards pg. 66 the proof is not hard. Let £ : U — B™ define a continuous surface S with
dimension n. The tangent space of S at p & & should be the paralell translate of a n-dimensional
subspace of B™. Moreover, we would like for the tangent space at a point p € § to be very close
to the surface near that point. The change of F near p = F(a) along the curve v(t) = F(a + tv) is
given hy

AF = F(a+ hv) — F{a).

It follows that F(a + hv) = F(a) + hD,F(a) for h & 0. We'd like for the the set of all directional
derivatives at p to form a subspace of R™. Recall{or learn) that in linear algebra we learn that
every subspaces of R™ is the range of some linear operator® This means that if D,F(a) was a
linear operator with respect to v then we would know the set of all directional derivatives formed
a subspace of B™. Note that directional derivative almost gives us linearity since its homogeneous
but we also need the condition of additivity:

DywFla) = D,F(a) + Dy,Fla) additivity of directional derivative

This condition is familar. Recall that Propositions 6.1.4 and 6.1.6 showed the differential df, was
linear for f : dom(f) € R — R™. In fact the differential is the directional derivative in these special
cases if we let v = 1; D1F(a) = dF,(1) for F : dom(F) C R — B™ where ¢ € dom(F"). So we
have already proved the directional derivative is linear in those special cases. Fortunately it's not
so simple for a general mapping. We have to make an additional assumption if we wish for the
tangent space to be well-defined.

Definition 6.1.10.

Suppose that U/ is open and F : I7 C B* — BR™ is a mapping the we say that F is
differentiable at ¢ € {7 iff there exists a linear mapping L E™ — B™ such that
Fla+h)— Fla) — L(h)

lirn = ().
B il

In such a case we call the Bnear mapping L the differential at o and we denote L = JdF},.
The matrix of the differential is called the derivative of F' at « and we denote [dF,] =
F'{a) € B "™*" which means that dF,(v) = F'(a)v for all v € B

*don't helieve it? Let W < RB™ and choose a basis 4 = {f1,...,fu} for W. You can verily that L{v) =
UAalfai- - Ifalfal - 1 fwle deflines a linear transformation with range(L) = Col[f} = W.
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The preceding definition goes hand in hand with the definition of the tangent space given below.

Definition 6.71.11.

Suppose that U = B" isopen and F': U/ C " — ™ {3 a mapping which is differentiable on
U. Hrank(F'(a)) = n at each @ € U then we say that F(U) is a differentiable surface of
dimension n. Also, a map such as F is said to be regular. Moreover, we define the tangent
space to § = I'(I/) at p € § to be the paralell translate of the subspace Col(F'(a)) < R™.
A typical point in the tangent space at p € § has the form p+ F'{a)v for some v € B™.

The condition that rank(F'(a)) = n is the higher-dimensional analogue of the condition that the
direction vector of a line must be nonzero for a line. If we want a genuine n-dimensional surface
then there must be n-linearly independent vectors in the columns in the derivative matrix. If there
were two columns which were linearly dependent then the subspace W = {F'{a)v | v ¢ R"} would
not be n-dimensional.

Remark 6.1.12.

If this all secems a little abstract, relax, the examples are in the next section. I want to wrap
up the mostly theoretical aspects in this section then turn to more calculational ideas such
as partial derivatives and the Jacobian matrix in the next section. We'll see that partial
differentiation gives us an easy straight-forward method to calculate all the theoretical
constructs of this section. Edwards has the caleulations mixed with the theory, I've ripped
them apart for better or worse. Also, we will discuss surfaces and manifolds independently
in the next chapter. ! wouldn’t expect you to entirely understand them from the discussion
in this chapter.

Example 6.1.13. Let F : BR" — R™ be defined by F(v) = p+ Av for all v € B® where the matriz
A€ R ™ such that rank({A) = n and p € R”. We can calculate that [dF,] = A. Observe that
for z e B®,
Flx+h)— F(z) — A(h Ax+ Ah — Az — Ah
lim (& + k) (z) (h) = lim vt A * Ly

h—0 (7] =0 Mk
Therefore, dIFy(h) = Ah for each z € R™ and we find F(R™) is an differentiable surface of dimen-
sional n. Moreover, we find that F(R") is ils own tangeni space, the tangent space is the paralell
translate of Col(A) to the point p ¢ R™. This is the higher dimensional analogue of finding the
tangent line to a line, il’s just the line again.
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The directional derivative helped us connect the definition of the derivative of mapping with the
derivative of a function of R. We now turn it around. If we're given the derivative of a mapping then
the directional derivative exists. The converse is not true, see Example 4 on page 69 of Edwards.

Proposition 6.1.14.

IfF:UCR"— R™is dilferentiable at @ € U then the directional derivative D, F{a)} exists
for each v € R™ and D, F{a} = dFy(v).

Proof: Suppose a € U such that dF, is well-delined then we are given (hat

. Fla+h)—Fla)=dF,(h) |
Him , = [}
E—0 Hal

This is a limit in E", when it exists it follows that the limits thai approach the origin along
particular paths alse exist and are zero. In particular we can consider the path £ = fv for v £ 0
and ¢ > 0. we [ind

Fla+ te) — Fla) — dF{tv) __1_ Fla 4 te) — Fia) — tdi,{v)

lim = —— Jim , =,
Lo, £30) ]|tUH Holl t—ot it
Hence, as i} = ¢ for £ > 0 we find
Fla+te) - Fla td o (v
limm (o + tv) L) = lim ra(v) = dF, (v}
1=yt i i1
Likewise we can consider the path § — fo for v 22 0 and £ <0
) Flo+ ) — Fla) — dF, {te) L Fladin) — Fla) —tdF,(v)y
lim = o lim =},
L=, 2D Qi Hul] st |
Note ] = —t thus the limit above yvields
Fia+iv)— Fla Ll Fy (e . Fla+toy—F .
lim e+t )f (@) = lim -i————(—r—)— = lim L (,‘} ) = 8, ().
10~ - t—0= =t =)= ‘

Therefore,

litn
10

Fla+iv) — Fla) = dF,(v)

and we conelude that D, Flu) = dF, (¢} for all v & B since the v = 0 case follows trivially, T
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6.2 partial derivatives and the existence of the derivative

Definition 6.2.1.

Suppose that F : UV CR" — R™ is a mapping the we say that F is has partial derivative

g—fl(a) at o € U iff the directional derivative in the e; direction exists at a. In this case we
5
denote,

or

—(a) = D, F(a).

d:ﬂi :

Also we may use the notation D, F(a) = D;F(a) or & F = ,(%L;‘; when convenient. We also

e
construct the partial derivative mapping &F : V C B" — E™ as the mapping defined
pointwise for each v € V where &;F (v) exists.

Let’s expand this definition a bit. Note that if F' = (F}, F5,..., F},) then

) — F ila 1€;) — £
De;Fla) = lim F(aﬂli) @ D, Fla) - ¢; = lim FJ"("‘L”E}I) Ej(a)

for each j = 1,2,...m. But then the limit of the component function Fj is precisely the directional
derivative at a along e; hence we find the result

OF oF; | :
B ej = B, in other words, F = (0:;F1,0;Fs,...,0,Fy).

Proposition 6.2.2.

IfF:UCR"— R™ is differentiable at a € U then the directional derivative D,F{a) can
be expressed as a sum of partial derivative maps for each v =< vy, v2,..., v, >€ R™

T

D,F(a) = Z v;0; F (a)

=1

Proof: since F is differentiable at o the dilerential dF, exists and DL F(a) = dF, (v) for all v & 7,

Use linearity ol the dilferentlal to caleulate that
Dy Fua) = dF,(eyey b oo vpey) = opd By (o) + - v, dF ().
Note df7(ey) = Do Fla) = O;F(a) and the prop. follows, [0

Proposition 6.2.3.

UF .U CE' — RB™ s differentiable at a € I/ then the differential dF, has derivative
matrix F'(a) and it has components which are expressed in terms of partial derivatives of

the component functions:
[dFa]i; = 05 F;

forl<i<mandl<j<mn.
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Perhaps it is helpful to expand the derivative matrix explicitly for future reference:

BlFI(a) agFl((L) st anF]_(G.)
Fi(a) = 615:2(0-) 8217:2(3) : aan’z(ﬂ)
01 Fyml(a) 9:Fm(a) - OnFun(a)

Let’s write the operation of the diflerential for a diflerentiable mapping at some point a £ R in
terms of the explicit matrix multiplication by F'(a). Let v = {(v1,ve,...v,) € R,

BlFi(a) 82F1(a) e (9nF; (G) ™
ARy ) = Fllay = | O el GRe)
O Fla) BaFn(a) - OnFm(a) | | vn

You may recall the notation from calculus III at this point, omitting the e-dependence,

VE) = grad(F;) = [ DF;, DuF), -, OuF; ]T

So if the derivative exists we can write it in terms of a stack of gradient vectors of the component
functions: (I used a transpose to write the stack side-ways),

F' = [VR|VE|- - VF.]"
Finally, just to collect everything together,
WP R - 0.7 (VF)T

Oy OaFs - Onlh VR
: : : : = [F | F ||, F | = |7 —

a] E -1111 82 Fm oo an Fm (v F M )

Example 6.2.4. Suppose f : R® = R then Vf = [0:f, 0, [, & Y and we can write the directional
derivative in terms of
Duf = [0af, 8y, 8: /1" v =V ] v

if we insist that ||v|| = 1 then we recover the standard directional derivative we discuss in caleulus
IIl. Naturally the ||V f(a)|l yields the mazimum value for the directional derivalive al o if we
timit the inputs to vectors of unit-length. [f we did not limit the vectors to unit length then the
directional derivative at a can become arbitrarily large as D, f(a) is propertional to the magnitude
of v. Since our primary motivation in calculus I was describing rates of change along certain
directions for some multivariate function it maode sense to speciclize the directional derivative to
vectors of unit-length. The definition used in these notes better serves the theoretical discussion. If
you read my calculus TTT notes you'll find a derivation of how the directionael derivative in Stewart’s
calculus arises from the general definition of the derivative as a linear maopping. Look up page 305g.
Incidentally, those notes may well be better than these in certain respects.
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6.2.1 examples of derivatives

QOur goal here is simply to exhbit the Jacobian matrix and partial derivatives for a few mappings.
At the base of all these calculations is the observation that partial differentiation is just ordinary
differentiation where we treat all the independent variable not being differentiated as constants,
The criteria of indepedence is important. We'll study the case the variables are not independent
in a later section.

Remark 6.2.5.

I have put remarks about the rank of the derivative in the examples helow. Of course this
has nothing to do with the process of calculating Jacobians., It's something to think about
once we master the process of caleulating the Jacobian. Ignore the red comments for now
if you wish

Example 6.2.6. Let f() = (t,1%,1%) then f/(t) = (1,2t,3t%). In this case we have

1
f)y={dfil= | 2
3t*
The Jacobian here is o single colwmn vector. It has rank 1 provided the vector is nonzero. We
gee that f'(t} # (0,8,0) for all t & B, This corresponds to the fact that this space curve hos o
well-defined tangent line for cach point on the path.

Example 6.2.7. Let f(Z,7) = - be o mapping from BY x B3 — R. I'll denote the coordinates
in the domain by (x1,Te, 3,91, Y2, ¥a) thus f{&,4) = x1y1 + zoy2 + 23ys. Colculate,

[dfiz) = VAE DT = [yr, y2, ys, 31, T2, T3]

The Jacobian here is a single row wvector. I has vank 6 provided all entries of the input vectors are
nonzero.

Example 6.2.8. Let f{Z,%) = & § be a mapping fm;m R™ x BR" — B, I'll denote the coordinates
in the domain by (x1,..., %5, 21, ..., yn) thus F(Z,§) = D1, zys. Caleulate,
n T

n
a R Qi __ Cap — a1
2 [z | =30 B =3 b =
=]

[ fz]

Likewise,
n

n n
o vy | = 28 = NT s
i=1 i=1

=1
Therefore, noting that Vf = (Oy, f,. .., 0c, [, Op f, -, Oy f),
[d!f(f,?}*)]rr = (Vf)(f, !?) = 37 KT = (yh S TR B 3‘7;7?.)

The Jacobian here is a single vow vector. It has rank Zn provided oll entries of the input vectors
are nONzEro.
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Example 6.2.9. Suppose F(z,y,z) = (zyz,y, z) we calculate,

%2(;9':,0,0) %:(:{:z,l,[}) %—f:(mq’{}’}_)

Remember these are actually column vectors in my sneaky notation; (vi,...,vn) = [v1,..., 00} .
This means the derivative or Jacobian matrix of F at {x,y, z) is

_ ¥z Tz Ty
Fllz,y,2) = [dFagya)=| 0 1 0
0 ¥ 1

Note, rank(F'(x,y,2)) =3 for all (z,y,2) € B® such that y, = # 0. There are a variety of ways to
see that claim, one way is to observe det[F'(x, y, 2)] = yz and this determinant is nonzero so long
as neither ¥ nor z is zero. In linear algebra we learn that a square matriz s invertible iF it hos
nonzero determinant iff it has lnearly indpendent column vectors.

Example 6.2.10. Suppose F(z,y,z) = (z° + 2%, yz) we calculate,

G=0r0 =0z F=(:)

The derivative is o 2 X 3 malriz in this ezample,

2x 0 2z ]

/ . = = =
F (3‘1 Y, ~) [dF(;E,J ,::)] |: 0 =z y

The mazimum ronk for F' is 2 at a particular point (r,y, z) because there are at most two linearly
. . o - . . .

independent vectors in B*. You can consider the three square submatrices to analyze the rank for
a gwen point. If any one of these is nonzero then the rank (dimension of the column spece) is two.

| 2¢O e 2w 2z 022
My = |: 0 = ] Afy = [ 0 ” ] My = |: =y ]

We'll need cither det(M)) = 2wz 5 0 or det(Ms) = 2wy # 0 or det{My) = ~2:% # 0. I belicve
the anly point where all three of these fail to be frue simuletaneously is when v =y =z = 0. This
mapping has mozrimal rank ot oll points except the origin.

Example 6.2.11. Suppose F{z,y) = {x* + >, zy, x +1y) we calculate,
9=y 8= (2y,m0)

The derivative s a 3 x 2 malriz in this example,

Flla,y) =[dF )= | v =
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The mazimum rank is again 2, this téme because we only have two columns. The rank will be two
tf the columns are not linearly dependent. We can analyze the question of rank a nuwmber of ways
but I find determinants of submatrices a comforting lool in these sort of questions. If the colurnns
are linearly dependent then oll three sub-square-matrices of F' will be zero. Conversely, if even one
of them is nonvanishing then it follows the columns must be linearly independent. The submatrices
for this problem are:

2z 2y : 2r 2y TR
A1 = * Vil ! Nl = '
My [ y o ] M [ 11 ] M {1 1

You can see det(M;) = 2(z? — y*), det(My) = 2(z — y) and det{My) = y — 2. Apparently we have
rank(F'(z,y, £)) = 2 for n!l ( y) € BR? with y # x. In retrospect this is not surprising.

Example 6.2.12. Suppose P(z,v,m) = (P, P} = ( mu? + lA:L ,mu) for some constant k. Let’s
caleulote the derivative via gradienis this time,

VF, = (0F,/0x,0F,/0v, 0P, /dm) = (kz, mu, %1;2}

VP = (0P /dz, 0P, /0v,dP,/Om) = (0,m,v)
Therefore,

' kr mv io?
P'z,u,m) = 2

0 m v
Example 6.2.13. Let F(r,0) = (rcosf,rsin@). We calculate,

& F = (cost,sinf)) and OpF = (—rsind, r cos )
Hence,

i v | cos@ —rsinf
Fi(r,0) = f: sin rcosl }

We caleulate det(F'{r,0)) = r thus this mapping has full rank everywhere excepl the origin.

Example 6.2.14. Let G(z,y) = (/22 + 4%, tan™(y/2)). We calculate,

oy .
&G = ( i FJJ,TE—i—UB) Md. 0,G = (””“”\/l—— e T ﬂ_)
Hence,
— oy
G'a,y) = ‘/‘j”‘ Ve | = [ Ty ok ] ((using r = /a2 + 37 )
g Ty T

We calculate det(G'(z,y)) = 1/r thus this mapping has full rank everywhere except the origin.
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Example 6.2.15. Let F(z,y) = (v, Vv R2 — 52 — 3%} for a conslani R. We calculate,

V4 /R2m_$2m72= - Y
¥ VR’ N —

Also, Vo = (1,0) and Vy = (0,1) thus

1
Fllz,y) = M 1

P 9 2 ,
d B — o -y~ > U for the

Jy, 2} and enlewlaie,

e !

ally, F oporamelrizes (he sphere

., Y ) B - -
iy, 2) exisis when R0 — 0 — 27 > 0. Geomelrie
/. i

ot

L i

abowe the equalor ol & = 0 whereas G paromelrizes the righi-half of the spheve with @ > 0. These

Mserve thai (3]

paramak
dom (G = {(x, 1) ¢

icodions overlap dn ihe first octand where both 2 end = are posifive
e - 2 o a
| wop = 0 and 2° 4y~ < B

Example 6.2.18. Let F(z,y,2) = (5,9, 2, VB2 — 22 — y* — 22) for a consiant R. We calculate,

Va/R2 — 12 — g% 22 = e —U —=
\/ Y “ VR gtz R P2t Ryt

Also, Vo = (1,0,0), Vy = (0,1,0) and Vz = (0,0,1) thus

1 0 0
0 1 0
0 1

Fllz,y.2) =

0
€L —if —z
gt \/R'z,m'z,y'zﬁzz \/R"l—:r'—’—y'—'—zﬂ

is well-defined. Nole ihad we n

orl 27— % —qf”

. . - 3 Al
s a pavarnalrizeiion of the J-aphere 57 +y*

forw = G {drowing this is a lille trickier)



6.2. PARTIAL DERIVATIVES AND THE EXISTENCE OF THE DERIVATIVE 105

Example 6.2.17. Let f(z,y,z) = (x +y, ¥+ z,x + z,zyz). You can calculate,
1 1 0
0 1 1
[df(:r,,? ,::)} = 1 0 1

Yz xz Ty
This mairiz clearly has rank 3 and is well-defined for all of B3,

Example 6.2.18. Let f(z,y,z) = zyz. You can calculale,
[df(:r,y,:)] = [ Yz TE ITY ]

This matriz foils to have vank 3 if m,y ov z are zero. In other words., f'(z,y,z) has rank 3 in
B provided we are al a point which is not on some coordinate plane. (the coordinate planes are
r=0y=0and 2 =0 for the yz, zx and xy coordinate planes respective)

Example 6.2.19. Let f(x,y,z) = {zyz,1 — 2 —y). You can calculate,

{(ﬂ(r,y,z)] - |: -1 —1 O }

This matriz has rank 3 of either xy 0 or (x —y)z 5 0. In contrast to the preceding example, the
derivative does have rank 3 on certain poinis of the coordinate planes. For example, f(1,1,0} and
F1{0,1,1) both give rank(f') = 3.

Example 6.2.20. Let f:R? x B3 be defined by f(x) =z x v for a fized vector v # 0. We denote
= (13, x2,23) and calculate,

d
9z {zxw)= E €l Ti UJBL § EUL. - Ujel = § €ijk mU_;:ek E EajkViCL
a a

Lk i,k i,k Ik

It fallows,

—(7: X u) = ZCUMJJER = Uneg — Vyeq = (0, —vg, va)
ik

) (zxv)= E €aiV€ = v3e1 — viey = (vy, 0, —vq)

N

% T

c) (rxvl= E €3k Ve = Vi€ — tae; = (—wva,v;,0)
T3

Thus the Jacobian is simply,
0 w3 -
[dj(_‘,:,y)] = —ug3 0 -
(23] M 0
In fact, df,(h) = f(h} = h x v for each p € R®. The given mapping is linear so the differential of
the mapping is precisely the mapping iiself.
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Example 6.2.21. Let f(z,y) = (z,y,1 —z —y)}. You can colculale,

1 0

[df(m’y‘z)] = 0 1
-1 -1

Example 6.2.22. Let X{u,v) == (x,y, z) where T,y, 2z denote functions of u,v and I prefer to omit
the explicit depedendence to reduce clutter in the eguations to follow.
X X

S =X, = (:Buayuazu) and v =gy = (fﬂu;yv: ZU)

Then the Jacobian is the 3 x 2 matriz

(LR ﬂ”l'ﬂ'
[d‘?{(u,ﬂ)] = Yu Mo
Iy Zy

The matriz [d_k'(.u_y)] has rank 2 if al least one of the determinants below is nonzero,

det |: Ty -771.'J det By Ly det Yo Yo
[ Yo 2 Zu Zu =

Example 6.2.23. . .

Example 6.2.24. . .
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6.2.2 sick examples and continuously differentiable mappings

We have noted that differentiablility on some set {7 implies all sorts of nice formulas in terms of
the partial derivatives. Curiously the converse is not quite so simple. It is possible for the partial
derivatives to exist on some set and yet the mapping may fail to be differentiable. We need an extra
topological condition on the partial derivatives if we are to avoid certain pathological® examples.

