
Math 334: Practice Problems: Higher Order DEqns

I will select some subset of these problems to collect. The more you work, the more you know. The
ordering of topics in these problems is rather lumpy, I’ve more or less cut and pasted multiple old
homeworks and quizzes one after the other.

PP 73 Solve y′′ − y′ − 11y = 0 where y′ = dy/dx.

PP 74 Solve 4w′′ + 20w′ + 25w = 0 where w′ = dw/dx.

PP 75 Solve y′′ + 2y′ + y = 0 where y(0) = 1 and y′(0) = −3 given y′ = dy/dx.

PP 76 Suppose y1 = te2t and y2 = e2t. Determine if y1 and y2 are linearly dependent on (0, 1).

PP 77 Solve y′′ − 8y′ + 7y = 0 where y = y(t).

PP 78 Solve z′′ + 10z′ + 25z = 0 where z′ = dz/dx

PP 79 Solve u′′ + 7u = 0 given t is the independent variable.

PP 80 Solve y′′ + 10y′ + 41y = 0 given y′ = dy/dx.

PP 81 Solve y′′ − 2y′ + 2y = 0 given y(π) = eπ and y′(π) = 0. Use independent variable x.

PP 82 Consider y′′−6y′−4y = 4 sin(3t)−t2e3t+ 1
t
. Can we solve this via the method of undetermined

coefficients ? If so, suggest a form for the particular solution.

PP 83 Consider y′′−2y′+3y = cosh t. Can we solve this via the method of undetermined coefficients
? If so, suggest a form for the particular solution.

PP 84 Find the general solution to y′′ − y = 1− 11t.

PP 85 Solve z′′ + z = 2e−x given z(0) = 0 and z′(0) = 0.

PP 86 Determine if {sin2 x, cos2 x, 1} is linearly independent on R.

PP 87 Show {x, x2x3, x4} is linearly independent on R.

PP 88 Let us define L[y] = y′′′ + y′ + xy. Let y1 = sinx and y2 = x.

(a.) Calculate L[y1] and L[y2],

(b.) Solve L[y] = 2x sinx− x2 − 1,

(c.) Solve L[y] = 4x2 + 4− 6x sinx.

I am not asking for the general solution in the problem above

PP 89 Solve y′′′ + 2y′′ − 8y′ = 0 given y′ = dy/dt.

PP 90 Solve u′′′ − 9u′′ + 27u′ − 27u = 0 given u = u(x).

PP 91 Solve y(4) + 4y′′ + 4y = 0 given y = y(x).



PP 92 Solve y(4) + 2y′′′ + 10y′′ + 18y′ + 9y = 0 given that y = sin(3x) is a solution.

PP 93 Let D = d/dx. Solve

(D + 1)2(D − 6)3(D + 5)(D2 + 1)(D2 + 4)[y] = 0.

PP 94 Completely factor the following polynomials over R. Place any irreducible quadratic factors
in the completed-square format (x− α)2 + β2.

(a.) x2 + 6x+ 20

(b.) x4 + 5x2 − 6

(c.) x4 − 256

(d.) f(x) = −20− 36x− 15x2 + 5x3 + 5x4 + x5 given that f(−1) = 0 and f(−2 + i) = 0

PP 95 Find the general solutions of the DEqns given below.

(a.) y′′ + 6y′ + 20y = 0

(b.) (D4 + 5D2 − 6)[y] = 0

(c.) y(4) − 256y = 0

(d.) −20y − 36y′ − 15y′′ + 5y′′′ + 5y(4) + y(5) = 0
given that y1 = e−x and y2 = e−2x cos(x) are solutions.

PP 96 Solve the following ODE,

(D2 + 6D + 13)(D2 − 9)(D2 + 1)(D2 + 4D + 3)[y] = 0.

PP 97 Find minimal annihilators for each of the functions below:

(a.) f1(x) = x2ex

(b.) f2(x) = ex cos(4x)

(c.) f3(x) = x3 + ex cos(4x)

(d.) f4(x) = cos2(3x) + ex cosh(x)

PP 98 Set-up, but do not determine explicitly, the particular solutions for:

(a.) y′′ − 2y′ + y = x2ex

(b.) y′′ + 16y = ex cos(4x)

(c.) y′′′ + y′ = x3 + ex cos(4x)

(d.) y′′′ + 36y′ = cos2(3x) + ex cosh(x)

PP 99 Solve y′′ + 3y′ + 2y = x+ e−x + e3x.

PP 100 Solve y′′ + 3y′ + 2y = e−2t cos(t).

PP 101 Solve y′′ + 3y′ + 2y = 20(t+ e−t + e3t) + 2e−2t cos(t) given that y(0) = 0 and y′(0) = 1.



PP 102 Solve y′′ + 2y′ + y = e−x

x+1
.

PP 103 Solve y′′ + y = tan2(x)

PP 104 Find integral solutions for y′′′ + 16y′ = f . (you need to use variation of parameters, I would
explicitly calculate the determinants of S1, S2, S3 as I discuss in the notes)

PP 105 Solve x2y′′− (x2+2x)y′+(x+2)y = x3. Note y1 = x is a fundamental solution of the DEqn.
Hint: find the 2nd. fundamental soln. and then use variation of parameters to find yp...

PP 106 Solve the following cauchy euler problems. Give your solution as a real linear combination
of the real-value functions in the fundamental solution set.

(a.) 4x2y′′ + y = 0

(b.) x2y′′ − 3xy′ + 5y = 0

(c.) 2x2y′′ + 3xy′ − y = 0

(d.) x3y′′′ + 2x2y′′ − xy′ + y = 0

(e.) x2y′′ + 5xy′ + 4y = 0 with y(1) = 2 and y′(1) = −3

PP 107 Derive a formula to rewrite x4D4 as a polynomial in xD. Use the result to solve x4D4[y] = 0.
Please use my notes for formulas for x3D3 and x2D2, also, use Leibniz product rule for best
results.

PP 108 Suppose a mass of 1kg is attached to a spring with stiffness 5 Newtons per meter. Then the
spring and mass are immersed in an oil with viscosity producing a velocity-dependent friction
force with coefficient β = 4kg/s. If a force F (t) = 10 cos(t) (in Newtons and seconds) is used
to drive the system then what is the resulting equation of motion? Assume that x(0) = 0
and v(0) = 1. What anglular frequency γ would make the force 10 cos(γt) give a particular
solution of maximum amplitude?

PP 109 Suppose an RLC-circuit is assembled with R = 11Ω, L = 1H and C = 0.1F . If a half-
decaying voltage source of E(t) = 10e−t + cos(t) is attached to the circuit then what is the
resulting current as a function of time. Assume a switch closes at t = 0 connecting the
voltage source to the circuit. This means I(0) = 0 and Q(0) = 0.

PP 110 Let f and g be functions which are twice continuously differentiable on an interval I for