Example 6.2.25. [ found this example in Hubbard’s advenced calculus text(see Fx. 1.9.4, py. 123).
1t is a source of endless odd examples, notation and bizarre quotes. Let f(z) = 0 and
x

1
flz) == +a’sin=
2 T

for all 2 £ 0. I can be shown that the derivative f'(0) = 1/2. Moreover, we can show that f'(x)
exists for all ¥ % 0, we can calculate:

1 1
+ 2x8in — — cos —

/() =
Notice that dom(f') = E. Note then thal the tangent line at (0,0) isy = 2/2. You might be tempted
to say then that this function is increasing of o rate of 1/2 for x near zero. But this claim would be
fulse since you can see that f'(x) oscillates wildly without end near zero. We have a tangent line
at (0,0) with positive slope for a function which is not increasing at (0,0) (recall that increasing is
a concept we must define in o open interval to be careful). This sort of thing cannot haoppen if the
derivative is continuous near the point in question.

| —

The one-dimensional case is quite special, even though we had discontinuity of the derivative we
still had a well-defined tangent line to the point. However, many interesting theorems in calculus
of one-variable require the function to be continuously differentiable near the point of interest. For
example, to apply the 2nd-derivative test we need to find a point where the first derivative is zero
and the second derivative exists. We cannot hope to compute f(z,) unless f' is continuous at z,.
The next example is sick.

Example 6.2.26. Let us define f(0,0) = 0 and

2
7Y

J‘(-?J‘,’y)“—’m

Jor all (z,y) # (0,0} in R®. Tt can be shown that f is continuous at (0,0). Moreover, since
Flx,0) = f{B,y) = 0 for all 2 and all y it follows that [ vanishes identicelly along the coordinate
axis. Thus the rate of change in the e or es directions is zero. We can calculate that

af 2y g af  at —a?y?

= e an =

or = @+ P by " WP
Consider the path to the origin t v (t,t) gives fo(f,t) = 264/(t* + %) = 1/2 hence fo(z,y) — 1/2
along the path t — ({,1), but fz(0,0) = 0 hence the partial derivative f, is not continuous at (0,0).
In this example, the discontinuily of the partial derivatives makes the tangent plone foil {0 exist,

3" pathological” as in, "your clothes are so pathological, where’d you get them?”
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Diefinition 6.2.27.

A mapping £ U CORT Ly B g continuously differentiable at. o & [/ il 'the partial
derivative mappings D; P P\]HI o1 AT ope n set containing ¢ and are cominuous: al o

The defintion above is interesting because of the proposition below. The import of the proposition
is that we can build the tangent plane from the Jacobian matrix provided the partial derivatives
are all continuous, This is a very nice result because the concept of the linear mapping is quite
abstract buf partial differentiation of a given mapping is easy.

Proposition 6.2.28.

;H._F is continuously differentiable at o then Fis differentiable at.g: - 7

We'll follow the proofl in Edwards on pages 72-73.
Jobo F = Feep for Some P e Yl,’z,---,l’ﬂ], We seeh 4» chow

conbinoens il of Foob o = T s il ob o Jorema 2.3
mf ol vonetls —H’\.bn Seupys dE = ('o!F:/.., df—;ﬂ) Pruwd;J e !wx.w. dF 0!41
(uu-?_ V\.E,Ezj 'h: ,s‘l’wuu Q\M C:JMPonLkJ{? a,[, F of e (’ﬁﬂ’&wlf\ b\/{)li a—% a,)

Vol\owfma Cdwards (MLJ efher %x{‘s on /Wtu Imﬁgad")f let
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6.3 properties of the derivative

Of course much of what we discover in this section should be old news to you if you understood
differentiation in calculus III. However, in our current context we have efficient methods of proof
and the langauge of linear algebra allows us to summarize pages of calculations in a single line.

6.3.1 additivity and homogeneity of the derivative

Suppose F1 : U C R® — R™ and F» : U € BR" — R™. Furthermore, suppose both of these are
differentiable at a € R". It follows that (df1), = L; and (dF»), = L are linear operators from R"
to R™ which approximate the change in F; and F5 near o, in particular,

¥im F} (a+ hf) hnd Fl (CI) - L1(h) =0 lim
Py Al hes0 T

Pala+h) — Fala) — La(h) _

To prove that H = £ + Fb is differentiable at ¢ € B" we need to find a differential at a for H.
Naturally, we expect dH, = d(Fy + Fa)q = (dF1)q + (dF3)a. Let L = (dF}), + (dF3), and consider,

H{a+h)-H{a)—~L{h}

— i Bleth)rFalath)—Fila)—F(a)=Li(h)—La(h)

lim

h—+0 IRt =40 1211
— lim Fila+h)~Fi(a)—~Li1(h) + lim Fa(ah)-—FPafa)-~La(h)
R0 TRl h=+0 Al
=040
=0

Note that breaking up the limit was legal because we knew the subsequent limits existed and
were zero by the assumption of differentiability of Fy and F» at a. Finally, since L = L + Ly we
know L is a linear transformation since the sum of linear transformations is a linear transformation.
Moreover, the matrix of L is the sum of the matrices for L; and Lo, Let ¢ € R and suppose G = cF}
then we can also show that dG, = d(cF)), = e(dF1),, the calculation is very similar except we just
pull the constant ¢ out of the limit. T'll let you write it out. Collecting our observations:

Proposition 6.3.1.

Suppose Fy U C B* — R™ and Fy : U € R" — B™ are differentiable at @ € IV then
Fy + F5 is differentiable at a and

d(F1 + Fa)e = (dF1)o + (dF)a | or |(F1 + F2){a) = F{(a) + F3(a)

Likewise, if ¢ &€ [E then

d(cF)q = cldF)a | or |(cF) {(a) = c(F{(a))
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6.3.2 product rules?

What sort of product can we expect to find among mappings? Remember two mappings have
vector outputs and there is no way to multiply vectors in general. Of course, in the case we have
two mappings that have equal-dimensional outputs we could take their dot-product. There is a
product rule for that case: if 4, B : R™ — R™ then

9;(A-B) = (0;A)-B)+ A (&;B)

Or in the special case of m = 3 we could even take their cross-product and there is another product
rule in that case:

8:(A x B) = (8;4) x B+ A4 x (8;B)

What other case can we "multiply” vectors? One very important case is R? = C where is is
customary to use the notation (z,y) = z + iy and f = w4 {v. If our range is complex numbers
then we again have a product rule: if f: B" - C and g:R® —+ C then

2i(fg) = (8;Ng + f(d9)

I have relegated the proof of these product rules to the end of this chapter. One other object worth
differentiating is a matrix-valued function of R™. If we define the partial derivative of a matrix to
be the matrix of partial derivatives then partial differentiation will respect the sum and product of
matrices (we may return to this in depth if need be later on):

0;(A+B)=0;B+0;B| [8;(AB) = (8;A)B + A(9; B)

Moral of this story? If you have a pair mappings whose ranges allow some sort of product then it is
entirely likely that there is a corresponding product rule *. There is one product rule which we can
state for arbitrary mappings, note that we can always sensibly multiply a mapping by a function.
Suppose then that G : U CR™ — BR™ and f: U C B" = R are differentiable at ¢ € U. It follows
that there exist linear transformations L : R" — R™ and Ly : R" — R where

lim Glat h) — Gla) - La(h) =0 lim fla+h)~ [la) ~ Lj(h)
h—0 ;lh’” h—+0 h

=10

Since G(a -+ h) = Gla) + Lg(h) and f(a + h) = f(a) + Ly(h) we expect

fGla+h) = (fla) + Li(R)){G(a) + La(R))
= (fG)(a)} + Gla)L;(h) + fla)La(h) + Ly(R) La(h)

~

linear in h 214 grder in A

*In my research 1 consider functions on supernumbers, these also can be multiplied. Naturally there is a product:
rule for super functions, the catch is that super numbers z, 1w do not necessarily commute. However, if they're
homogeneneous zw = (—1)**=wz. Because of this the super product rule is S (fg) = (Far flg + (=11 f(Barg)
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Thus we propose: L(h) = G{a)L;(h) + f(a)Lg(h) is the best linear approximation of fG.
(fC)a-+h) - (fG)(a) = L(h} _

Him

h=0 1]
i 1+ WG lat h) — (@)Cla) — Cla) Ly (h) - J(a)La(h)
=0 7]
_ i et WGla+ 1) = f(@)Gla) = Gla)Ly(h) = fla)Lo(h)
s 7]
1 lim £(@G(a ) - Glat h)f(a)
= 1
+ i L2 NG = Glaf(a+ )
L0 Hh”
i {@6(@) - G(@)f (@)
140 2]
= lim | f(a Gla+h) = Gla) = La(h) | fla+h)— fla) - Lf(hf) al+-
- ’1'—"0['“ : [171] " 2] Gla)
a L) a G(ﬂ-}-fl)—G((L)
(St~ o) R
= Glat+h)~Gl@)~La)] | [ flat+h)—f(a)-Li(h)
=g g A [+ i |
= {}

Where we have made use of the differentiability and the consequent contimiity of both f and G at
a. Furthermore, note

L(h+ck) = Gla)Li(h + ck)+ f(a)La(h + ck)
= Gla)(Lj(h) + cLy(k)) + f(a){La(h) + cLg(k))
= G(a)Ls(h) + fla){La(h) + c(G(a) Ly (k) + fla}Llg(k))
= L{h) 4+ cL(k)

forall b,k € R” and ¢ € R hence L = G(a)L;+ f(a)Lg is a linear transformation. We have proved
(most of) the following proposition:

Proposition 6.3.2.

FG:UCR" - R"and f: U € RB" = R are differentiable at ¢« € U then fG is

differentiable at a and G (a.\ _D}( a)
Qe = (d))aCla) + [()dG, ] [(FG)(a) = Fbaditar + /(

The argument above covers the ordinary product rule and a host of other less comimon rules. Note
again that G(a) and G'(a) are vectors. ,

G (o) £'(n)

S et

Ryt
Xl I xXn = MmN

PY‘O‘\DL‘\:‘\ g\f\ uw\d wr\'lre

3 (£6), = U+ G,

Yvt, Ws oh or g b woedl

/
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6.4 chain rule

The proof in Edwards is on 77-78. I'll give a heuristic proof here which captures the essence of the
argument. The simplicity of this rule continues o amaze me.

Proposition 6.4.1.

FIr FiUC B 5 RP s differentiable ‘at aand G’ VQ BP — ;EP&"T"is"_'diﬁ'erénti'able-'a;t
F(u} E V. lhen G F is; diﬂ'erontmble 'lt a- and : I

d(G F)a = (dC’)p(a F ';_.'m'-;. in maif]‘ix{nofc'é%ﬂi:on?f I(GGF)’(G)Z G'(F{a))F/(a)|

Proof Sketch:

Congrdan XKM’“%

G‘J t x;»* (m. "

7l f’j“”
%[L*“ki.ﬁ.i f“ {a

N

In calculus 111 you may have learned how to calculate partial derivatives in terms of tree-diagrams
and mtermediate variable ete... We now have a way of understanding those rules and all the
other chain rules in terms of one over-arching calculation: matrix multiplication of the constituent
Jacobians in the composite function. Of course once we have this rule for the composite of two
functions we can generalize to n-functions by a simple induction argument. For example, for three
suitably defined mappings F.G, H,

(FoG-H)(a) = FI(G(H(a))G'(H{a)) H'(a)

Example 6.4.2. . . 7/1}477;) % (X/\,«’) — ;{Zié,.?’ &N}g 001. (}"} = ;&«; ;{a;}
e lr‘\&ué: {: M X? i?u. el W’i : )Ti B iﬁ:z oot r
£,y = [‘zx‘ﬁz, 2x?y ] end  BE) = [if
Rdete £o8 s W BT T b )
. |
W= (o808 )= 6

4

S PN

§ b L

+

2

5

i
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6.4.1 theorems

The goal of this section is to prove the partial derivatives commute for nice functions. Of course
some of the results we discuss on the way to that goal are interesting in their own right as well.

Definition 6.4.8.

We say 7 C B" is path connected iff any two points in U can be connected by a path
which is contained within the set.

For example, BR™ is connected since given any two points a,b € R" we can construct the path
o(t) = a + t{b— a) from a to b and naturally the path is within the set. You can casily verify that
open and closed balls are also path connected. Even a donut is path connected. However, a pair
donuts is not path connected unless it’s one of those artsy figure-8 deals.

not e A
Lanngulrtbl 0 LOﬂnCM ‘.é—' puth puwteide
" (L;:Fm:
Proposition 6.4.9. T hﬂ\?r:w}%a—
If {7 is a connected open subset of B" then a diﬁ'erenital_iifz mapping F : U — R™ is constant AdE,
it F'luy=0forallu e U. (7)Y ()

Let {‘\‘G e U and %mw fﬁmu l::o\k"(_r w\t\\f\ o Srn.ua-\/l\ \Pmmﬂ ”ﬂ/: l:a,jb]m———-; '[‘J"

Cperhmpg we  shaedd Trgid \)L—M\ Lnnedked = sonoodh poedhs exich Tasfele -D‘)

Gonsilan, F (v )] = @) . If F s cnthet dhan &) conshundd

Wena FYWYYH = 0 bowd ¥ sreoth = TU) #Fo hence

f’("((a)) = Flla)=0 = F'l«) =0 \V/jﬁ V. Len Vf’fff/;

i Pl =0 YueU = £hH6t) - F/(v@l)v'et) = 0

Ay
Thes 3(8) = alb) = F(¥W) = F (i) Rero
= F(A) = FIB) W AR e U A F warhad on S

@

If U is a connected open subset of B™ and the differenitable mappings F, & : U — B such

that F'(z) = G'(x) for all € U then there exists a constant vector ¢ € R™ such that
Fle)=G(x)+cforallze U.

Proposition 6.4.10.

Cuh:'{‘rwd’ Hbﬂ = Fx) - GCP"-\) é&‘a.r\cD note HI(K) - FI(X) hd G/{X) = O \U{X@Lf:
6\3 Ko Previpws prop - H{x) = C ¥xe U heno
Fix) = Gx)+C Y= e U,

Remﬁ.(‘ﬂ‘. \f U wes not fﬂﬂm‘it’*ul wie LquJL owl COV\c,t!M/LQ
.,\'l\ojg Mo F was Lnr\j‘*f’M\/t on conneuield ?uubé’t{ff’ owf 1,

Th Jﬂgpo\o one  CM§ CRrSEs bfﬂ%‘f“'h‘a dﬂmwr\ tn JlJﬂ\.UL Thtp
s 9&)&\ Lownp omr\ks/ ’H'\cw, i W\M‘lmAzQ Cnmneusmﬂ Iwbs”effl?,
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There is no mean value theorem for mappings since counter-examples exist. For example, Exercise
1.12 on page 63 shows the mean value theorem fails for the helix. In particular, you can find
average velocity vector over a particular time interval such that the velocity vector never matches
the average velocity over that time period. Fortunately, if we restrict our attention to mappings
with one-dimensional codomains we still have a nice theorem:

Proposition 6.4.11. (Mean Value Theorem)

Suppose that f : I/ — R is a differentiable function and U/ is an open set. Furthermore,
suppose I/ contains the line segment from a to b in U,

Lop={a+t(b—a) | te 0,1} CU.
It follows that there exists some point ¢ € L,y such that

Fb) = fla) = f'(c)(b - a).

“The  prood Lol From dhe conthmcban, of o« Aunchin on (<
to whidh e e,\e,me.rvhm% menn vatne WD bpp[fe.;{g Lek

CQUC) — -u?(omr k(bm&)) for ostel|
@F l”'( «Javw- ?ft,('e.r , r,w\-!hu-.u{’ CP[;&) = & + }t'“)—&‘.) Wlfu'.'_,f« Pm'mmbh'—z:e:
tre \ag ge,taw\wj) From o o b, CLE:AI[»B PUH = b-a and
‘b% X LM&\“'W{&,

AN = FLEHR) )
Mok gt Lo, ) U be R i dieendidl on [41)
s Aa myT give) C, € Logt) such dhb 9(1)-9L)=97CcC).

L ) ) = 0 - 906) = 97a) = £ (%)) = v""’f;‘)“ b-a).

Definition 6.4.12. [higher derivatives) €= ?‘/G’)‘
We define nested directional derivatives in the natural way:
‘ . Dy fle -+ ek — Dy flx
DIKAL-),!,_}"(.’E) = D;\.(th(.l‘)) = }lllil : ! (I ! !) : f{ : )
1} .
Furthermaore, the second difference is defined by
A (hk) = fla+h+1)— fla+h) = fla+ k) + fa)
!
il el note] Floth) - £la) = £/Cas &h)h
ﬁ bv() T -{‘-(m'hq«h)———{:ﬂwﬂm) = {;‘I(q;rk__;@h)ff,
A2 0 4 1 AN [ fya
e A8 () = &8 (0} = b, (h)

&
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This is Lemma 3.5 on page 86 of Edwards.

Proposition 6.4.13.

Suppose U7 us an open set and f : 7 — B which is differentiable on U with likewise
differentiable directional derivative function on U7. Suppose that a,a + h,a + k,a+h+ k
are all in U then there exist a, 8 € (0, 1) such that

/_\’?(h,, k) = DDy f(a -+ ah -+ Bk).

The proof is rather neat. The o and A stem from two applications of the MVT, once for the

function then once for its directional derivative.
dob a(x) = Flxa k) = £ thon d9 = 3, - 4t -
Farkhumace, vitia 850 (L) = £loavhtle)m £lorh) - £lorh ) Flo) pole,

AL (W) = 9§ (et h) - 9(»)

,ﬁu]luw‘na = o' (a+ «h)h by MVT 3 ere (1),
Qcﬁuﬂ"ﬂlf = CDh o )(& +a£}\) : o\p{’f- = dicehond derivehyy extet,
. g’?‘ = é‘%m+n{h (h)
P9 = Dl'pau-ghﬁ"u (h) - dFﬂ-‘Wh (1)

= Dy f (ntehel) - Dpflateh) .
- @);,-F)'(m*“'m@k)(m Fue femma e’g (o,1) ED m YT X

- O‘)'A th)(g‘* o h +€L{) : unrmf«/{;ha retadtrin,

Proposition 6.4.14.

Let U7 be an open subset of R, If f: {/ — B is a function with continuous first and second

partial derivatives on U then for all 4,7 = 1,2,...,n we have D;D; f = D;D;f on U;

o*f &
;0 - dz;0z;

Df, Uej,hes) = Dy, Digflas e +ch )

T D (hehe ) = 87, (kej  he;)
= Dhi 6 = 0D 40

((M R T e \xumcaweﬂigr of D {=c Dvﬂp)

AZWE& “’l(‘.’,‘/ Lféé;) —_ 'Dmé th(m 0{1}16’;/-&6{&&‘3‘)

Mo

3
bk G limit Oh k—>0 diop the kb insicde
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6.5 differential forms and differentials

Definition 6.5.1.

A form field on B is a function from B to the space of all linear maps from R to B. In
other words, a form field assigns a dual vector at each point in B. Remember that B* =
{f:R’ =R fisalincar function}. We call o a differential one-form or differential
form if o can be written as o = ayde for some smooth function o).

The definition above is probably unecessary for this section. I give it primarily for the sake of
making a larger trend easier to grasp later on. Feel free to ignore it for now.

6.5.1 differential form notation

Let g{z) = x for all z € R. Note that g'(x) = 1 and it follows that dg,(z) =1-2 =z for all z € R.
Therefore, dg = g. If we denote g = x so that dx = z in this notation. Note then we can write the
differential in terms of the derivative function:

df (a){(h) = dfo(h) = f/(a)h = f{a)dz.(h) forall h e R

Hence df(a) = f'{a)dz, for all ¢ € R hence df = f'dz or we could denote this by the deceptively
simple formula df = %d% Thus the differential notation introduced in this section is in fact con-
sistent with our usual notation for the derivative from calculus I. However, df and dz are actually
differential forms in this viewpoint so I'm not so sure that df /dz really makes sense anymore. In
retrospect, the main place we shift differentials around as if they are tiny real numbers is in the
calculations of u-substitution or separation of variables. In both of those cases the differential
notation serves as a shorthand for the application of a particular theorem. Just as in calculus II1
the differentials dz, dy, dz in the line integral jC pdx + gdy -+ rdz provide a notational shortand for
the rigorous definition in terms of a path covering the curve C.

Differentials are notational devices in calculus, one should be careful not to make more of them
then is appropriate for a given context. That said, if you adopt the view point that dx, dy, dz are
differential forms and their product is properly defined via a wedge product then the wedge product
together with the total differential {to be discussed in the next section) will generate the formulas
for coordinate change. Let me give you a taste:

dr Ady = d(rcos(8)) A d(rsin{d})

= [cos(f)dr — rsin(0)d] A [sin(f)dr + 7 cos(#)dd)

= 7rcos?(()dr A df — rsin®(0)df A dr

= rdr Adf
where 1 used that dr A dfl = —dff Adr, dr Adr = 0 and df A dff = 0 because of the antisymmety
of the wedge product A. In calculus III we say for polar coordinates the Jacobian is g((“:,g)) = 7.
The determinant in the Jacobian is implicitly contained in the algebra of the wedge produet. If you
want to change coordinates in differential form notation you just substitute in the coordinate change
formulas and take a few total differentials then the wedge product does the rest. In other words, the
Jacobian change of coordinates formula is naturally encoded in the langauge of differential forms.




6.5. DIFFERENTIAL FORMS AND DIFFERENTIALS 119

6.5.2 linearity properties of the derivative

Proposition 6.5.2.

Suppose that f, g are functions such that their derivative functions f’ and g’ share the same
domain U then (f + g) = '+ g" and {c¢f)" = ¢f’. Moreover, the differentials of those

functions have
d{f +g) = df +dg and  d(cf) = cdf

Proofi The proof that (f 4+ g) = f 4 ¢ and (¢f) = ¢f' follows fram earlier general arguments in
thiz chapter. Consider that,

t](/' ‘!‘ ﬂ)a (h)

LS 4 g) () def. of differential for [+ ¢

= h(f"{a)+¢'(a}} using linearity of derivative.

di {h) +dg,(h)  algebra and del. of dilferential for [ and g.
= (df + dg)a(h) def. of sum of functions.

B

this d(f + g) = df + dg and the proof that d(¢f) = cdf is similar. T
We see that properties of the derivative transfer over to corresponding properties for the differential.
Problem 1.7 on pg 62-63 of Edwards asks you to work out the product and chain rule for differentials.

6.5.3 the chain rule revisited

Proposition 6.5.3.

Suppose that f: dom(f) — range(f) and g : dom{g) — range(g) are functions such that g
is differentiable on U and f differentiable on g(U} then

(f o) (a) = g'(a) f"(g(a))

for each @ € U and it follows d(f o g)y = dfy(a) ° dga-

An intuitive proof is this: the derivative of a composite 15 the slope of the tangent line to the
composite, However, if i and fo are linear functions with slopes iy and ms then fy o fa 18 o linear
function with slope mryme. Therefore, the derivative of a composite s the product of the derivatives
of the inside and outside function and we are forced to evaluate the outside function at gla) since

tlat's the only thing that makes seuse®, Finally,
d(f o g)a)(hy = h(fog)(a) = hg'(a) [ (g(a)}) = dfya (hg'(03) = df o (dg. (1)) = (df oy = dya)(h)
Therefore we Bnd d(f=g)y = df 0, ° dga-

Prool: Let o < {7 then (,i" ‘) == Ty glath)-yie) thus Hmy_,p gle + 8 = limy, g gla) -+ ha' ).
o !!I + () fi fi— 3 .] ¢ fi—+) .] j

It other words, the {unction ¢ and it's tangent line are equai in the imit vou approach the poing
)’ & l o I l ]

this is argument by inevitability, see Agent, Smith for how this turns oui as a pattern of deduction.
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of tangency. Likewise, [M{g(a)} = limg_g Mu‘:i}:!ﬁ(_*?ﬂ Lenee limg .y flyla) + 8 = flg(a)) -+
df'{g(a)). Caleulate then,

o glathy—(f° gie)

(feg)la) = lmy_q 7 defn. of derivative
= limy_,q f(""{”"'i'h‘}lz """" fiala)) defn, of [-g¢
= Hnmy .y ﬂ"‘i(”}H"'q,(;f)))_ﬂ""“')} since gla+ h) = gla) + hg'la)
= g (a) limg_.p M)—'%FM—} made subst. & = ¢’ {a)h

= (1) limg.so Jiglan44f (g(cri‘l-j-{ﬂ(rz}) as floln) + 6y = flgla)) + 8/ (gla))
= g'(a) [ (ylu)) limit of constant is just the constant.

[ have used the notation = to indicate that those equations were not preeisely true. However, the
error is small when boor @ are elose to zero and that is precisely the case which we were faced with
in tliose calendations. Admittably we could give a more rigoruous proof in terms of ¢ and § but

this prool suflices for our purposes hiere. The main thing T wanted you to take from this is that the

Notice that most of the work I am doing here is to prove the result for the derivative. The same
was true in the last subsection. In your homework I say you can assume the product and quotient
rules for functions so that problem shouldn’t be too hard. You just have to pay atiention to how I
defined the diflerential and how it is related to the derivative.
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6.6 special product rules

In this section I gather together a few results which are commonly needed in applications of calculus.

6.6.1 calculus of paths in R®

A path is a mapping from R to R™. We use such mappings to model position, velocity and
acceleration of particles in the case m = 3. Some of these things were proved in previous sections
of this chapter but 1 intend for this section to be self-contained so that you can read it without
digging through the rest of this chapter.

Proposition 6.6.1,

If F,G:U CR — R™ are dilferentiable vector-valued functions and ¢ : U CR — R is a
differentiable real-valued function then for each t € U,

L (F+G)(t)=F'(t)+ G3).

f o)

. (eF)(t) = cF' (1),
@Y (1) = ¢ (OF() + S F'(1).

(P GY(1) = F(1) - G(E) + F(t) - G'(t).

- provided m = 3, (F x GY(t) = F'(t) x G(t) + F(1) x G'(1).

o

a2

6. provided ¢(U) C dom{F"), {F o) (£) = & (t)F(H(1)).

We have to insist that m = 3 for the statement with cross-products since we only have a standard
cross-product in B3, We prepare for the proof of the proposition with a useful lemma. Notice this
lemma tells us how to actually calculate the derivative of paths in examples. The derivative of
component functions is nothing more than calculus I and one of our goals is to reduce things to
those sort of calculations whenever possible.

Lemma 6.6.2.
It F:UCRE—R™Iis differentiable vector-valued function then for all ¢ € U,

Fi(t) = (F{ (1), F3(1), ..., F{t))

We are given that 1the following vector Hinit exists and is equal to F'(4},

F'(#) = lim Lt h) - 1)
I h—b h

then by Proposition 3.2.10 the Hmit of a vector is related to the linits of its compenents as follows:

L hY = Fi(D)
LS AR A} J
F{t) - ey = limy i -
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Thus (F'(#)); = Fi(t) and the lemma follows®. ¥

Proof of proposition: We use the notation 7= 3" Fye; = (... F) aud & = 5, Ge; =
(G, ..., G throughout the proofs below. The Z is 1111(1(3151‘.0()(1 to range over 1,2, .. m. Begin

with {1.),

(F+GY); = $UF+G using the lemma
= (‘f{, Fy + Gy using def. (F + Gy =1+ Gy
= & LIF] o 4 {(rj by caleulus L (f + gY = '+ 4"
= [F'+ L':f}!j def. of vector e:u:.lfl';tlm:l for F* ;‘md G’
Henee (F = GY = F' » G+ F « G'.The proofs of 2.3,5 and 6 are similar. P'H prove (5.9,
| : I '
{F > GYp = L[(F = Gy using the lemma
= L yaIen using def. F » &G
= Z ik -{iﬁ G repeatedly using, (f - ¢g) = /" + 4
T T, o ; e . . . .

= X F.,-jkﬁgdffbj + B repeatedly using, (f¢) = g+ fo'
= T € ‘” St L i1ty dfj;”} property of finite sum Z
= { ‘—(IT‘:,: W @y + (F ox 'jj#)k) def. of cross product
( % G S s !'g?" ) - defl. of vector addition

Notice that the caleulus step really just involves caleulus T applied to the components. The ordinary
product rule was the crucial factor to prove the product vule for cross-products. We'll see the same
for the dot product of mappings. Prove {.L.)

(F -Gy = 41> FGy using del. F - &
= L S G repeatedly using, (f + ) = "+ ¢
== }i:!f]—l:{’(?; -+ 1;%—{ repeatedly using, (foV = o+ fof
= (f;’[ I O if’f; def. of dot product

The proof of (3.) follows from applying the product rile to each component of ¢{£)F(#). The proof
of {2.) follow from (3.) in the case that phi{t} = ¢ so &' (1) = 0. Finally the pl.uof r.).l. (6.1 follows
lroan applying the chain-rule to each component. £

U¢his notation I first saw in a text by Marsden, it means the proofl is partially completed but you shouid read on
to finigh the proof
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6.6.2 calculus of matrix-valued functions of a real variable

Definition 6.6.3.

A matrix-valued function of a real variable is a function from I € B to B ™ " Suppose
AL CR - R™ ™ is such that Ay : [ € B — R is differentiable for each 4,7 then we
define

_@é — [(EA,‘J"‘
dt dt

which can also be denoted (A”);; = Al,. We likewise define [ Adi = [[ A;dt] for 4 with
integrable components. Definite integrals and highor derivatives are also defined component-
wise.

2t 3t
43 5¢
definition above. calculate; to differentiate a maotric we differentiote each component one at a time:

ey | 2 Bt neew_ | 08 s |20
A = [ 122 2043 ] AT = [ 21t GOL ] A0) = [ 0 0 ]

Integrate by integrating each component:

Example 6.6.4. Suppose A(t) = { ll caleulate o few itemns just to illustrate the

e 4 2 1&2}3 t3|§ 4 8
AD)dt = | * bobome2 A(D)dt = - | =
,/‘ *) [tdAFC3 t54~cd} _A, ") W2 e {16 32]
L P

Proposition 6.6.5.

Suppose A, B are matrix-valued functions of a real variable, f is a function of a real variable,
¢ is a constant, and ' is a constant matrix then

1. (AB) = A'B + AB’ (product rule for matrices)

S

C(ACY = A'C

I~

L (CAY =CA
4. (fAY = ["A+ fA
(cAY = cA’

(3

6. (A+BY =4+ B

where each of the functions is evaluated at the same time £ and I assume that the functions
and matrices are differentiable at that value of ¢ and of course the matrices A, 13, (' are such
that the multiplications are well-defined.
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Proof: Suppose A{t) e B ™" and Bt} € B "*? consider,

(IUB’}'U- = (—%{(,.-’-18),3) defn. derivative of matrix
o ;‘f;( > A Brj) defn, of matrix multiplication
=3 (—f—(A,A B3 ]) linearity ol derivative
= S:;[ e A =U%;,] ordinary product riles
14 113, B
=y B;‘.J + 2 . ,5;|.im¥ algebra
= {A'B);; + (AB)y; deln. of matrix multipication
= {A'B + AB')y defn. matrix addition

this proves {1.) as {,j were arbitrary in the caleulation above, The proof of ( J and (3)) foliow

9
quickly from (1.} since ' constant means (7 = 0. Proof of (1.} is similar to (1.):

(fA) = u,, LA defn. derivative of matrix
= ”,,( Y J} defn. of scalar multiplication
= ‘j’; Aij + dF ordinary product rule

= (‘j{ A f(df by defn. matrix addition

— (‘ff

oA+ )”'H Jij  defn. sealar multiplication.

The proof of (5.} follows from taking f{t) = ¢ which has /' = 0. 1 leave the proof of (6.) as an
exercise for the reader. L.

To summarize: the calculus of matrices is the same as the calculus of functions with the small
qualifier that we must respect the rules of matrix algebra. The noncommutativity of matrix mul-
tiplication is the main distinguishing feature.

6.6.3 calculus of complex-valied functions of a real variable

Differentiation of functions from B to € is defined by splitting a given function into its real and
imaginary parts then we jusi diflerentiate with respect to the real variable one component at a
time. For example:

ﬁn(eg"' cos(t) + ie* sin(t)) = d ( 2 cos(t)) + i(—%(ez‘sin(t))

dt 7
= (2e* cos(t) — e sin(t)) + 1(2e* sin(t) + e** cos(t)) (6.1)
( +1)(cos(?) + isin(t))
) (2

+in

e
= (2-
where I have made use of the identity” e¥% = e%(cos(y) + i sin(y)). We just saw that 7;6“ = AeM
which seems obvious enough until you appreciate that we just proved it for A = 2 4.

Tar definition, depending on how you choose to set-up the complex exponential, 1 take this as the definition in
calcalus 11



Chapter 7

local extrema for multivariate
functions

In this chapter I show how the multivariate Taylor series and the theory of quadratic forms give a
general form of the second derivative test. In particular we recover the second derivative tests of
calculus I and III as special cases. There are technical concerns about remainders and convergence
that I set aside for this chapter. The techniques developed here are not entirely general, there are
exceptional cases but that is not surprising, we had the same trouble in calculus I. If you read the
fine print you’ll find we really only have nice theorems for continuously differentiable functions.
When functions have holes or finite jump discontinuities we have to treat those separately.

7.1 Taylor series for functions of two variables

Our goal here is to find an analogue for Taylor’s Theorem for function from R™ to R. Recall that if
g:U CR — R is smooth at a € R then we can compute as many derivatives as we wish, moreover
we can generate the Taylor’s series for g centered at a:

- / 1, 2 1, 3 o - g(n)(a) n
g(a+h)_g(a)+g(a)h+§g (a)h —|—§g (a)h +--~—nZ:%n!h

The equation above assumes that g is analytic at a. In other words, the function actually matches
it’s Taylor series near a. This concept can be made rigorous by discussing the remainder. If one
can show the remainder goes to zero then that proves the function is analytic. (read p117-127 of
Edwards for more on these concepts, I did cover some of that in class this semester, Theorem 6.3
is particularly interesting).

7.1.1 deriving the two-dimensional Taylor formula

The idea is fairly simple: create a function on R with which we can apply the ordinary Taylor series
result. Much like our discussion of directional derivatives we compose a function of two variables

123
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with linear path in the domain. Let f : U C R? — R be smooth with smooth partial derivatives
of all orders. Furthermore, let (a,b) € U and construct a line through (a,b) with direction vector
(h1, h2) as usual:

¢(t) = (a, b) + t(hl, hz) = (a + thl, b+ thg)

for t € R. Note ¢(0) = (a,b) and ¢'(t) = (h1,h2) = ¢/(0). Construct g = fo¢ : R — R and
differentiate, note we use the chain rule for functions of several variables in what follows:
gt)=(f=¢)(t) = f(¢(t)¢'(t)
=V [f((t)) - (h1, he)
= hifz(a+ thi,b+ th) + hafy(a + thy, b+ ths)
Note ¢'(0) = h1 fz(a,b)+ha fy(a,b). Differentiate again (I omit (¢(¢)) dependence in the last steps),

g"(t) = hifr(a+thy, b+ thy) 4+ haf,(a + thy, b+ thy)
=V fe(@(t)) - (h1, ha) + haV fy (6(1)) - (R, ho)
=13 fra + hahofys + haha fuy + h3 fyy
= W3 fo + 2h1ha fry + B3 fyy

Thus, making explicit the point dependence, ¢”(0) = h3 fy.(a, b) + 2h1ha f1y(a, b) + h3 f,y(a,b). We
may construct the Taylor series for g up to quadratic terms:

90+ 1) = g(0) + tg(0) + %g"(o) .
2
= f(a,b) + t[hi1 fz(a,b) + hafy(a,b)] + %[h%fm(a, b) + 2h1ho fuy (0, b) + h3 fyy(a,b)] + - -

Note that g(t) = f(a + thy,b+ thg) hence g(1) = f(a + h1,b+ hy) and consequently,
fla+h1,b+ ha) = fa,b) + h1fa(a,b) + hafy(a, b)+

1
t 5 [P fan (0, 0) + 201 fay (0, B) + B3 fyy (0, B) | + -

Omitting point dependence on the 2% derivatives,

fla+hi,b+hg) = f(a,b) + hyfo(a,b) + hafy(a,b) + 3 [ fow + 2h1h foy + 13 fyy] + -

Sometimes we’d rather have an expansion about (z,y). To obtain that formula simply substitute
x —a = h; and y — b = he. Note that the point (a,b) is fixed in this discussion so the derivatives
are not modified in this substitution,

f(z,y) = fla,b) + (x — a) fu(a,b) + (y — b) fy(a, b)+

43| = @ Faal6) 20 = )y = 0) iy (0,0) + (5 = Dy b)|
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At this point we ought to recognize the first three terms give the tangent plane to z = f(z,y) at
(a,b, f(a,b)). The higher order terms are nonlinear corrections to the linearization, these quadratic
terms form a quadratic form. If we computed third, fourth or higher order terms we’d find that,

using a = a1 and b = ag as well as x = z1 and y = x9,

Z Z Z Z 71' i, 6:& fto agii (i, = ai)(@iy — aiy) -~ (3, — ai,))

n=01,=012=0 =0

Let me expand the third order case just for fun:

Fi
| ) e 'F (e, )
E ‘-'-'l‘ﬁli-". :-!:?( ?){‘-I;x"-l;)q; I:}‘:'LIIH QE'){K&—H_}_}{}(’*H’&) =
!.. 1: l,::ﬂ _{_tm iﬂ-i:-ﬂ.::_" 3

iirii'ij .'-'D

i

.r'-"'_

e S‘F 2
—s = 2 CHE:J (%~ ﬂ'-J =¥ G‘:"ﬂj [Y‘ﬁ,} + —F}"f:{ {"ﬁ*ﬂ.}('ﬂ-{;)

IR Iy '.;'
'fxyx (K Cx {‘f"*é‘j = df‘f)":r* Cx-ﬂﬁf‘#*ﬁ)‘l

‘(:‘Vxx (x=a)®(vy=b)" + "Exw (<) (*2-b)*
4 (9-8)]

Yyy

Thuws

7

£ lxy) = £lab) + £, (x-2) - 4, (4-p) + D

Tt (o o) ¢ Bk () (200 4 £, (9-6)7)

L 2 (4W{Hf + 36, be-a) (94 2 gwfmﬂwﬁf,,,fwv
do-e -
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Fortunately we're only really interested in the n = 0,1, 2 order terms. Conceptually, n = 0 tells us
where to base the tangent plane, n = 1 tell us how to build the tangent plane. We will soon discuss
how n = 2 show us if the tangent plane is at the top or bottom of a hill if we’re at a critical point.
We pause to play with multivariate series:

Example 7.1.1.

Example: £lsw) = sh (x)cot /o)

= R g |
(- e g Jt- gy - gyt

—- e = i 4 i E 7.z 5
o . TSGR < ¥ e I i

* ] yi 9 e +ﬂ2‘_x'ﬂ +F'!x S

"‘-._,—-—"" ——

e F
terme veta €= arlin

= 1 -1
— " _( 3! e _ .3 l‘_( L L 5§/ 2 I‘!
31 —'—--1 :‘("a' x- / # "'5.'. :H <+ —-1” x“.ﬂ +ﬁxﬂl

= {lo,d + L lgdx+§loe)y + %‘Em-!wf+?ﬁvh#xv+&f‘ﬂﬁh-

+ '-i‘_T(-FuxEn,ﬁjxaih EIﬂ{a_,,jx’-; + 3{%; x9® & £ {00 P'j)'* -

TTeat W B oadcndits artted  clerivetive of
JLI.I'E“;\ areleas /e acfu Cﬂ{"ﬁuﬂr‘iaﬁ@ ﬁfcm.

muj‘t s f‘; g'_"ﬂ/#} =0

ﬁ;w{v_,a,l =0
ifm fo,0) = -1

Feplee) = — @M ?::r'F =32 = 3/

= . =4
ﬂmw“‘*“} - m“’{ﬁg’? =8,

" LdJ;N lan Uls -"iu' {d.“r.‘l.a-ﬂ-.ﬂfulpf- ,"-l., ferier 1.5)
fd-ft_m-t«.t much A erelong w_,—{: C‘Lr:‘? -f’ﬂ.j,

whele seriec mud plicatrin,
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Of course many functions of two variables cannot be separated into a product of a function of z
and a function of y. In those cases we’d have to calculate the Taylor series directly.

Example 7.1.2.

(Exmmeh; Lh{..ﬂ..: %qm.r Paﬂﬁ CN"CLWUIQ.
£ (xq) = Sh(x+4)
j.a F1)" _(x+)

N=o r?“H}T_

LN

J

- ¥
= Xty - {;:[?(*'9} + .s.}.{xitg}:f

Verreo
Fld) = g (xry)
= K X C.p_r? - J-'#? 95‘1_&-

:f,k’- itr"""’**'-}{i—fy‘f--) - fg"?'irlar"—lf'iﬁxﬁ";)
which (1 betler 2 pee they the came 7

(‘.-"E.f ! aﬁlmﬁ Lo in a&n!—w{: Lir] Vet g =D ff&ﬁﬂ-ﬂé}mwﬁ ﬂﬁr;’
g{mtﬂﬁ? Y i tan't d.'-g.rf"" thift J-%:ﬂ.nr [TV cﬁ!-.?;.ﬁ;_
L0 €., o Fhire b ﬂ"rh.}aﬂl’.
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Example 7.1.3.

E.'_?mﬁl'q.= cender £ (xy) = Ky abess (41),

'F{ﬁ,l.] = 1

fetuy = 9, = | Teewr vre Tanlers
L, o) =><|:-.-J = 4 Th= L L. ,Mul-a
‘1:# ) = o WN ’

£, 04) =0

Fuglut) =1

H;'ﬁ,\ﬂ cler N-.*Ng_; by ;\_,Eﬂ EJ-QAA.

E[%] = |+ L{x-1)+ 1(%-1) + %{x-i}(‘é-l}

[uﬁ—eruﬁ '-\-i‘? (),
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7.2 Taylor series for functions of many variables

(oncrdin : U< }P”‘——' B and  dencte

Xb—s fx] whea X= EK.’,R";‘,.,)C..} then  eoa rilin

punt P o= (a8 ,...,8,) and Garwet pedh Pif2— U
via A rule:

Pl = (a, ¢« th, avdh, . a,+dh,)
Note Pla) =(n,.,8.) =P  and @te) = (b, ..., hn] = h.
For m hs E,-n-r_ru;r.a;"'r 9 =S Y Y amd

ﬂ.-f.f'hﬂ'\.l. 1{' AM Cﬂﬂffi‘!ua-ur Fﬂ‘ﬁ'&f fofrl'b'-j"}w ﬂiﬁ,
3){1, oreling . 71; 'J’:a,/" rerier - B tendered

o 2oe Ao Aim Blo+2) =906)+39%) + L£2°9%) +-...
we enly dfead b cadiults h thi ercln. Focus
W 3e) she P = £¥ce)) = £1p) i edry),

3l4) = i‘H bedin )] where =0+
= E %{a+*h} i(apﬂﬁ-) B i
e :; f;ii{mm Y
{ W = i h 2 fa}j
Llhewice,
3'(4) = ;: "u* [“’“‘J)

] EG‘* 2. e, () o th )

L= ; }‘t 2f (&ﬂbih LA Lonfnuess b
2 hih i, e,
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) = E b, 5= ax{'mi
Pud & M togekrer,
¥(042) = %o) + 29%) + £2°9%) 0.
= fta) + 3 Z’f. e H,HZ*,;{,;&W# ().

thvug 9 (0¢1) = {'(?(;J) = -r(u»:,} = f(a, *-i-, Aaths, .

@'ﬁh} = )+ rh __{q+ i'
ug S
———--_._______H_____‘___ _’}_,Il-lr
W; . tan fuﬁ:y‘;rﬂgﬁ o= oapt A =
LA [ [ T4 . g
el WL Rl T, APRUPR, T M. U9
{ () =

—'a'] + s{%—a,
# ik ‘Df..aﬂg 1* "Ex‘ J*

—

A th, )

'Su mmﬂﬁ H W! {onry ﬂ.i}‘prﬂ?f\m&*l.. ‘F{X} Iln &ﬁ
1'“'"&; & Polunemy il B
wh emy [ X9 wlh +erang u'p-{-c.
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7.3 quadratic forms, conic sections and quadric surfaces
Conic sections and quadratic surfaces are common examples in calculus. For example:
2?4y =4 level curve; generally has form f(z,y) =k

2?4+ 4?4222 =1 level surface; generally has form F(z,y,z) =k

Our goal is to see what linear algebra and multivariate calculus have to say about conic sections
and quadric surfaces. (these notes borrowed from my linear algebra notes)

7.3.1 quadratic forms and their matrix

We are primarily interested in the application of this discussion to R? and R?, however, these
concepts equally well apply to arbitrarily high finite dimensional problems where the geometry is
not easily pictured.

Definition 7.3.1.

Generally, a quadratic form (@ is a function @) : R” — R whose formula can be written
Q(T) = T AF for all T € R™ where A € R ™" such that AT = A. In particular, if
a

F=[z,y]T and A = [ b lc) ] then
#T AZ = az® + bay + byx + cy® = ax® + 2bzy + 2.
The n = 3 case is similar,denote A = [A;;] and T = [z, y, 2]T so that
TTAZ = Ap1a® + 24102y + 241322 + Agoy? + 2A03yz + Asz2>.
Generally, if [4;;] € R ™" and & = [z;]7 then the quadratic form

n
fTAf = Z Aijx,-xj = Z Au‘l‘? + Z 2Aijxixj.
i=1

1] i<j

In case you wondering, yes you could write a given quadratic form with a different matrix which
is not symmetric, but we will find it convenient to insist that our matrix is symmetric since that
choice is always possible for a given quadratic form.

You should notice can write a given quadratic form in terms of a dot-product:
FlTAT =7 (A%) = (AZ) -2 =727 ATZ

Some texts actually use the middle equality above to define a symmetric matrix.
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Example 7.3.2.
2 1 x
2 2
2z° + 22y + 2y :[x y][l 2][?;}

Example 7.3.3.

2x2+2xy—|—3xz—2y2—z2:[$ Y z] 1 -2 0 Y

Proposition 7.3.4.

The values of a quadratic form on R™ — {0} is completely determined by it’s values on

the (n — 1)-sphere S,,_1 = {Z € R" | ||7]| = 1}. In particular, Q(Z) = ||7]|*Q(%) where
1 =

7 = I

=

Proof: Let Q(%¥) = #T AZ. Notice that we can write any nonzero vector as the product of its
magnitude ||z|| and its direction & = ‘%f

\
Q@) = Q([]2) = (171]2)7 ||| = 171227 Az = ||2]2Q(#).

Therefore Q(Z) is simply proportional to Q(#) with proportionality constant ||Z||?. O

The proposition above is very interesting. It says that if we know how ) works on unit-vectors then
we can extrapolate its action on the remainder of R"™. If f : S — R then we could say f(S) > 0
iff f(s) > 0 for all s € S. Likewise, f(S) < 0 iff f(s) < 0 for all s € S. The proposition below
follows from the proposition above since ||#||> ranges over all nonzero positive real numbers in the
equations above.

Proposition 7.3.5.

If Q is a quadratic form on R™ and we denote R} = R"™ — {0}

1.(negative definite) Q(RY) < 0 iff Q(Sp—1) <0
2.(positive definite) Q(RY) > 0 iff Q(Sp—1) >0

3.(non-definite) Q(RY) =R — {0} iff Q(S,—1) has both positive and negative values.

7.3.2 almost an introduction to eigenvectors

Eigenvectors and eigenvalues play an important role in theory and application. In particular,
eigenvalues and eigenvectors allow us to (if possible) diagonalize a matrix. This essentially is the
problem of choosing coordinates for a particular system which most clearly reveals the true nature
of the system. For example, the fact that 2zy = 1 is a hyperbola is clearly seen once we change
to coordinates whose axes point along the eigenvectors for the quadratic form Q(z,y) = 2zy.
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Likewise, in the study of rotating rigid bodies the eigenvectors of the inertia tensor give the so-
called principle axes of inertia. When a body is set to spin about such an axes through its center
of mass the motion is natural, smooth and does not wobble. The inertia tensor gives a quadratic
form in the angular velocity which represents the rotational kinetic energy. I’ve probably assigned a
homework problem so you can understand this paragraph. In any event, there are many motivations
for studying eigenvalues and vectors. I explain much more theory for e-vectors in the linear course.

Definition 7.3.6.

Let A€ R ™", If v € R ™! is nonzero and Av = \v for some )\ € C then we say v is an
eigenvector with eigenvalue X of the matrix A.

Proposition 7.3.7.

Let A € R ™™ then A is an eigenvalue of A iff det(A — AI) = 0. We say P(\) = det(A— )
the characteristic polynomial and det(A — A\I) = 0 is the characteristic equation.

Proof: Suppose \ is an eigenvalue of A then there exists a nonzero vector v such that Av = Av
which is equivalent to Av — Av = 0 which is precisely (A — AI)v = 0. Notice that (A — AI)0 =0
thus the matrix (A — AI) is singular as the equation (A — AI)x = 0 has more than one solution.
Consequently det(A — X\I) = 0.

Conversely, suppose det(A — A\I) = 0. It follows that (A — AI) is singular. Clearly the system
(A — Al)xz = 0 is consistent as = 0 is a solution hence we know there are infinitely many solu-
tions. In particular there exists at least one vector v # 0 such that (A — AI)v = 0 which means the
vector v satisfies Av = Av. Thus v is an eigenvector with eigenvalue A for A. O

31

Example 7.3.8. Let A = [ 3 ]

] find the e-values and e-vectors of A.

3—-A 1

det(A—)\I):det[ 3 11

] =(B3-N1-XN)=-3=X—-4A=XA-4)=0
We find Ay =0 and Ao = 4. Now find the e-vector with e-value \y = 0, let u; = [u,v]T denote the
e-vector we wish to find. Calculate,

3 1 U 3u+v 0
A — I = = =
(4-0Du [3 1][1}] [3u+v] [0]
Obuviously the equations above are redundant and we have infinitely many solutions of the form
1
3u + v = 0 which means v = —3u so we can write, u; = [ —gu } =u [ _3 ] In applications we
often make a choice to select a particular e-vector. Most modern graphing calculators can calcu-
late e-vectors. It is customary for the e-vectors to be chosen to have length one. That is a useful
choice for certain applications as we will later discuss. If you use a calculator it would likely give
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Uy = \/%T) [ _13 ] although the v/10 would likely be approximated unless your calculator is smart.

Continuing we wish to find eigenvectors ug = [u,v]T such that (A — 4I)us = 0. Notice that u,v
are disposable variables in this context, I do not mean to connect the formulas from the A = 0 case
with the case considered now.

-1 1 ul | —utv | _ [0
<A_4I)“1_[3 —3][1}]_[311—3@]_[0}
Again the equations are redundant and we have infinitely many solutions of the form v = u. Hence,

1
Ug = { Z ] =u [ 1 ] is an eigenvector for any u € R such that u # 0.

Theorem 7.3.9.

‘A matrix A € R %" is symmetric iff there exists an orthonormal eigenbasis for A.

There is a geometric proof of this theorem in Edwards' (see Theorem 8.6 pgs 146-147) . I prove half
of this theorem in my linear algebra notes by a non-geometric argument (full proof is in Appendix C
of Insel,Spence and Friedberg). It might be very interesting to understand the connection between
the geometric verse algebraic arguments. We’ll content ourselves with an example here:

0 00
Example 7.3.10. Let A= | 0 1 2 |. Observe that det(A— ) = —AA+1)(\—3) thus \; =
0 21

0,\2 = —1,A3 = 3. We can calculate orthonormal e-vectors of vi = [1,0,0]7, vg = %[0, 1,-1)7

and vy = %[0, 1, 1]T. I invite the reader to check the validity of the following equation:

1 0 0 0oo0oo01[1 0 o0 0 0 0
0 %5 A |lo12]]0 % H|=]0-10
0 % % 021]|0 F 5 0 0 3
Its really neat that to find the inverse of a matriz of orthonormal e-vectors we need only take the
1 0 0 1 0 O 1 0 0
transpose; note | 0 % \_7% 0 % % =10 10

7.3.3 quadratic form examples

Example 7.3.11. Consider the quadric form Q(x,y) = 2% +y%. You can check for yourself that
z = Q(z,y) is a cone and Q has positive outputs for all inputs except (0,0). Notice that Q(v) = ||v||?

Lthink about it, there is a 1-1 correspondance between symmetric matrices and quadratic forms
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so it is clear that Q(S1) = 1. We find agreement with the preceding proposition.

Next, think about the application of Q(x,y) to level curves; x® + y? = k is simply a circle of radius
Vk or just the origin.

Finally, let’s take a moment to write Q(z,y) = [z,y] [ (1) (1) ] [ ; ] in this case the matriz is

diagonal and we note that the e-values are A\ = Ay = 1.

Example 7.3.12. Consider the quadric form Q(z,y) = x> — 2y®. You can check for yourself that
z = Q(x,y) is a hyperboloid and Q has non-definite outputs since sometimes the x* term dom-
inates whereas other points have —2y* as the dominent term. Notice that Q(1,0) = 1 whereas
Q(0,1) = —2 hence we find Q(S1) contains both positive and negative values and consequently we
find agreement with the preceding proposition.

Next, think about the application of Q(z,y) to level curves; x? — 2y? = k yields either hyperbolas
which open vertically (k > 0) or horizontally (k < 0) or a pair of lines y = £5 in the k = 0 case.

1 0
0 -2
diagonal and we note that the e-values are A\ =1 and Ay = —2.

Finally, let’s take a moment to write Q(x,y) = [x,y] [ ] [ Zj ] in this case the matriz is

Example 7.3.13. Consider the quadric form Q(x,y) = 3x2. You can check for yourself that
z = Q(x,y) is parabola-shaped trough along the y-axis. In this case Q has positive outputs for all
inputs except (0,y), we would call this form positive semi-definite. A short calculation reveals
that Q(S1) = [0, 3] thus we again find agreement with the preceding proposition (case 3).

Next, think about the application of Q(x,y) to level curves; 3x® = k is a pair of vertical lines:
x = ++\/k/3 or just the y-azis.

x

Finally, let’s take a moment to write Q(z,y) = [z,y] [ 30 ] [ )

00
diagonal and we note that the e-values are A\ = 3 and Ay = 0.

] i this case the matrixz is

Example 7.3.14. Consider the quadric form Q(x,vy,z) = x% + 2y + 32%. Think about the appli-
cation of Q(z,y,z) to level surfaces; x* + 2y* + 322 =k is an ellipsoid.

1 0 0 T

Finally, let’s take a moment to write Q(z,y,z) = [z,y,2] | 0 2 0 y | in this case the matrix
0 0 3 z

1s diagonal and we note that the e-values are \1 =1 and Ao = 2 and A3 = 3.

The examples given thus far are the simplest cases. We don’t really need linear algebra to un-
derstand them. In contrast, e-vectors and e-values will prove a useful tool to unravel the later
examples.
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Proposition 7.3.15.

If @ is a quadratic form on R” with matrix A and e-values A1, Ao, ..., \,, with orthonormal
e-vectors vy, vs, ..., v, then

Q(vi) = A\i°
for i =1,2,...,n. Moreover, if P = [v1]va] - - |v,] then

Q@) = (PT&)TPTAPPTZ = My + May3 + - 4+ A2

where we defined 7 = PTZ.

Let me restate the proposition above in simple terms: we can transform a given quadratic form to
a diagonal form by finding orthonormalized e-vectors and performing the appropriate coordinate
transformation. Since P is formed from orthonormal e-vectors we know that P will be either a
rotation or reflection. This proposition says we can remove ”cross-terms” by transforming the
quadratic forms with an appropriate rotation.

Example 7.3.16. Consider the quadric form Q(z,y) = 2x% + 2xy + 2y>. It’s not immediately
obvious (to me) what the level curves Q(z,y) = k look like. We’ll make use of the preceding
proposition to understand those graphs. Notice Q(z,y) = [z, y] [ f ; ] [ z ] Denote the matrix
of the form by A and calculate the e-values/vectors:

2—A 1

det(A—)\I):det[ 1 9_1

}:()\—2)2—1:/\2—4)\+3:()\—1)()\—3):0

Therefore, the e-values are A\ =1 and Ay = 3.

o= [2][2]-[3] - e[

I just solved u+ v =0 to give v = —u choose u = 1 then normalize to get the vector above. Next,

<A—31>ﬁz—[_11 _ﬂHZ]—[g] - ﬁQ‘é{”

I just solved uw — v = 0 to give v = u choose uw = 1 then normalize to get the vector above. Let

P = [ii1|t2] and introduce new coordinates i = [Z,9]" defined by § = PTZ. Note these can be
inverted by multiplication by P to give ¥ = Py. Observe that
1 11 r =Lz+79) T =3i(z—y)
P=_ = 7% or 7
2[—1 1] y =3(-7+7) j =5(+y)

The proposition preceding this example shows that substitution of the formulas above into Q yield?:

Q(z,9) = 7 + 3y

2technically Q(:Y:,y) is Q(z(z,9),y(Z, 7))
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It is clear that in the barred coordinate system the level curve Q(x,y) = k is an ellipse. If we draw
the barred coordinate system superposed over the xy-coordinate system then you’ll see that the graph
of Q(z,y) = 222 + 2zy + 2y% = k is an ellipse rotated by 45 degrees.

Example 7.3.17. Consider the quadric form Q(x,y) = x> +2xy+y%. It’s not immediately obvious
(to me) what the level curves Q(x,y) = k look like. We’ll make use of the preceding proposition to

bl ] [ z ] Denote the matrix of the form by

understand those graphs. Notice Q(z,y) = [x,y] [ 11

A and calculate the e-values/vectors:

1—A 1}

L1 =(A=1)2=1=X-22=2\1-2)=0

det(A — \I) = det [

Therefore, the e-values are A\ = 0 and Ay = 2.

a-oa=[1 ][] [0] = m-[ 4

I just solved uw+ v = 0 to give v = —u choose u = 1 then normalize to get the vector above. Next,

=[5 ][] (0] = mmlh]

I just solved u —v = 0 to give v = u choose uw = 1 then normalize to get the vector above. Let
P = [iy|i2] and introduce new coordinates § = [,y]" defined by i = PT%. Note these can be
inverted by multiplication by P to give ¥ = Py. Observe that

I I s

= %(fv—y)
2 y =5(-2+79) 3

(z+y)

The proposition preceding this example shows that substitution of the formulas above into Q) yield:
Q(z,9) = 25°

It is clear that in the barred coordinate system the level curve Q(z,y) = k is a pair of paralell
lines. If we draw the barred coordinate system superposed over the xy-coordinate system then you’ll
see that the graph of Q(x,y) = x? + 2xy + y?> = k is a line with slope —1. Indeed, with a little
algebraic insight we could have anticipated this result since Q(z,y) = (x+y)? so Q(x,y) = k implies
:c—l—y:\/Ethusy:\/E—x.

Example 7.3.18. Consider the quadric form Q(x,y) = 4xy. It’s not immediately obvious (to
me) what the level curves Q(x,y) = k look like. We’ll make use of the preceding proposition to
x

Y

Qo8I

understand those graphs. Notice Q(z,y) = [x,y] 02 ] [

0 2 ] Denote the matrix of the form by

A and calculate the e-values/vectors:

det(A — \I) = det _; _QA =X —4=A+2)(A-2)=0
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Therefore, the e-values are \1 = —2 and Aoy = 2.
2 2 0 L1 1
weaa=[3 ][2]-[2] = o= 5[ 4]
I just solved u 4+ v =0 to give v = —u choose u = 1 then normalize to get the vector above. Next,

w2 3][2]-[2] » a- 5[0

I just solved u —v = 0 to give v = u choose uw = 1 then normalize to get the vector above. Let

P = [iy|i2] and introduce new coordinates § = [,y]" defined by i = PTZ. Note these can be
inverted by multiplication by P to give ¥ = Py. Observe that
1 11 r =3z +79) T =Lxz—vy)
P== = 2 or ?
2[—1 1] y =5(-7+7) j =3(@+y)

The proposition preceding this example shows that substitution of the formulas above into Q yield:
Q(z,7) = —2* + 2

It is clear that in the barred coordinate system the level curve Q(x,y) = k is a hyperbola. If we
draw the barred coordinate system superposed over the xy-coordinate system then you’ll see that the
graph of Q(x,y) = 4xy = k is a hyperbola rotated by 45 degrees.

Remark 7.3.19.

I made the preceding triple of examples all involved the same rotation. This is purely for my
lecturing convenience. In practice the rotation could be by all sorts of angles. In addition,
you might notice that a different ordering of the e-values would result in a redefinition of
the barred coordinates. 3

We ought to do at least one 3-dimensional example.

Example 7.3.20. Consider the quadric form defined below:

6 -2 0 T
Q(xuyaz) = [1:7y’ Z] -2 6 0 Yy
0 0 5 z

Denote the matriz of the form by A and calculate the e-values/vectors:

6—-A =2 0
det(A—Xl)=det | -2 6-—X 0
0 0 5—A
=[(A—6)*—4](5-)
= (5= N[\ — 12X +32](5 — \)
=A=4)A=8)(-)
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Therefore, the e-values are Ay = 4, Ay = 8 and A3 = 5. After some calculation we find the following
orthonormal e-vectors for A:

Let P = [ify|tz|id3] and introduce new coordinates ij = [%,7, 2|7 defined by ij = PTZ. Note these
can be inverted by multiplication by P to give £ = Py. Observe that

1 11 0 r = $(Z+7) T = (z—vy)
P:\T -1 1 0 = y = 3(-2+y) or § = 3(xz+y)
2 0 0 V2 z = Z z = z

The proposition preceding this example shows that substitution of the formulas above into Q) yield:
Q(%,7, 2) = 47° + 87> + 57°

It is clear that in the barred coordinate system the level surface Q(x,y,z) = k is an ellipsoid. If we
draw the barred coordinate system superposed over the xyz-coordinate system then you’ll see that
the graph of Q(x,y,z) = k is an ellipsoid rotated by 45 degrees around the z — axis.

Remark 7.3.21.

There is a connection between the shape of level curves Q(z1, z2, ..., x,) = k and the graph
Tnt1 = f(x1,m2,...,2,) of f. T'll discuss n = 2 but these comments equally well apply to
w = f(z,y,z) or higher dimensional examples. Consider a critical point (a,b) for f(z,y)
then the Taylor expansion about (a,b) has the form

fla+h,b+ k)= f(a,b) +Q(h,k)

where Q(h, k) = 252 fuz(a,b) + hk fry(a,b) + $h2 fyy(a,b) = [h, k][Q](h, k). Since [Q]T = [Q]
we can find orthonormal e-vectors 1, iy for [Q)] with e-values A1 and A; respective. Using
U = [t1|ds] we can introduce rotated coordinates (h, k) = U(h, k). These will give

Q(E, ]2‘) = )\1%2 + )\27{2

Clearly if Ay > 0 and A2 > 0 then f(a,b) yields the local minimum whereas if A\; < 0 and
A2 < 0 then f(a,b) yields the local maximum. Edwards discusses these matters on pgs.
148-153. In short, supposing f =~ f(p) + @, if all the e-values of ) are positive then f has
a local minimum of f(p) at p whereas if all the e-values of @) are negative then f reaches
a local maximum of f(p) at p. Otherwise @) has both positive and negative e-values and
we say () is non-definite and the function has a saddle point. If all the e-values of ) are
positive then @ is said to be positive-definite whereas if all the e-values of () are negative
then @ is said to be negative-definite. Edwards gives a few nice tests for ascertaining if
a matrix is positive definite without explicit computation of e-values.
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7.4 local extrema from eigenvalues and quadratic forms

We have all the tools we need, let’s put them to use now.
Example 7.4.1.

Llxy) = x* = 2xy + @*
9f = < WM~34¢, 3Y-3xY L V=0 B Y=x

Tofintely mney ,-:n?irp.é? F“'*”ﬁf; hoave Ha Arem (a.a).
L. (sal= 2 , £, la0)=-23, fylae) =2
Uiner, eopanding abect (4 0],
fixyg)= flas) + Gl (%Y
= a?_-2a%+a? + E}(?&-ﬂ}z-éf{x-ajfy—ﬁ) + a(&.ﬂ*a)')

= (x-a)®= 3(x-af$-a)+(9-a)"

Tote M _

{Qra,r-j] = ['-: :}

Adh {f@m_,-_.,j"ﬂrj s Ggi'ﬁ[jr_ﬁ .f—-:;/
-:@-f}z -/

- i!_gq
= a(r-3) + A =0 4 =3

'T?H'r i A Sepri'- :JEF'{J"HF}IE' "J’gfm' Fack r_,m-.a'l._;,('
alsn B =X gl lsek mrvm,  PNolk HHh

£i%y) = fx-‘ﬂ..li Shur fix,y) = © hesw ce
Llaa) = 0 if A §-!¢5J ol R A sy okl

T .‘l__ --\ Zero e-voluey for GL
L/ ndicute dhr  Type ot
'? ot hisouiewar
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Example 7.4.2.

'FEJ‘.-‘.FJ = &wp [-—x'—,ﬂﬂl‘}

P,.f:-c.'-'j = 'HW{“XZ-LJ’)

‘E’, [=,%] = —aw e {-x® "':ﬂ'lj

£ (x¥) = -Rexp (-%2-97) *L{"z'-”?{'"‘:"'ﬂt)
'Fﬂ'f fP'E.-‘?'] = "-dwa, E.rp{'-x‘-ggl

5y 01 = (Y42 = 2) &2 (=x?=%?)
Nete 9L (57 =0 = g%, map> e X=9=0
On ;"? evitiest pt- e fo.c), Wk FAnS

@ xv) = % fx (o, o) X* + Ay (o 0) XY "L}f‘fc:yf"r") g°

]

= w(-A)x" + o 4+ L(-2)9*

= %%yt

Thus, e 4ind (0,8) give
’H&M“‘f‘ﬂ defon 1'%, - |
‘?fﬁgf} = 4a,0) ¢+ GlA¥) = | - xi-y? w _;{

lacuﬂ faspe SiNEL & 4

Nole, , ) . .
L — - ..Hmf AECSEr R e &
[G] [ e FIJ B ?J'E?._H"I’L'N Jﬁml
7 e S E fwa—iﬁ a_ﬁ?m}w_w_n-p'_ ]

Hemune bt Hhir ir
.!Ei‘n&-‘wﬁ o gqﬁrﬂ P e,
che -x2-42 = o0 and -

EP‘F('("'”}'JJJ = (o, s
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Example 7.4.3.

E-xppggl s ;ﬁcﬁ,_ f{x,}*j = A" X — Y e T s ?-3,. Fewl
abf crificel pointy aad anal A 7 .
£ pEe we 275 kg f-;..#:ffe,e:ff{.%?tf

VE = (lx-9y-3,-%-Cg + 25 = <o, o

Ux -4 -3
-X ~6P+ P

o
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= ~REN = - a8
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We find @ v} = ';{x-f‘ia_ D0k =1)(%-1) - '3(1-3-”1 l\tnuj
Fovl = 0,0+ Q) Fog=a-1-s505 = 5

& fﬂ!ﬂﬂ] e q{k-rj'- 2lx-1){%-1) - 3'{@-;_]_?]

Nobe Hay it net an b-P'pWKl'M*-{'I'M £in e h-"ﬁtn.tr iy n..{ff\.r'aa.-;fi_
It seewn lﬂ“-'L'a 4hir E IS I#-E{*-I-Ll {1}'1'-1':!‘4.+ 7’ Lﬂ-‘t e Fﬂﬂ-{g ret
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O
=
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Example 7.4.4.

M: Elw,¥)] = SMX cogh 'y
GL = Lo Keahd, SINX snh g s>
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G shx ohhl = d
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Chapter 8

on manifolds and multipliers

In this chapter we show the application of the most difficult results in this course, namely the
implicit and inverse mapping theorems. Our first application is in the construction of manifolds
as graphs or level sets. Then once we have a convenient concept of a manifold we discuss the idea
of Lagrange multipliers. The heart of the method combines orthogonal complements from linear
algebra along side the construction of tangent spaces in this course. Hopefully this chapter will
help you understand why the implicit and inverse mapping theorems are so useful and also why
we need manifolds to make sense of our problems. The patching definition for a manifold is not of
much use in this chapter although we will mention how it connects to the other two formulations
of a manifold in R™ in the context of a special case.

8.1 surfaces in R?

Manifolds or surfaces play a role similar to functions in this course. Our goal is not the study of
manifolds alone but it’s hard to give a complete account of differentiation unless we have some idea
of what is a tangent plane. This subsection does break from the larger pattern of thought in this
chapter. I include it here to try to remind how surfaces and tangent planes are described in R3. We
need some amount of generalization beyond this section because the solution of max/min problems
with constraints will take us into higher dimensional surfaces even for problems that only involve
two or three spatial dimensions. We treat those questions in the next chapter.

There are three main methods to describe surfaces:

1. As a graph: S ={(z,y,2) | 2 = f(z,y) where (z,y) € dom(f)}.
2. As alevel surface: S ={(z,y,2) | F(x,y,z) =0}

3. As a parametrized surface: S = {X(u,v) | (u,v) € dom(X)}

145
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Let me remind you we found the tangent plane at (z,, Yo, 20) € S for each of these formalisms as
follows (continuing to use the same notation as above):

1. For the graph: z = 2, + f(Zo, Yo) + f2(Zo, Yo) (T — x0) + fy(Zo, Yo) (Y — Yo)-
2. For the level surface: plane through (z,, Yo, 2,) with normal (VF)(zs, Yo, 20)

3. For the parametrized surface: find (u,, v,) with X (ue, v,) = (%0, Yo, 20), the tangent
plane goes through X (u,,v,) and has normal N (u,, v,) = Xy (te, Vo) X Xy (e, Vo).

Perhaps you recall that the normal vector field to the surface S was important in the formulation
of surface integrals to calculate the flux of vector fields.

Example 8.1.1. The plane through the point 7, with normal n =< a,b,c > can be described as:

1. all ¥ € R? such that (¥ — 7,) -7 = 0.

— o) + 5(2 — 20)
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. if a # 0, the graph x = f1(y,z) where fi(y,z) =z, + g(y —Yo) + (2 — 20)

6. given any two linearly independent vectors Ei,g in the plane, the plane is the image of the
mapping X : R? — R3 defined by X (u,v) = 7, + ud@ + vb

Example 8.1.2. The sphere of radius R centered about the origin can be described as:
1. all (z,y, 2) € R3 such that F(x,y,2) = 2> +y* + 22 = R?
2. the graphs of z = fi(x,y) where fi(x,y) = £/ R? — 22 — y?
3. for (u,v) € [0,27] x [0,7], X(u,v)= (Rcosusinv, Rsinusinv, Rcosv)

You may recall that the level surface concept allowed by far the easiest computation of the normal
of the tangent plane for a particular point. For example, VF =< 2x,2y,2z > in the preceding
example. Contrast that to calculation of X, x X, where the x denotes the dreaded cross-product.
Of course each formalism has its place in calculus III.
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Remark 8.1.3.

In this warm-up section we have hopefully observed this much about surfaces in R3:

1. the tangent plane is always 2-dimensional, it is really a plane in the traditional sense
of the term.

2. the normal to the tangent plane is always 1-dimensional, the normal through a par-
ticular point on the surface is just a line which is orthogonal to all possible tangents
through the point.

3. the dimension of the tangent plane and normal give the total dimension of the ambient
space; 2+ 1 = 3.

8.2 manifolds as level sets

We will focus almost exclusively on the level surface formulation of a manifold in the remainder of
this chapter. We say M C R" is a manifold of dimension p < n if M has a p-dimensional tangent
plane for each point on M. In other words, M is a p-dimensional manifold if it can be locally
approximated by R? at each point on M. Moreover, the set of all vectors normal to the tangent
space will be n — p dimensional.

These are general concepts which encompasses lines, planes volumes and much much more. Let me
illustrate by example:

Example 8.2.1. Let g : R? — R be defined by g(x,y) =y — x — 1 note that g(x,y) = 0 gives the
line y—x —1 =0 commonly written as y = x + 1; note that the line has direction vector < —1,1 >.
Furthermore, Vg =< 1,—1 > which is orthogonal to < —1,1 >.

Example 8.2.2. Let g : R?* — R be defined by g(x,y,2) =y — x — 1 note that g(x,y,2) = 0 gives
the plane y—x —1 = 0. Furthermore, Vg =< 1,—1,0 > which gives the normal to the plane g = 0.

Example 8.2.3. Let g : R* — R be defined by g(z,y,2,t) = y — x — 1 note that g(z,y,z,t) =0
gives the hyperplane y — x — 1 = 0. Furthermore, Vg =< 1,—1,0,0 > which gives the normal to
the hyperplane g = 0. What does that mean? It means that if I take any vector in the hyperplane
it is orthogonal to < 1,—1,0,0 >. Let 71,72 be points in the solution set of g(z,y,z,t) = 0. Denote
1 = (z1,y1, 21, t1) and 71 = (x2, Y2, 22, t2), we have y1 = x1 + 1 and y2 = xo+ 1. The vector in the
hyperplane is found from the difference of these points:

— —

V=7 — 7 = (x2, 2+ 1, 20,t2) — (1,21 + 1, 21,t1) = (w2 — 21, 2 — T1, 22 — 21,2 — t1).

It’s easy to see that - Vg =0 hence Vg is perpendicular to an arbitrary vector in the hyperplane
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If you’ve begun to develop an intuition for the story we're telling this last example ought to bug
you a bit. Why is the difference of points a tangent vector? What happened to the set of all
tangent vectors pasted together or the differential or the column space of the derivative? All those
concepts still apply but since we were looking at a linear space the space itself matched the tangent
hyperplane. The point of the triple of examples above is just to constrast the nature of the equation
g = 0 in various contexts. We find the dimension of the ambient space changes the dimension of
the level set. Basically, we have one equation g = 0 and n-unknowns then the inverse image of zero
gives us a (n — 1)-dimensional manifold. If we wanted to obtain a n — 2 dimensional manifold then
we would need two equations which were independent. Before we get to that perhaps I should give
a curvy example.

Example 8.2.4. Let g : R* — R be defined by g(x,vy, z,t) = t+x?+y*>—22% note that g(x,y, 2,t) =0
gives a three dimensional subset of R, let’s call it M. Notice Vg =< 2,2y, —4z,1 > is nonzero
everywhere. Let’s focus on the point (2,2,1,0) note that g(2,2,1,0) = 0 thus the point is on M.
The tangent plane at (2,2,1,0) is formed from the union of all tangent vectors to g = 0 at the
point (2,2,1,0). To find the equation of the tangent plane we suppose v : R — M is a curve with
v # 0 and v(0) = (2,2,1,0). By assumption g(v(s)) = 0 since v(s) € M for all s € R. Define
v (0) =< a,b,c,d >, we find a condition from the chain-rule applied to gy =0 at s =0,

d
$( g°7(s) ) = (Vg)(v(s)) -7 (s) =0 = V9(2,2,1,0)- < a,b,c,d >=0
= <44, 41> -<abecd>=0

= da+4b—4c+d=0

Thus the equation of the tangent plane is 4(x — 2) + 4(y —2) — 4(z — 1) +t = 0. In invite the
reader to find a vector in the tangent plane and check it is orthogonal to Vg(2,2,1,0). However,
this should not be surprising, the condition the chain rule just gave us is just the statement that
< a,b,c,d >€ Null(Vg(2,2,1,0)T) and that is precisely the set of vector orthogonal to Vg(2,2,1,0).

One more example before we dive into the theory of Lagrange multipliers. (which is little more
than this section applied to word problems plus the powerful orthogonal complement theorem from
linear algebra)

Example 8.2.5. Let G : R* — R? be defined by G(x,y,2,t) = (2 + 22 +y> =2,z +y> +t> = 2). In
this case G(z,y,2,t) = (0,0) gives a two-dimensional manifold in R* let’s call it M. Notice that
G1 =0 gives z+ 2> +y> =2 and Go = 0 gives z +y> + 12> = 2 thus G = 0 gives the intersection of
both of these three dimensional manifolds in R* (no I can’t "see” it either). Note,

VG, =< 2x,2y,1,0 > VGe =< 0,2y,1,2t >

It turns out that the inverse mapping theorem says G = 0 describes a manifold of dimension 2 if
the gradient vectors above form a linearly independent set of vectors. For the example considered
here the gradient vectors are linearly dependent at the origin since VG1(0) = VG2(0) = (0,0, 1,0).
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In fact, these gradient vectors are colinear along along the plane x =t = 0 since VG1(0,y,z,0) =
VG3(0,y,2,0) =< 0,2y,1,0 >. We again seek to contrast the tangent plane and its normal at
some particular point. Choose (1,1,0,1) which is in M since G(1,1,0,1) = (0+1+1—2,0+
1+1-2)=(0,0). Suppose that v : R — M is a path in M which has v(0) = (1,1,0,1) whereas
7' (0) =< a,b,¢,d >. Note that VG1(1,1,0,1) =< 2,2,1,0 > and VG2(1,1,0,1) =< 0,2,1,1 >.
Applying the chain rule to both G and Go yields:

(G1°9)'(0) = VG1(7(0))- < a,b,c,d >=0 = <2,2,1,0> -<a,b,c,d>=0
(G207)'(0) = VG2(7(0))- < a,b,c,d >=0 = <0,2,1,1> -<a,bc,d>=0
This is two equations and four unknowns, we can solve it and write the vector in terms of two free

variables correspondant to the fact the tangent space is two-dimensional. Perhaps it’s easier to use
matriz techiques to organize the calculation:

2 210 10 0 -=1/2
We calculate, rref [ 02 1 1 ] [ 01 1/2 1/2
ables then we can read that a = d/2 and b= —c/2 — d/2 hence

<a,be,d>=<d/2,—c/2—d/2,c,d >= £ <0,-1,2,0 > +4 <1,-1,0,2 >

} . It’s natural to chose c,d as free vari-

We can see a basis for the tangent space. In fact, I can give parametric equations for the tangent
space as follows:

X(u,v) = (1,1,0,1) +u < 0,—-1,2,0 > +v < 1,-1,0,2 >

Not surprisingly the basis vectors of the tangent space are perpendicular to the gradient vectors
VGi(1,1,0,1) =< 2,2,1,0 > and VGa(1,1,0,1) =< 0,2,1,1 > which span the normal plane
N, to the tangent plane T, at p = (1,1,0,1). We find that T, is orthogonal to Ny. In summary
TpJ- = N, and T, ® N, = RY. This is just a fancy way of saying that the normal and the tangent
plane only intersect at zero and they together span the entire ambient space.

Remark 8.2.6.

The reason I am bothering with these seemingly bizarre examples is that the method of
Lagrange multipliers comes down to the observation that both the constraint and objective
function’s gradient vectors should be normal to the tangent plane of the constraint surface.
This means they must both reside in the normal to the tangent plane and hence they will
either be colinear or for several constraints they will be linearly dependent. The geometry
we consider here justifies the method. Linear algebra supplies the harder part which is
that if two vectors are both orthogonal to the tangent plane then they must both be in
the orthogonal complement to the tangent plane. The heart of the method of Lagrange
multipliers is the orthogonal complement theory from linear algebra. Of course, you can be
heartless and still sucessfully apply the method of Lagrange.
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8.3 Lagrange multiplier method for one constraint
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8.4 Lagrange multiplier method for several constraints
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Chapter 8

on manifolds and multipliers

In this chapter we show the application of the most difficult results in this course, namely the
implicit and inverse mapping theorems. Our first application is in the construction of manifolds
ag graphs or level sets. Then onece we have a convenient concept of a manifold we discuss the idea
of Lagrange multipliers. The heart of the method combines orthogenal complements from linear
algebra along side the construction of tangent spaces in this course. Hopefully this chapter will
heip you understand why the implicit and inverse mapping theorems are so useful and also why
we need manifolds to make sense of our problems. The patching definition for a manifold is not of
much use in this chapter although we wiill mention how it connects to the other two formulations
of a manifold in B™ in the context of a special case.

8.1 surfaces in B’

Manifolds or surfaces play a role similar to functions in this course. Our goal is not the study of
manifolds alone but it's hard to give a complete account of differentiation unless we have some idea
of what is a tangent plane. This subsection does break from the larger pattern of thought in this
chapter. Linclude it here to try to remind how surfaces and tangent planes are deseribed in B9, We
need some amount of generalization beyond this section because the solution of max/min problems
with constraints will take us into higher dimensional surfaces even for problems that only involve
two or three spatial dimensions. We treat those questions in the next chapter.

There are three main meihods to describe surfaces:

1. As a graph: § = {(2,v,2) | 2 = f(2,9) where (2,¥) € dom()}.
2. As a level surface: 5 = {{z,y,2) | F(x,y,z) =0}

3. As a parametrized surface: S = {X (1, v) | (u,v} & dom(X)}
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Let me remind you we found the tangent plane at (2, 4., 20) € S for each of these formalisms as
follows (continuing to use the same notation as above):

1. For the graph: z = z, + f(o Yo) + fo(0, ya) (@ — 20} + fy(ﬂ;m'yo)(y — Yo).

I

. For the level surface: plane through (x,, y,, 2o) with normal (VF)(zs, yo, 20)

3. For the parametrized surface: find {u,, v,) with X (e, v0) = (To, Yo, o), the tangent
plane goes through X (u,,v,) and has normal N (ue, v,) = Xy (o, Ve) ¥ Xy{te, vn).

Perhaps you recall that the normal vector field to the surface § was immportant in the formulation
of surface integrals to calculate the flux of vector fields.

Example 8.1.1. The plane through the point ¥, with normal @ =< a,b, ¢ > can be described as:
1. all 7€ B3 such that (F—7,) -7 = 0.
2. all (w,y,z) € B such that a(x — 2,) + by —yo) + e{z — 2,) =0
8. if ¢ # 0, the graph z = fa(x,y) where fa(z,y) = 2o -+ 4z~ 2,) + %(y - Uo)
4. if b# 0, the graph y = fa(w, z) where fo(r,2) = gy -+ F(x — 25) + 72 — 25)
if @ % 0, the graph . = f1(y, z) where fily, 2) = 2, + é’-(y = o) + £{z = z;)

6. given any two hnearly independent vectors a, b in the plane, the plane is the tmoge of the
mapping X : B® — B3 defined by X{(u,v) = 7, + ud + vb

Example 8.1.2. The sphere of radius B centered about the origin can be deseribed as:

Loall (x,y.2) € BY such thet Flx,y, z2) = a° 4+ y* + 22 = R?

S

the graphs of 2 = fy(r,y) where fo(a,y) =+

o

L for {u,v) € [B,27] x [0, 7], X{u,v}= (Rcosusinv, Rsinusinv, Kcosv)

You may recall that the ievel surface concept allowed by far the easiest computation of the normal
ol the tangent plane for a particular point. For example, VF =< 22,2y, 2z > in the preceding
example. Contrast that to caleulation of X, x X, where the » denotes the dreaded cross-product.
Of course each formalism has its place in caleulus II1.
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Remark 8.1.3.

In this warm-up section we have hopefully observed this much about surfaces in R?:

1. the tangent plane is always 2-dimensional, it is really a plane in the traditional sense
of the term.

Lo

. the normal to the tangent plane is always I-dimensional, the normal through a par-
ticular point on the surface is just a line which is orthogonal to all possible tangents
through the point.

3. the dimension of the tangent plane and normal give the total dimension of the ambient

space; 241 = 3.

8.2 manifolds as level sets

We will focus almost exclusively on the level surface formulation of a manifold in the remainder of
this chapter. We say A/ C R" is a manifold of dimension p < n if M has a p-dimensional tangent
plane for each point on M. In other words, A7 is a p-dimensional manifold if it can be locally
approxitnated by RBP at each point on M. Moreover, the set of all vectors normal to the tangent
space will be n — p dimensicnal.

These are general concepts which encompasses lines, planes volumes and much much more. Let me
illustrate by example:

Example 8.2.1. Let g : 7 — B be defined by g(z,y) = y — 2 — 1 note that g(z,y) = 0 gives the
line y—x—1 =0 commonly written as y = x -+ 1; note that the line has direction vector < —1,1 >.
Furthermore, Vg =< 1,—1 > which is orthogenal to < —1,1 >.

Example 8.2.2. Let g B* — B be defined by g(w,u, 2) = y — x — 1 note that g(x,y, 2) = 0 gives
the plane y—x—1 = 0. Furthermore, Vg =< 1, ~1,0 > which gives the normal to the plane g = 0.

Example 8.2.3. Let g : BY — R be defined by glx.y, 2,1) = 4 — 2 — 1 note that g(x,y, z,1) = 0
gives the hyperplane y — x — 1 = 0. Furthermore, Vg =< 1,—1,0,0 > which gives the normal to
the hyperplane g = 0. What does that mean? It means that if I teke any vector in the hyperplane
it is orthogonal to < 1,~1,0,0 >. Let 71,72 be points in the solution set of g(x,y, 2,t) = 0. Denote
™ = (T1,, 21, t1) ond 7y = (22,2, 20, %), we have yp = a1 - 1 and yo = oo + 1. The vector in the
leyperplane is found from the difference of these points:

— —

7= Tg = = (;’I:g,ﬂ,'g + 372‘3,1'12) - (:171, ry 1, 3’1,t1) = (:I}g = Tyl — L, 29 — Z;,tg - i’l)'

1t's easy to see that ¥- Vg = 0 hence Vg is perpendicular to an arbitrary vector in the hyperplane
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If you've begun to develop an intuition for the story we're telling this last example ought to bug
you a hit. Why is the difference of points a tangent vector? What happened to the set of all
tangent vectors pasted together or the differential or the column space of the derivative? All those
concepts still apply but since we were looking at a linear space the space itself matched the tangent
hyperplane. The point of the triple of examples above is just to constrast the nature of the equation
g == 0 in various contexts. We find the dimension of the ammbient space changes the dimension of
the level set. Basically, we have one equation g = 0 and n-unknrowns thesn the inverse image of zero
gives us a (n — 1)-dimensional manifold. If we wanted to obtain a n - 2 dimensional manifold then
we would need two equations which were independent. Before we get to that perhaps I should give
a curvy example.

Example 8.2.4. Let g : B! — R be defined by g(2,y, z,t) = t+22+y>~22% note that g{a,y,2,t) =0
gives a three dimensional subset of B, let’s call it M. Notice Vg =< 2z, 2y, —4z,1 > s nonzero
everywhere. Let’s focus on the point (2,2,1,0) note that ¢(2,2,1,0) = 0 thus the point is on M,
The tangent plane at (2,2,1,0) is formed from the union of all tangent vectors to g = 0 at the
point (2,2,1,0). To find the equation of the langent plane we suppose v : B — M i5 a curve with
¥ # 0 and v(0) = (2,2,1,0). By assumption g{(v(s)) = 0 since v(s) € M for all s € B. Define
Y{0) =< a,b,¢,d >, we find a condition from the chain-rule applicd to g=~v = 0-at ¢ = 0,

d . ,
s

= <d,d,-4,1> - <abed>=0

= da 4 4h — de4-d =0

Thus the equation of the tangent plane is 4(x — 2) + 4(y — 2) — 4z — 1) + ¢ = 0. In invite the
reader to find a vector in the tangent plane and check it is orthogonal io Vg(2,2,1,0). However,
this should not be surprising, the condition the chain rule jusl gave us is just the statement that
< a,b,¢,d >€ Null(Vg{2,2,1,00T) and that is precisely the set of vector orthogonal to Vg(2,2,1, 0).

One more example before we dive into the theory ol Lagrange multipliers. (which is little more
than this section applied to word problems plus the powerful orthogonal complement theorem from
linear algebra)

Example 8.2.5. Let G : B — B2 be defined by Gla,y,2,0) = (z+ 2" + 2 =2 2+1y2+ 12 =2). In
this case G(z,y,2,1) = {(0,0) gives a two-dimensional manifold in BY let's call it M. Notice thai
Gi1=0gives =+ 2 +y* =2 and G2 = 0 gives z -+ y> +1* = 2 thus G = 0 gives the intersection of
both of these three dimensional manifolds in BY (no I can’t "see” it either). Note,

V& =< 22,2y, 1,0 > VGe=<0,29,1,2¢ >
It turns oul that the inverse mapping theorem says G = 0 deseribes a manifold of dimension 2 if

the grodient vectors above form a linearly itndependent sci of vectors. For the example considered
here the gradient vectors arve linearly dependent af the origin since VG, (0) = VGo(0) = (0,0,1,0).
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In fact, these gradient vectors are colinear along along the plane x = ¢ = 0 since VG1(0,y,2,0) =
VG2(0,y,2,0) =< 0,2y,1,0 >. We again seek to conirast the tangent plane and its normal at
some particular point. Choose (1,1,0,1) which is in M since G(1,1,0,1) = (0+1+1— 2,0+
1+1-2)=(0,0). Suppose that v : B — M is a path in M which has v(0) = (1,1,0,1) whereas
¥(0) =< a,b,e,d >. Note that VG1(1,1,0,1) =< 2,2,1,0 > and VG2(1,1,0,1) =< 0,2,1,1 >.
Applying the chain rule to both Gy and Gy yields:

(G179 (0) = VG (v(0) < a,b,e,d >=0 . = <2,2,L,0> - <a,be,d >=0
(GaeyY{D) = VGa{y(0) < a,b,c,d >=10 = <0,2,1,1 > - <a,be,d>=0
This is two equations and four unknowns, we can solve it and write the vector in terms of two free

variables correspondant to the fact the tangent space is two-dimensional. Perhaps it's easier to use
malriz techiques to organize the calculation:

43
2210 bl 0
S INEH
) e
We calculate, rref [ é ; 1 [1) } = [ (l) (1] 1[;2 —i:;éz ] t's natural to chose ¢, d as free vari-
ables then we can read that o = d/2 end b= —¢/2 - d/2 hence

<abod>=<df2, ~¢/2 - d/2,c,d >=F < 0,-1,2,0> —I—% <1,-1,0,2 >
We can see o basis for the tangent space. In foct. I can give paramelric eguations for the tangent
space as follows: ‘
Na,)={1,1L0D4+nu<0,-1,2.0> 4+v<1,~-1,0,2 >

Not surprisingly the basis vectors of the tangent spoce are perpendicular to the gradient vectors
VG(1,1,0,1) =< 2,2,1,0 > and VGo{1,1,0,1} =< 0,2,1,1 > which span the normal plane

Ny, to the tangent plane T, at p = {1,1,0,1). We find that T}, is orthogonal to Np. In summary
TpL = N, and T, & N, = B!, This is just a fancy way of saying that the normal and the tangend

plane only intersect al zero and they together span the entive ambient space.

Remark 8.2.6.

The reason T am bothering with these seemingly bizarre examples is that the method of
Liagrange multipliers comes down to the observation thal both the constraint and objective
fnetion’s pradient vectors should be normal to the tangent planc of ¢he constraint surface.
This means they must both reside in the normal to the tangent plane and hence they will
either be eolinear or for several constraints they will be linearly dependent. The geometry
we consider here justifies the method. Linear algebra supplies the harder part which is

that if fwo vectors are both orthogonal to the tangent plane then they wust both be in
the orthogonal complement to the tangent plane. The heart of the method of Lagrange
multipliers is the orthogonal complement theory from linear algebra. Of course, you can be
heartless and st sucessfully apply the method of Lagrange.




150 CHAPTER 8. ON MANIFOLDS AND MULTIPLIERS

8.3 Lagrange multiplier method for one constraint
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8.4 Lagrange multiplier method for several constraints
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Chapter 9

theory of differentiation

In the last chapter I began by announcing I would apply the central theorems of this course to
solve interesting applied problems. If you remembered that I said that you may be a bit perplexed
after completing the preceding chapter. Where did we use these theorems? It would seem we
mostly just differentiated and pulled a magic A from the thin air. Where did we use the inverse or
implicit mapping theorems? It's subtle. These theorems go to the existence of a mapping, or the
solution of a system of equations. Often we do not even care about finding the inverse or solving
the system. The mere existence justifies other calculations we do make explicit. In this chapter
I hope to state the inverse and implicit funciion theorems carefully. I leave the complete proofs
for Edward’s text, we will just discuss portions of the proof. In particular, I think it’s worthwhile
to discuss Newton'’s method and the various generalizations which reside at the heart of Edward’s
proof. In contrast, I will take it easy on the analysis. The arguments given in Edward’s generalize
easily to the infinite dimensional case. I do think there are easy arguments but part of his game-
plan is set-up the variational calculus chapter which is necessarily infinite-dimensional. Finally, I
conclude this chapter by examining a few examples of constrained partial differentiation.

9.1 Newton’s method for solving the insolvable

I'll begin with a quick review of Newton's method for functions.

Problem: given a function f : R — R which is continuously differentiable on [a,b] and
fla) <0 < f(b) with f'(z) > 0 for cach = € {a,b] how can we find the solution to f(z) =0
w.r.t. the interval [a,b]?

Solution: Newton’s Method. In a nutshell, the idea is to guess some point in z, € [a, b} and
then replace the function with the tangent line to (z,, f(z,)). Then we can easily calculate the zero
of the tangent line through elementary algebra.

flzo)
f'(zo)

y:L}:'D(m)=f($o)“§‘f,(mo)(mmma)=0 = T =T —
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Now, this is just the first ap%)roximation, we can apply the idea again to our new guess z; = T;
that is define 7, = z, — 7o) and think of x; as our new "x,". The zero of the tangent line to

(z1, f(x1)) is called z2 and we can calculate,

?J=L?1(33):f($1)+f’($1)($“'-’131)=0 = Ty =1T1 ™

Notice that if f{z;) = 0 then we found the zero and the method just gives z2 = z;. The idea then
is to continue in this fashion and define the n-th guess iteratively by

Newton’s Method:

flen)

Tpt1 = T — f‘.(l' )
L

If for some particular n we actually find the exact value of the zero then the iteration just stays on
that value. Otherwise, it can be shown that lim, o T, = z. where [f(z,)=0.

Mr:w:i_[g&}
x}&h’l ) ' P e ("1
Hubdt D :
%; i 1' b & :
§ f i ;“; l'f +———f—t——} L }
M/qu % IARSEEE RS X

This is the sunplest form of Newton’s method but it is also perhaps the hardest to code. We'd
have to calculate a new value for the derivative for each step. Edwards gives two modifications of
the method and proves convergence for each.

Modified Newton Methods:

f(zn)
M

9 . X f (-'T; n.)

o | Tp+1 = En — f’{a)

where we know 0 < m < f'{x) < M.

L | Tps1 = op —

where we know f'(a) # 0.

In case {1.) Edwards uses the concept of a contraction mapping to prove that the sequence
converges and he even gives an estimate to bound the error of the guess (see Theorem 1.2 on pg.
164). Then he cautions against {2.) because it is possible to have Fig. 3.2 on pg. 162 occur, in
other words if we guess badly to begin we might never find the root z,. The remedy is fairly simple,
you just look on smaller intervals. For (2.) he states the result concretely only in a local case (see
Theorem 1.3 on pg. 165). I actually have only stated a particular case of his Theorem since I have
made b = 0. The proof of the inverse function theorem builds from method (2.) but I'll give an
example of (1.) because it’s interesting and it should help make this whole discussion & little more
tangible.

b
)



9.1. NEWTON’'S METHOD FOR SOLVING THE INSOLVABLE
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In case (2.) we can actually solve the equation f(z) = y for a given value y close to b provided
f(a) = b and f'(a) # 0. The idea here is just to replace the function at (z,, f(x,)) with the line
Lz} = f(zo)+ f'{a){x—=,) and then we solve L(z) = y to obtain z = xomﬂﬁrgT;y_ Note here we use
the slope from the point (a, b) throughout the iteration, in particular we say £; = z and start iterat-
ing as usual: T4 = Ty — ! (Jf,’zl}_y

(see Theorem 1.3 on pg. 165 in Edwards for proof this converges)

Problem: given a function f : B — R which is continuously differentiable near a and
f{a) 5 0, can we find a function g such that f(g(y))) = v for ¥ near the image f(a)?

Solution: Modified Newton’s Method. we seek to solve f(g{y)) = y for ¥ in some neighbor-
hood of a, simply define g,(y) = a and apply the method

) = g (y) — L @)~y
Un-+1 (y) = g'n(y) f’(a,)

Naotice this can be done for each y near f{a), in other words, we have a sequence of functions
{g2352,- Moreover, if we take n — oo this sequence uniformly converges to an exact solution

g. This gives us an iterative way to construct local inverse functions for some given continuously
differentiable function at a point @ such that f'(a) # 0.

The idea of convergence of functions begs the question of what precisely is the ”length” or "norm”
of a function. Again, I postpone such discussion until the very end of the course. For now just
accept that the idea of convergence of sequences of functions is well defined and intuitively it just
means that the sequence matches the limiting function as n — oo. You encountered this idea in the

discussion of Taylor series in calculus I, one can ask whether the sequence of Taylor polynomials
for f does converge to f relative to some interval of convergence.
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The calculations that follow here amaze me. |
Example 9.1.2, ( ')!%f( i fr‘»«:{r’ ] . E’wa r’gﬁi“/ 7:%&3%, ,;.’-)
. 2 , . R R
"? (X.l = K=, a = | b o= O s -F ({) o iy o=

g
¥ &

@2 (\l =% w%[(}%ﬂ’c}g’?—g‘)m«u iz’gj] = | 4 ..2{_%’« - Log®

| huws Ao Paveérze o f *fff'-?«"_} R

i
P

e F s b ! A / ﬁz
Giv) = [+359- % +---

He ¢ ots (/f + %’3} IR gf’é' L e [f !} v SRR obrevoe

Yiom W) - = [UC(/Z’M/‘QU L,f)] = /- =9 o o o th

sue G0} L S f?u i J/Jf Series wiih tr = e %”4 s

B =t = 79

!Z 2 ! pre
[
f«mz——“ "]’6’ Chivie o L{; ’i‘ L et
it .f
Son |
Example 9.1.3.

!/J.'SM Mii} /,7 ; ’ f@ P .'ﬁ s §'4I VP BTN J

o & o~ C-” 3 Y N . N
wedrden (eswdtr, o Geaing F0o) = s i)

h%ﬁ.& {5}. Cﬂj g 2:3 N ek K , "” ' e

- v e Eid ]
R ra Q“éﬁi“t’: w% foy wmr Casn Dagpowm Ty .

w) = C’@f\%Jm@i‘ﬁ%fﬁw-%}] = 0 —sinla} 44 =
= Y% — s

# " - - - 7 SRS 4

= Sin o~ [ SR sing) - g

Venee £ ) = 29 = sinf

Be o GL foke ohie ke e m&

wsiry

L{?} - & (alé).ds*‘;h Y’})
(%:04)), vt s @ = @  for
0% sin (89— sin0g) )

Siey i; T A S w&}

S iy {%} e L

It would be interesting to implement this algorithm in Mathematica.
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9.1.1 local solutions to level curves

Next, we try a similar technique to solve equations of the form G{xz,y) = 0. You should recall that
the solution set of G(z,y) = 0 is called a level curve. Usually we cannot make a global solution
for y; in other words, there does not exist f(z)} such that G(z, f(z)) = 0 for all z in the solution
set of G. For example, G(r,y) = z* + y? — 1 allows us to cast the unit circle as the solution set of
the equation G{(z,y) == 0. But, the unit circle is not the graph of a single function since it fails the
vertical line test. Instead we need a pair of functions to cover the circle. Generally the situation can
get quite complicated. Let's pause to notice there are two points where we cannat find a solution to
G(z,y) = 0 on an open disk about the point: these points are (—1,0) and (1,0). We have trouble
at the vertical tangents, note Gy(z,y) = 2y has G,(—1,0) = G,(1,0) =0 1.

Idea: use the Newton’s method approach to find solution, however, the approach here is slightly
indirect. We'll use the mean value theorem to replace a function with its tangent line. Consider
a fixed z, near a then we have an function of y alone: h{y)} = G{z.,y). Apply the mean value
theorem to & for a y-value y, such that point (z.,y.) has G{z.,y:) = 0,

G($*1 y*) - G(‘T*v b) _ _G($*1 b)

Gy(mhb) - y*““b B U —b
We can solve for y, to obtain:
. G(x4, b)
N )
Define f,(z) = b and define fi(x) by
Gz, fo(z)) Gz, f1(z))

fi(z) = folz) — and fa(z) = fi(z) — and so forth...

Gy(z, fo(x)) Gy(z, fi(z))

Foruntately, Edwards proves we can use an easier formula where the denomimator is replaced with
Gy(a,b) which is pretty close to the formula we have above provided the point considered is close
to (a, b).

Theorem 9.1.4. (Theorem 1.4 in Edwards's Text)

Let G : R? = R be continuously differentiable and (a,b) a point such that G(a,b) = 0 and
Gy(a,b) # 0 then we can find a function f on some closed interval J centered at e which
covers the solution set of G(z,y) = 0 near all points close to (a,b). Moreover, this local
solution is the limit of the sequence of functions inductively defined below:

G(.’L‘,fn(ﬂi))

fa(m) =b and fn-i—l(m) =fn($)—' Gy(a b)

for all n € N. We can calculate solutions iteratively!

Lyes, if we used closed disks then we could find a solution on a disk where (—1,0) or (1,0) was on the boundary,
the point of the discussion is to motivate the implicit function theorem’s langauge
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Look at Example 2 on page 170 for a nice straight-forward application of Theorem 1.4. Perhaps
you're not too excited by this example. Certainly, algebra solves the problem with ease anyway, we
just have to take care with the algebraic steps. I intend for the next example to confound algebraic
techniques and yet we can find an approximate solution:

Example 9.1.5. Let G(z,y) = exp(z® + y*) +z — e. Notice that G(0,1) = 0 and G,(0,1) = 2.
Apply the algorithm:

folz} =1
filzg)=1-3G(z,1) = 1— L{exp(z’ + 1) + = — ¢)
f2(z) = filz) - glezp(a® + [fi(z)P +z — €]
I'd go on but it just gets ugly. What is neat is that
y=filz) =1— §lezp(z® +1) + 2 —e)
gives an approzimation of a local solution of emp(wz + yz) + z — e =0 for points near (0,1).

Example 9.1.6. Let G(z,y) = =2 +y>* +y — 1 note G, = 2y + 1. Note that G(1,0) = 0 and
Gy(1,0) = 1. Calculate the local solution by the algorthim:

folz) =0

fi(z) =0~ mD)—l—m
fo(r)=1—-2*-G(z,1-2*) =z* - 7!

falz) =2 -2t — Gz, 2? — ") =1 -2 — 2! + 225 — 2B

Now, these formulas are somewhat bizarre because we are writing an approzimation centered at
z = 1 as polynomials centered at zero. Ii is probeble that o nicer pattern emerges if we were to
write all of these as polynomials in (x — 1). Notice that f,(1) =0 forn=0,1,2,3.

Example 9.1.7. Let G(z,y) = 2* + y2 + ¥ — 2 note G, = 2y + 1. Note that G(0,1) = 0 and
Gy(0,1) = 3. Calculate the local solution by the algorthim:

folz) =1

filzy=1- %G(:L, 1)
= 1—%3:2

fg(:‘L) e ] — %LL‘Q G(.’E, 1-— B"L' )
=1-22® —[2%+ (1 - Ja?)?+ (1 - {) - 2
=1- %wg - %.734

Note how the approzimation unfolds order by order when the center matches the format in which
we write the expansion.
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If the center a s 0 then what can happen is that the terms of a particular order get spread across
all orders in the Newton’s Method approximation. I've found the expansions generated from the
Newton’s method are not easy to write in a nice form in general... of course, this shouldn’t be
that surprising, the method just gave us a way to solve problems that defy closed-form algebraic
solution.

9.1.2 from level surfaces to graphs

In the preceding section we found that G(z,y) = 0 could be understood as a graph of a function
of a single variable locally, in other words we found a l-manifold. When we have an equation of n-
variables it will likewise find (n—1) free variables. This means that G(z,y, z) = 2?2 +y2+22 -1 =0
gives us a level-surface (the sphere), or G(¢, T, y, z) = —t2+z2 %42 = 0 gives a level-volume (the
light cone?). If we can solve the equation G(z1,ms,...,z,) for z; then we say we have re-written
the level surface as a graph. This is important because graphs are a special case of a parametrized
manifold, the parametric formalism allows us to set-up integrals over higher-dimensional surfaces
and so forth. These things will become clearer when we study integration of differential forms later
in this course. I state Theorem 1.5 in Edwards here for completeness. The essential point is this,
if VG(p) # 0 then there exists j such that gfg(p) # 0 and we can solve for z; by using basically
the same the iterative process we just worked out in the n = 2 case in the preceding subsection.

Theorem 9.1.8. (Theorem 1.5 in Edwards’s Text)

Let G : R® — R be continuously differentiable and p = (a1, as,...,a,) a point such that
G(p) = 0 and G;(p) # 0 then we can find a function f on some closed interval J centered at
a; which covers the solution set of G(x1, za,...,2,) = 0 near all points close to p. Moreover,
this local solution is the limit of the sequence of multivariate functions inductively defined

below: .
1y oy F(E), . .0, Tn)

G:l'.‘j ()
forall n € N. If f = limpe0 fn then G(zy,..., f(Z),...,2n) = 0 for points near p.

fo(f) = Oy and fn+1(j‘) — fn(f) _ G(

Something interesting happens when we apply this theorem to examples which allow explicit closed-
form algebraic solution.

Example 9.1.9. Consider G(z,y,2) = 2+y+22—-4=0. Note that G, =2+ 0 and G{1,1,1) = 0.
Apply the olgorithm.:

fﬂ(xay) =1

filzy)=1- %G(m,z,l) =1- %(m+y+2w4) = _%(3:+y—4)

folz,y) = -3z +y—4) — 3Gz, y, —3(z + v~ 4)) = fi(z,y)

You can clearly see that f, = f1 for olln > 1 thus limy o0 fn = f1- In other words, we found the
exact solution is z = —%(m +y—4).

Iphysically this represents the border of the spacetime which we can interact with in the future or the past,
granting that special relativity actually describes nature without exception...



162 CHAPTER 9. THEORY OF DIFFERENTIATION

You might wonder if this just happened because the preceding example was linear, in fact, it has
little to do with it. Here's another easy example,

Example 9.1.10. Consider G{z,y, z) = z?+y?—z = 0. Note that G, = —1 # 0 and G{0,0,0) = 0.
Apply the algorithm:

fo(z,y) =0
filz,y) =04 G(z,y,0) = z* + ¢°
folmy) =2+ + Glz,y, 22 +v)) =2 + * + [2* + ¥ — (2® + )] = fi(z, )

You can clearly see that f,, = fi for all n > 1 thus im, .o fn = f1. In other words, we found the
exact solution is z = 2 -+ y>.

Part of the reason both of the preceding examples were easy is that the solutions were not just
local solutions, in fact they were global. When the solution is the level surface equation breaks up
into cases it will be more complicated.

Example 9.1.11. Suppose G(z,y, z) = sin{z+y—z) = 0 then solutions must satisfy s-+y—z = nmw
forn € Z. In other words, the algorithm ought to find z = 2 +y — nmw where the choice of n depends
on the locality we seek a solution. This level-set is actually a whole family of disconnected paralell
planes. Let’s see how the algorithm deals with this, feed it (0,0,27) as the starting point (this ought
to select the n = —2 surface. Apply the algorithm te G(z,y,2) = sin(z + y ~ z) where clearly
G(0,0,27) =0 and G, = —cos{—27) = —1 hence:

folz,y) =2m

filz,y) = 27+ G(z,y, 27) = 27 +sin(z + y + 2m) = 27 + sin{z + y)
fa(z,y) = 2m +sin(z + y) + sin(z + y + sinf{z + y))

fa(z,y) = 27 4+ sin(z + y) + sin(z + y + sin(z + y))

+sin{z + y + sin(z + y) + sin(z + y + sin(x + y)))
I deem these formulas weird. Perhaps I can gain some insight by expanding fr,
flzyy=2m+z+y - gz +y)’+--

I'm a little scared to look at fo. There must be some sort of telescoping that happens in order for
us to obtain the real solution of z = x + y + 2m.

It’s not at all obvious to me how the formula above telescopes in the limit that n — occ.
However, unless I'm missing something or making a silly mistake, it seems clear that &
is continuously differentiable at (0.0, 2#7) and G.(0,0,2%) s 0. Therefore, Theorem 1.5
applies and the sequence of function f, should uniformly converge Lo the soliution we know
exists through direct argument in this example. Anyway, my point in this section is not to
make a blanket endorsement that you solve all equations by the algorthim. I am merely
trying to illustrate how it works.
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9.2 inverse and implicit mapping theorems

In the preceding section we began by motivating the inverse function theorem for functions of one
variable. In short, if the derivative is nonzero at a point then the function is 1-1 when restricted to
a neighborhood of the point. Newton’s method, plus a bunch of careful analysis about contraction
mappings which we skipped this semester, then gave an algorithm to calculate the local inverse for
a function of one variable. After that we essentially applied the local inverse idea to the problem of
solving a level curve G{z,y) = 0 locally for an explicit solution of y. The result that such a solution
is possible near points where G, # 0 is known as the implicit function theorem. We then
concluded by observing that almost the same mathematics allowed us to find an explicit solution
of G(z1,...,2p+1) = 0 for one of the variables provided the partial derivative in that direction
was nonzero. This result is also called the implicit function theorem. We used these theorems
implicitly when I pulled parametrizations from my imagination, typically it is the imphcit function
theorem that justifies such a step. Moreover, to insist Vg(p) # 0 means that there exists at least
one partial derivative nonzero so the implicit function theorem applies. All of that said, this section
is basically the same story again. Difference is we have to deal with a little extra notation and
linear algebra since & mapping is actually an ensemble of functions dealt with at once.

9.2.1 inverse mapping theorem

Suppose f : R® — R™ has an inverse f~! = g then we have fog = Id so the chain rule yields
df e dg = d{Ild) = Id since the identity is a linear map and hence it is its own best linear approx-
imation. Note that we find that f'g’ = I, thus (f)~! = ¢’ or in other notation [f']~ = [f~].
With this in mind we wish to find a formula to calculate the inverse function. The definition seems
like a good place to start:

o) =y = gw)=7"Ww)
= g(y) = g(f(a)) + ¢'(a)[v — f(a)]
= gly) = e+ [f' (@) 'y — f(a)]
= 1(¥) = go(¥) + [F"(0)] 'y — f(ga(y))] where go(y) =a
= gnt1(¥) = gn(¥) + [F' (@) v ~ Flgn(¥))] where go(y) =a

Theorem 9.2.1. (Theorem 3.3 in Edwards’s Text see pg 185)

Suppose f: R™ = R" is continuously differentiable in an open set W containing a and the
derivative matrix f/(a) is invertible. Then f is locally invertible at a. This means that
there exists an open set U C W containing ¢ and V' a open set containing b = f(a) and
a one-one, continuously differentiable mapping g : V — W such that g{f(z)) = z for all
z € U and f(g{y)) = y for all y € V. Moreover, the local inverse g can be obtained as the
Hmit of the sequence of successive approximations delined by

go(y) =a and gni1(y) = ga(y) — [F'(@)] 7' 1f (gn (1)) — ¥]

forall ye V.
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Notice this theorem gives us a way to test coordinate mappings for invertibility, we can simply
calculate the derivative matrix then calculate its determinant to check to see it is nonzero to insure
invertibility and hence the local invertibility of the coordinate map. There still remains the danger
that the mapping doubles back to the same value further out so if we ingist on a strict one-ane
correspondance then more analysis is needed to make sure a given transformation is indeed a
coordinate system. (see Ex 1 on pg. 183 for a function which is everywhere locally invertible and
yet not an injective mapping)
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9.2.2 implicit mapping theorem

Let me begin by stating the problem we wish to consider:

Given continnously differentiable functions G1,Gs, ..., Gy

GJ'L("EIV'-'1$ﬂ?-)y11"'!yn) = U

Locally solve y1,...,4, as functions of z1,...2,. That is, find a mapping & : R™ - R”

such that G(z,y) = 0 iff y = h{x) near some point (a,b) € R™" such that G(a,b) = 0. In
this section we use the notation = = (x1,29,... ) and ¥ = (41,92, ., Yn)-

It is convenient to define partial derivatives with respect to a whole vector of variables,

oc | ™ dzm 8G Oun Bun
Oz 8Gn ... OCa Oy oG, ... 8Gy
[ZE3 i thn dyn

Consider h : R™ — R™ such that G{z,y) = 0 iff y = h(z) near some point (a,b) € R™*" such that
G(a,b) = 0. In other words, suppose G{z,h{z)) = 0. The chain rule reads:

G ac
+

0= 5z t 5,7

Or, provided the matrix % is invertible we can calculate,

= _[09] 00
Wz)= [By O

Theorem 9.2.4. (Theorem 3.4 in Edwards’s Text see py 190)

Let G : R™™ — R" be continuously differentiable in a open ball about the point {a,b)
where G(a,b) = 0. If the matrix %(a, b) is invertible then there exists an open ball U/
containing a in R™ and an open ball W containing (a,b) in R*"™ and a continuously
differentiable mapping & : U — R™ such that G(z,y) = 0 iff y = h(z) for all (z,7) € W.
Moreover, the mapping h is the limit of the sequence of successive approximations defined
inductively below

ho(z) = b, o1 = hn(w) = [55(a, 0)] 7' G(z, ()

foralz e U.
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I have given barely enough details to understand the notation here. If you read pages 188-194 of
Edwards you can have a much deeper understanding. I will not attempt to recreate his masterpiece
here. One important notation 1 should mention is the so-called Jacobian of G with respect to %J

It is the determinant of the partial derivative matrix gG which is denoted detBG = H

This gives us an easy criteria to check on the invertibility of %g. Note that 1f this Jacobian is
nonzero then we may judge the level set G(z,y) = 0 is an n-dimensional space since it is in one-one
carrespondence of some open ball in R™.

Remark 9.2.5.

You.may recall the strange comments in red from my section 6.2. I discussed the rank
of various derivative matrices. In this section we put the free variables {z) at the start
of the list and the dependent variables (y) at the end, however, this is just a notational
choice. In practice if we can select any set of n-variables for G(Ll,gg, v ey Eman) = 0 such
that det[G;;|Gi,] - |Gi,] # 0 then we can solve for z;,,..., 2, in terms of the remaining
variables. "Thus, in retrospect, showing full rank of the derivative matrix could justifies the
local invertibility of certain mappings.
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9.3 implicit differentiation

Enough theory, let’s calculate. In this section I apply previous theoretical constructions to specific
problems. 1 also introduce standard notation for " constrained” partial differentiation which is also
sometimes called "partial differentiation with a side condition”.
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Chapter 14

variational calculus

14.1 history

The problem of variational calculus is almost as old as modern calculus. Variational calculus seeks
to answer questions such as:

Remark 14.1.1.

I. what is the shortest path between two points on a surface ?

2. what is the path of least time for a mass sliding without [riction down some path
between two given points 7

3. what is the path which minimizes the energy for some physical system 7

4. given two points on the z-axis and a parficular area what curve has the longest
perimeter and bounds thal area between those points and the z-axis?

You'll notice these all involve a variable which is not a real variable or even a vector-valued-variable.
Instead, the answers to the questions posed above will be paths or curves depending on how you
wish to frame the problem. In variational caleulus the variable is a function and we wish to find
extreme values for a functional. In short, a functional is an abstract function of functions. A
functional takes as an input a function and gives as an output a number. The space from which
these functions are taken varies from problem to problem. Often we put additional contraints
or conditions on the space of admissable solutions. To read about the full generality of the
problem you should look in a text such as Hans Sagan’s. Our treatment is introductory in this chap-
ter, my aim is to show you why it is plausible and then to show you how we use variational calculus.

We will see that the problem of finding an extreme value for a functional is equivalent to solving
the Fuler-Lagrange equations or Euler equations for the functional. Euler predates Lagrange in his

223
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discovery of the equations bearing their names. FEulers’s initial attack of the problem was to chop
the hypothetical solution curve up into a polygonal path. The unknowns in that approach were
the coordinates of the vertices in the polygonal path. Then through some ingenious calculations
he arrived at the Euler-Lagrange equations. Apparently there were logical flaws in Euler's origi-
nal treatment. Lagrange later derived the same equations using the viewpoint that the variable
was a function and the variation was one of shifting by an arbitrary function. The treatment of
variational calculus in Edwards is neither Euler nor Lagrange’s approach, it is a refined version
which takes in the contributions of generations of mathematicians working an the subject and then
merges it with careful functional analysis. I'm no expert of the full history, I just give you a rough
sketch of what I've gathered from reading a few variational caleulus texts.

Physics played a large role in the development of variational caleulus. Lagrange was a physicist
as well as a mathematician. At the present time, every physicist takes course(s) in Lagrangian
Mechanics. Moreover, the use of variational calculus is fundamental since Hamilton's principle says
that all physics can be derived from the principle of least action. In short this means that nature is
lazy. The solutions realized in the physical world are those which minimize the action. The action

Syl = fL(y, ', t)dt

is constructed from the Lagrangian L =T — U where 7" is the kinetic energy and U is the potential
energy. In the case of classical mechanics the Euler Lagrange equations are precisely Newton’s
equations. The Hamiltonian H = T 4 U is similar to the Lagrangian except that the funda-
mental variables are taken to be momentum and position in contrast to velocity and position in
Lagrangian mechanics. Hamiltonians and Lagrangians are used to set-up new physical theories.
Fuler-Lagrange equations are said to give the so-called classical limit of modern field theories. The
concept of a force is not so useful to quantum theories, instead the concept of energy plays the
central role. Moreover, the problem of quantizing and then renormalizing field theory brings in
very sophisiticated mathematics. In fact, the math of modern physics is not understood. In this
chapter I'll just show you a few famous classical mechanics problems which are beatifully solved by
Lagrange’s approach. We’'ll also see how expressing the Lagrangian in non-Cartesian coordinates
can give us an easy way to derive forces that arise from geometric contraints. Hopefully we can
derive the coriolis force in this manner. I also plan to include a problem or two about Maxwell's
equations from the variational viewpoint. There must be at least a dozen different ways to phrase
Maxwell's equations, one reason I revisit them is to give you a concrete example as to the fact that
physics has many formulations.

I am following the typical physics approach to variational calculus. Edwards’ last chapter is more
natural mathematically but I think the math is a bit much for your first exposure to the subject.
The treatment given here is close to that of Arfken and Weber's Mathematical Physics text, how-
ever I suspect you can find these calculations in dozens of classical mechanics texts. More or less
our approach is that of Lagrange.
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14.2 the variational problem

Qur goal in what follows here is to maximize or minimize a particular function of functions. Suppose
F, is a set of functions with some particular property. For now, we may could assume that all the
functions in F, have graphs that include (z1,71) and (z2,y2). Consider a functional J : F, — F,
which is defined by an integral of some function f which we call the Lagrangian,

Jy] = f 2 fly, v, z)dx.

We suppose that f is given but y is a variable. Consider that if we are given a function * € F,
and another function n such that n(z,) = n{zs) = 0 then we can reach a whole family of functions
indexed by a real variable « as follows (relabel y*(x) by y(z,0) so it matches the rest of the family
of functions):

y(z, a) = y(z,0) + an(z)

Note that = — y(z, o) gives a function in F,. We define the variation of y to be

5y = an(z)

This means y(z, a) = y(z, 0) + dy. We may write J as a function of & given the variation we just
described:

J(a) = f * Flule @), y(o oY, ) do

It is intuitively obvious that if the function y*(z) = y(x,0) is an extremum of the functional then
we ought to expect

[3.](05)} _0
da |, _p
Notice that we can calculate the derivative above using multivariate calculus. Remember that
yz, o) = y{z,0) + an(z) hence y(z,a) = y(x,0) + an(z) thus fgl 77 and 6” =75 = %.
Consider that:
aJ(e) O
o) _ 2 [ ol 0) (2,0’ ) s |
/ 6‘f By Bf By " af 8z e
. EN Bcv 8y o ' Bz da
4 9f dn
/m (Bu e )dm (14.1)

Observe that

af 9/ afdn
dm[ﬂy ] dz [ag]“ay ' dx
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Hence continuing Equation 14.1 in view of the product rule above,
aJ{a) [/ Of d|adf d | af
dae -/wl ( @n + dx By"n dx | Oy m )de
ar | /I( af [af] )
- + iy — dr 14.2
7 2y Jz \ O dz | oy’ |" (14.2)

oy
o dfor
‘/z](ay dw[ay])"d”

Note we used the conditions 7(z;) = n{x2) to see that, 2 nlxl = d_,r’ Lnp() — w“in('nl) = 0. Qur goal
is to find the extreme values for the functional .J. Let me take a few sentences to again restate
our set-up. Generally, we take a function y then J maps to a new function J[y]. The family of
functions indexed by o gives a whole ensemble of functions in #, which are near ¥* according to
the formula,

y(z, @) = y*(z) + an(z)

Let’s call this set of functions W);. If we took another function like 7, say { such that ((z;) =
{{z2) = 0 then we could look at another family of functions:

y(z,a) = y*(r) + al{z)

and we could denote the set of all such functions generated from ¢ to be W;. The total variation
of y based at y* should include all possible families of functions in F,. You could think of W, and
W¢ be two different subspaces in F,. If % ( then these subspaces of 7, are likely disjoint except
for the proposed extremal solution y*. It is perhaps a bit unsettling to realize there are infinitely
many such subspaces because there are infinitely many choices for the function 5 or ¢. In any event,
each possible variation of ¥* must satisfy the condition [_aggx}} = 0 since we assume that y*
=()

is an extreme value of the functional J. It follows that the Equ;tion 14.2 holds for all possible 1.
Therefore, we ought to expect that any extreme value of the functional J{y] le flu, v, x)dz
must solve the Buler Lagrange Equations:

af d[af
dy  dr

a——;} = () Euler-Lagrange Equations for J{y f FOny' . x)dx
¥ &

14.3 wvariational derivative

The role that # played in the discussion in the preceding section is somewhat similar to the role
that the "hA” plays in the definition f/(a) = limp_g w You might hope we could replace
arguments in 5 with a more direct approach. Physicists have a heuristic way of making such
arguments in terms of the variation §. They would cast the arguments in the last page by just
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"taking the variation of J”. Let me give you their formal argument,

Tz

5J=§[ f(y,y’,m)dm]

T1

=[ m251‘?;5:, }

1

=/m(a£5 +af,( )+B_f )dm
=/m1 (3f +gfd(¢5y))d:l: (14.3)

dy
-5, (G =la])
oyl -+ — - - dydz

81 2 o tdy dx|dy
Therefore, since 0y = 0 at the endpoints of integration, the Euler-Lagrange equations follow from
6J = 0. Now, if you're like me, the argument above is less than satisfying since we never actually
defined what it means to "take 6” of something. Also, why could I commute the variational § and
% )? That said, the formal method is not without use since it allows the focus to be on the Euler
Lagrange equations rather than the technical details of the variation.

Remark 14.3.1.

The more adept reader at this point should realize the hypocrisy of me calling the above
calculation formal since even my presentation here was formal, I also used an analogy, I
assumed that the theory of extreme values for multivariate calculus extends to function
space. But, F, is not R, it’s much bigger. Edwards builds the correct formalism for a
rigourous calculation of the variational derivative. To be careful we’d need to develop the
norm on function space and prove a number of results about infinite dimensional linear
algebra. Take a look at the last chapter in Edwards’ text if you're interested. I don't
believe I'll have time to go over that material this semester.

14.4 FEuler-Lagrange examples

I present a few standard examples in this section. We make use of the calculation in the last
section. Also, we will use a result from your homework which states an equivalent form of the

Fuler-Lagrange equation is
af d ,Of
i v

dr dz

This form of the Euler Lagrange equation yields better differential equations for certain examples.
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14.4.1 shortest distance between two points in plane

If s denotes the arclength in the xy-plane then the pythagorean theorem gives ds? = dz? -+ dy?

1

infinitesimally. Thus, ds = /1 + %2 dr and we may add up all the little distances ds to find the
total length between two given points (z1,y1) and (za, ya):

J[y}=fm2 1+ (y') de

T
Identify that we have f(y,v',z) = /1 + (v')2. Calculate then,

3f_0 and ﬁ= y

dy o i+ ()2
Euler Lagrange equations yield,
d [af ] of d [ y } y
— | === = — || =0 = —eee—— = &
dz [33/' ay dr | /14 (y')? VI+ ()

where & € R is constant with respect to z. Moreover, square both sides to reveal

()’ 2 "2 K dy k?
1+ (V)2 = W=itmE 7 R ioEeT

where I have defined m is defined in the obvious way. We find solutions y = ma + b. Finally, we
can find m, b to fit the given pair of points {z1,31) and (x4, y2) as follows:

'U?"'Ul(

T —Iy)
o — I

o =mz; + b and Yo =mzs + b = Y=y +

provided x; # zo. If &1 # x4 and y; # y2 then we could perform the same calculation as above
with the roles of z and y interchanged,

Jz] = ]-yz V14 (z) dy

where &' = dz/dy and the Euler Lagrange equations would vield the solution

Lo - L1
Y2 — 1

=1z + (y — )

Finally, if both coordinates are equal then (z1,y1) = (z2,y2) and the shortest path between these
points is the trivial path, the armchair solution. Silly comments aside, we have shown that a
straight line provides the curve with the shortest arclength between any two points in the plane.
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14.4.2 surface of revolution with minimal area

Suppose we wish to revolve some curve which connects (z1,71) and (z2,y2) around the x-axis. A
surface constructed in this manner is called a surface of revolution. In calculus we learn how
to calculate the surface area of such a shape. One can imagine deconstructing the surface into a
sequence of ribbons. Each ribbon at position z will have a "radius” of y and a width of dx however,
because the shape is tilted the area of the ribbon works out to dA = 2wyds where ds is the arclength.

Y} A

e U’mfuf’ﬁ
- ("rmj
Vi = £ 1x)
@Wa}y‘.ml‘
e a2 E
for %EXEXs

as

cmg_f

Y
Ny

Jd's
(g,ﬂ;&;

If we choose = as the parameter this yields dA = 2=xy+/1 + (y')? dz. To find the surface of minimal

surface area we ought to consider the functional:

Aly] = fm 2ryy/ 1+ ()2 dz

I

Identify that f(y,v/,z) = 2my/1+ (¥')? hence f, = 2w/1+ (y')? and f, = 2myy’/+/1+ (¥)2.

The usual Fuler-Lagrange equations are not easy to solve for this problem, it’s easier to work with

the equations you derived in homework,

of d  Of
a“a‘g[f Yoy J

Hence,

[gwym L())z} _

Dividing by 27 and making a common denominator,

d y ] y
dz [\/1 + (') 1+ (y')?
where % is a constant with respect to z. Squaring the equation above yields

bl
y- 2 9 9 2 dyn?
— =k = Yy —k* =k (5E)°
d
14 (F)?

Solve for dz, integrate, assuming the given points are in the first quadrant,

=kcosh™' (£} +¢

P/d_@:fﬂ
/yz_kz



230 CHAPTER 14. VARIATIONAL CALCULUS

r—=c
y—kcosh( i )

generates the surface of revolution of least area between two points. These shapes are called
Catenoids they can be observed in the formation of soap bubble between rings. There is a vast
literature on this subject and there are many cases to consider, I simply exhibit a simple solution.
For a given pair of points it is not immediately obvious if there exists a solution to the Euler-
Lagrange equations which fits the data. (see page 622 of Arfken).

14.4.3 Braichistochrone

Suppose a particle slides freely along some curve from (z1, y1) to (2, ¥2) = (0, 0) under the influence
of gravity where we take y to be the vertical direction. What is the curve of quickest descent?
Notice that if x; = 0 then the answer is easy to see, however, if xy 5 0 then the question is not
trivial. To solve this problem we must first offer a functional which accounts for the time of descent.

Note that the speed v == ds/dt so we'd clearly like to minimize J = f((cféi“" 1) c,ff Since the object is

assumed to fall freely we may assume that energy is conserved in the motion hence

1
—mv® = mg(y - y1) = v=+/2(y — )

2
As we've discussed in previous examples, ds = /1 + (y')?dt so we find

1+(y

Tl = 29 -

f(y,y'.w)

Notice that the moedified Euler-Lagrange equations % - % [ -1 %] = 0 are convenient since

fz = 0. We calculate that

af 1 2y’ y

By o [ 20— v} alw — )L+ WD)
“V 29(n—v)

Hence there should exist some constant 1/(k+/2¢g) such that

1+ (y)? (v')? 1

2000 —y)  V2ln -9 +F )2 kg

It follows that,

1 —_—

Vi -+ 0D % - (yl N ?”) (1 + (%)2) =
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We need to solve for dy /dz,

(@)2_y+k2—yi

dy\*
- == ) =k - =
(n — ) (dm) 1y +y o =

Or, relabeling constants a = y; and b = k% — ¢; and we must solve

b —
@.—_i +ty = :r:x:i:/ 2 ydy
da a—y b4y

The integral is not trivial. It turns out that the solution is a cycloid (Arfken p. 624):

mw—*a;b(G-i-sin(B)) —d y= ”‘;“b(l—cos(@)> _b

This is the curve that is traced out by a point on a wheel as it travels. If you take this solution
and calculate J[ycyetoid] you can show the time of descent is simply

_run
=3 2g

if the mass begins to descend from (z3, ¥2). But, this point has no connection with (z1,11) except
that they both reside on the same cycloid. It follows that the period of a pendulum that follows
a cycloidal path is indpendent of the starting point on the path. This is not true for a circular
pendulum in general, we need the small angle approximation to derive simple harmonic motion. It
turns out that it is possible to make a pendulum follow a cycloidal path if you let the string be
guided by a frame which is also cycloidal. The neat thing is that even as it loses energy it still
follows a cycloidal path and hence has the same period. The " Brachistochrone” problem was posed
by Johann Bernoulli in 1696 and it actually predates the variational calculus of Lagrange by some
50 or so years. This problem and ones like it are what eventually prompted Lagrange and Euler to
systematically develop the subject. Apparently Galileo also studied this problem however lacked
the mathematics to crack it.
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CHAPTER 14. VARIATIONAL CALCULUS

14.5 Euler-Lagrange equations for several dependent variables

We still consider problems with just one independent parameter underlying everything. For prob-
lems of classical mechanics this is almost always time {. In anticipation of that application we
choose to use the usual physics notation in the section. We suppose that our functional depends on
functions y1,42, ..., ¥n of time ¢ along with their time derivatives 1,99, ..., .. We again suppose
the functional of interest is an integral of a Lagrangian function f from time ¢, to time ts,

t2
J[(y:)] = t F s, 41, t) dt

here we use (y;) as shorthand for (yi,¥2,...,ys) and (%) as shorthand for (41, %0,...,%,). We
suppose that n-conditions are given for each of the endpoints in this problem; w;(t1) = w;; and
yi(ta) = yin. Moreover, we define 7, to be the set of paths from R to R® subject to the conditions
just stated. We now set out to find necessary conditions on a proposed seolution to the extreme
value problem for the functional J above. As before let’s assume that an extremal solution y+ € F,
exists. Moreover, imagine varying the solution by some variational function # = (1;) which has
(1) = (0,0,...,0) and n(t2) = (0,0,...,0). Consequently the family of paths defined below are
all in F,,
y{t, e} = y7(t) + an(t)

Thus y(t,0) = y*. In terms of component functions we have that
vilt, o) = yi (t) + ami(t).
You can identify that dy; = y;(f, o) — 7 (¢) = an;(t). Since y* is an extreme solution we should

expect that g—i = (. Differentiate the functional with respect to « and make use of the

=[)
chain rule for f which is a function of some 2n 4+ 1 variables,
aJ{« 0 t2 )
@ [ it w e
ty

oy _52
2 O-( af dy;  B) 8y
“[ (a@%*@;é&)dt

1 g=1

g Bf of dnj; )
- i+ dt 14.4
/t.l ;( aJ_’J aUJ dt ( )

2 & d of )
Z 67}_1 i1 /tl = ( ay] Tt i g

Since n{t;) = n{ta) = 0 the first term vanishes. Moreover, since we may repeat this calculation for
all possible variations about the optimal solution y* it follows that we obtain a set of Euler-Lagrange
equations for each component function of the solution:

r)_f - —i'— df] 0 j=1,2,...n Euler-Lagrange Eqns. for J[{y)] / f i, vin t) dt
dy;  di | dy; '
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Often we simply use % = x, y» = y and y3 = z which denote the position of particle or perhaps
Just the component functions of a path which gives the geodesic on some surface. In either case
we should have 3 sets of Euler-Lagrange equations, one for each coordinate. We will also use non-
Cartesian coordinates to describe certain Lagrangians. We develop many useful results for set-up
of Lagrangians in non-Cartesian coordinates in the next section.

14.5.1 free particle Lagrangian

For a particle of mass m the kinetic energy K is given in terms of the time derivatives of the
coordinate functions z,y, z as follows:

K=+ +2)

Construct a functional by integrating the kinetic energy over time t,

t2
S = r 2(3% + 9 + 3%) dt
L1

The Euler-Lagrange equations for this functional are

Bz dt

By dt 2

%wi% 8]('_d8£ aK  d[oK
dr  di| 8% ay

Since %L; = mi, % = my and % = mz it follows that

ID=mrE' 0 =my Ommfi.l

You should recognize these as Newton’s equation for a particle with no force applied. The solution
is (z(t), y(t), 2(t)) = (ro + tvy, yo + tvy, 2o + tv.) which is uniform rectilinear motion at constant
velocity (vg, vy, v2). The solution to Newton’s equation minimizes the integral of the Kinetic energy.
Generally the quantity S is called the action and Hamilton’s Principle states that the laws of physics
all arise from minimizing the action of the physical phenomena. We’ll return to this discussion in
a later section.

14.5.2 geodesics in R?

A geodesic is the path of minimal length between a pair of points on some manifold. Note we
already proved that geodesics in the plane are just lines. In general, for B3, the square of the
infinitesimal arclength element is ds® = dz? + dy® + dz®. The arclength integral from p =20 to
7 = (¢zy @y, g=) in R? is most naturally given from the parametric viewpoint:

i
S:/ V24 g%+ 22 dt
8]
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We assume (z(0), y(0), 2(0)) = (0,0,0) and {z(1),y(1),2(1)) = ¢ and it should be clear that the
integral above calculates the arclength. The Euler-Lagrange equations for z, v, z are

d Z _o A v _o O 5 .,
di '\/3'32‘!‘?;[2-{‘22 o dt 1/i2+y2+é2 o dt ’i:2+’y‘2“§~2,:2 -
It follows that there exist constants, say a, b and ¢, such that
& 7 Z
R S T R S
Vit R+ 22 ViR + P+ 22 VB2 + i+ 2

These equations are said to be coupled since each involves derivatives of the others. We usually
need a way to uncouple the equations if we are to be successful in solving the system. We can
calculate, and equate each with the constant 1:

i 3 § 3 2
a/E 4+ 2+ 32 bER R+ 22 /iR 2+ 22

But, multiplying by the denominator reveals an interesting identity

1 =

$2+?j2+22:—=""m
a

The solution has the form, z(t) = tq,., y(t) = tg, and z(¢) = tg.. Therefore,

{(z(t), y(t), (1)) = t(gz, 0y, €=) = tg.

for 0 < ¢ < 1. These are the parametric equations for the line segment from the origin to ¢.

14.6 the Euclidean metric

The square root in the functional of the last subsection certainly complicated the calculation. It
is intuitively clear that if we add up squared line elements ds® to give a minimum then that ought
to correspond to the minimum for the sum of the positive square roots ds of those elements. Let’s
check if my conjecture works for R:

1
S:f (22447 +2%) dt
4] N et
QAR KR )
This gives us the Euler Lagrange equations below:
&=, =0, E=10

The solution of these equations is clearly a line. In this formalism the equations were uncoupled
from the outset.
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Definition 14.6.1.

The Euclidean metric is ds? = dz® + dy® + dz?. Generally, for orthogonal curvelinear
coordinates u, v, w we calculate ds® = m.—_,duz + Hv—i”gdvz + ilv—:'””.;d-wg. We use this as a
!

guide for constructing functionals which caleulate arclength or speed

The beauty of the metric is that it allows us to calculate in other coordinates, consider
T = 7 cos(#) y = rsin(6)

For which we have implicit inverse coordinate transformations r? == 2 + y? and § = tan~!(y/z).
From these inverse formulas we calculate: '

Vir = <afry/r > Vi = < —y/r? z/r® >

Thus, ||Vr|| = 1 whereas ||V#|| = 1/r. We find that the metric in polar coordinates takes the form:

|d32 = dr® + r2df? |

Physicists and engineers tend to like to think of these as arising from calculating the length of
infinitesimal displacements in the r or # directions. Generically, for u, v, w coordinates

1 1 1

dl, = ——du dl, = ——du dly, = ——dw
C V] [[Vvl] [Vl

and ds® = dI2 + dI2 + dI%,. So in that notation we just found dl, = dr and dly = rdf. Notice then
that cylindircal coordinates have the metric,

Lds2 = dr® + r2df? + d22.

For spherical coordinates x = r cos(¢) sin{f!), ¥ = rsin(¢) sin{f) and z = r cos(f) (here 0 < ¢ < 27
and 0 < # < m, physics notation). Calculation of the metric follows from the line elements,

dly = dr dly = rsin{}deo dlg = rdf

Thus,

ds? = dr® -+ r®sin?(0)d¢® + +2d6>.

We now have all the tools we need for examples in spherical or cylindrical coordinates. What about
other cases? In general, given some p-manifold in R™ how does one find the metric on that manifold?
If we are to follow the approach of this section we’ll need to find coordinates on B™ such that the
manifold S is described by setting all but p of the coordinates to a constant. For example, in R?
we have generalized cylindircal coordinates (r, ¢, z,t) defined implicitly by the equations below

x = 7 cos(¢p), y = 7sin(@), z =z, t=t

On the hyper-cylinder » = R we have the metric ds® = R?df? + dz? + dw?®. There are mathemati-
cians/physicists whose careers are founded upon the discovery of a metric for some manifold. This
is generally a difficult task.
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14.7 geodesics

A geodesic is a path of smallest distance on some manifold. In general relativity, it turns out that
the solutions to Eistein’s field equations are geodesics in 4-dimensional curved spacetime. Particles
that fall freely are following geodesics, for example projectiles or planets in the absense of other
frictional /non-gravitational forces. We don't follow a geodesic in our daily life because the earth
pushes back up with a normal force. Also, do be honest, the idea of length in general relativity is a
bit more abstract that the geometric length studied in this section. The metric of general relativity
is non-Euclidean. General relativity is based on semi-Riemannian geometry whereas this section
is all Riemannian geometry. The metric in Riemannian geometry is positive definite. The metric
in semi-Riemannian geometry can be written as a quadratic form with both positive and negative
eigenvalues. In any event, if you want to know more I know some books you might like.

14.7.1 geodesic on cylinder

'The equation of a cylinder of radius R is most easily framed in cylindrical coordinates (r, 8, z); the
equation is merely r = R hence the metric reads

ds* = R*d6* + dz”
Therefore, we ought to minimize the following functional in order to locate the parametric equations
of a geodesic on the cylinder: note ds® = (R2% + %)dfz thus:
S:/m%%dﬂﬂ
Euler-Lagrange equations for the dependent variables # and z are simply:
6=0 i=0.
We can integrate twice to find solutions

0(t) = 0o+ At z(t) = z, + Bt

Therefore, the geodesic on a cylinder is simply the line connecting two points in the plane which is
curved to assemble the cylinder. Simple cases that are easy to understand:
1. Geodesic from (Rcos(fl,), Rsin(f,), z1) to (Rcos(f,), Rsin(f,), z2) is parametrized by 0(t) =
8, and z(t) = z1 + t{zp — z) for 0 < ¢t < 1. Technically, there is some ambiguity here since I
never declared over what range the ¢ is to range. Could pick other intervals, we could use z
at the parameter is we wished then #(z) =6, and z = z for z; < 2 < 2

2. Geodesic from (R cos(f), Rsin(f,), z,) to (Rcos(8a), Rsin(6a), z,) is parametrized by 8(t) =
B +t(02 — 01) and z(t) = z, for 0 < ¢ < 1.

3. Geodesic from (Rcos(fh), Rsin(f1),z1) to (Rcos(fla), Rsin(f2), z2) is parametrized by
9(1’2):91-{—13(92—91) Z(t :_;]-{—t(zg_«zl)

You can eliminate ¢ and find the equation z = %_—B}(ﬁ — 1) which again just goes to show
you this is a line in the curved coordinates.
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14.7.2 geodesic on sphere

The equation of a sphere of radius R is most easily framed in spherical coordinates {(r, ¢, #); the
equation is merely » = R hence the metric reads

ds* = R*sin®(0)d¢? + R*d6>.

Therefore, we ought to minimize the following functional in order to locate the parametric equations
of a geodesic on the sphere: note ds? = (R? Sing(ﬂ)fi—‘f} + Rgi—fi-)dﬁ thus:

S = f( REsin?(8)¢? + B2 ) dt
J0.60,9)

Euler-Lagrange equations for the dependent variables ¢ and @ are simply: f3 = %( f3) and fy =
adf( f (;z)) which yield:

d

2R%sin(f) cos(8)¢® = L£(2R*) 0= pr

(232 sin? (9)@) .

We find a constant of motion L = 2R? sing(f))qi) inserting this in the equation for the azmuthial
angle # yields:

2R?sin(0) cos(8)¢® = £(2R*) 0= dit(m? smz(e)q‘s).

If you can solve these and demonstrate through some reasonable argument that the solutions are
great circles then I will give you points. I have some solutions but nothing looks too pretty.

Remark 14.7.1.

Pd like to add a few more examples here, but time is up. There are a few more examples in
homework. In particular, the homework has the geodesic problem set-up in a more tractable
manner. It’s easier to solve the geodesic problem if we use one of the coordinates on the
sphere as the parameter for caleulation of arclength. I should have anticipated this in view
of the examples I've already given. The parametric equations for a geodesic will be more
general, for example in the case of the plane we found horizontal and vertical lines at once
whereas one or the other is lost if z or y is taken as the parameter, and hence harder to

solve.
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14.8 Lagrangian mechanics

14.8.1 basic equations of classical mechanics surnmarized

Classical mechanics is the study of massive particles at relatively low velocities. Let me refresh
your memory about the basics equations of Newtonian mechanics. Our goal in this section will be
to rephrase Newtonian mechanics in the variational langauge and then to solve problems with the
Buler-Lagrange equations. Newton’s equations tell us how a particle of mass m evolves through
time according to the net-force impressed on m. In particular,

P
d=r
D)

maE =

ell

If m is not constant then you may recall that it is better to use momentum P = m# = mi”d—t to
set-up Newton'’s 2nd Law:

dP

- =
In terms of components we have a system of differential equations with indpendent variable time
t. If we use position as the dependent variable then Newton’s 2nd Law gives three second order

ODEs,

mi = F, my = F mz = F,

where ¥ = (z,y, z) and the dots denote time-derivatives. Moreover, F=< F;, F,, F, > is the sum
of the forces that act on m. In contrast, if you work with momentum then you would want to solve
six first order ODEs,

P,=F, P,=F, P=F |
and P = mi, P, = my and P, = mz. These equations are easiest to solve when the force is
not a function of velocity or time. In particular, if the force £ is conservative then there exists a
potential energy function U : B® — R such that F = —VU. We can prove that in the case the
force is conservative the total energy is conserved.

14.8.2 kinetic and potential energy, formulating the Lagrangian

Recall the kinetic energy is T = 3m||#]|?, in Cartesian coordinates this gives us the formula:
1
T = sm(d® +§° + ).

If F is a conservative force then it is independent of path so we may construct the potential energy
function as follows: .
#
U(f) = - / B dr
)

Here O is the origin for the potential and we can prove that the potential energy constructed in
this manner has F = —VU. We can prove that the total (mechanical) energy £ = T + U/ for
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a conservative system is a constant; d&/dt = 0. Hopefully these comments are at least vaguely
familiar from some physics course in your distant memory. If not relax, calculationally this chapter
is self-contained, read onward.

We already calculated that if we use T as the Lagrangian then the Euler-Lagrange equations
produce Newton's equations in the case that the force is zero (see 14.5.1). Suppose that we define
the Lagrangian to be L = T'—U for a system governed by a conservative force with potential energy
function /. We seek to prove the Euler-Lagrange equations are precisely Newton’s equations for
this conservative system! Generically we have a Lagrangian of the form

1
L(z,y, 28,9, 2) = om(@” +§° -+ 2) = U(z, . 2).
We wish to find extrema for the functional S = [ L(f) dt. This yields three sets of Euler-Lagrange
equations, one for each dependent variable z,y or z
d [BL} _dL d {BL] _aL d [8]5} _ oL

dt|d¢| Bz  di|oy| oy  dt|6z] 0z
Naote tlhat g—i = mi, % = my and g—‘; = mz. Also note that %&L— = -—‘?,—g = I, g; = —g—g = F,
and %{;— = —%—g = F.. It follows that
miE = F mjj = Fy mz = F,.

Of course this is precisely ma = F for a net-force F =< ., By, F, >, We have shown that
Hamilton’s principle reproduces Newton’s Second Law for conservative forces. Let me take a
moment to state it.

Definition 14.8.1. Hamilton’s Principle:

If a physical system has generalized coordinates ¢; with velocities ¢; and Lagrangian L =
I — U7 then the solutions of physics will minimize the action S defined below:

.,’,2
&= [ Ligj,qj,1)dt
3|

Mathematically, this means the variation 68 = 0 for physical trajectories.

This is a necessary condition for solutions of the equations of physics. Sufficient conditions are
known, you can look in any good variational calculus text. You'll find analogues to the second
derivative test for variational differentiation. As far as I can tell physicists don't care about this
logical gap, probably because the solutions to the Euler-Lagrange equations are the ones for which
they are looking.

'don’t mistake this example as an admission that, Lagrangian mechanics is limited to conservative systems. Quite
the contrary, Lagrangian mechanics is actually more general than the orginal framework of Newton!
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14.8.3 easy physics examples

Now, you might just see this whole exercise as some needless multiplication of notation and for-
malism. After all, I just told you we just get Newton’s equations back from the Euler-Lagrange
equations. To my taste the impressive thing about Lagrangian mechanics is that you get to start
the problem with energy. Moreover, the Lagrangian formalism handles non-Cartesian coordinates
with ease. If you search your memory from classical mechanics you’ll notice that you either do
constant acceleration, circular motion or motion along a line. What if you had a particle con-
strained to move in some frictionless ellipsoidal bowl. Or what if you had a pendulum hanging off
another pendulum? How would you even write Newtons’ equations for such systems? In contrast,
the problem is at least easy to set-up in the Lagrangian approach. Of course, solutions may be less
easy to obtain.

Example 14.8.2. Projectile motion: take = as the vertical direction and suppose a bullet is fired
with initial velocity v =< Ugz, Voy, Vo= >. The potential energy due to gravity is simply U = mg:z
and kinetic energy is given by T = %m(iz + 5% + %), Thus,

L= %m(:i:2 + 97+ 22) —mgz

Euler-Lagrange equations are stimply:

d ] dl T df V1_ 8, _
a[mm} ={) a[my] =0 E[mz} _Bz( mgz) = —mg.

Integrating twice and applying initial conditions gives us the (possibly familiar) equations

1,2

z(t) = T + Vozt, Y(t) = Yo + Voyt, 2(f) = 2o + Voot — 5917

Example 14.8.3. Simple Pendulum: let § denote angle measured off the vertical for a simple
pendulum of mass m and length [. Trigonmetry tells us that

z = [sin(8) y = [cos(d) = @ = [ cos(#)6 y = —lsin(#)f

Thus T = tm(z? + 7) = »}jmlgég. Also, the potential energy due to gravity is U = —mgl cos(#)
which gives us

L = %mlggg + mgl cos(#)

Then, the Buler-Lagrange eguelion in # is simply:
% [g—g] = g—g = %(mlzg) = —mgl gin(§) = f+ %Sin(ﬂ) =0.

In the small angle approzimation, sin(f) = 0 then we have the solution 8(t) = 6, cos(wt + ¢,) for
angular frequency w = \/g/l
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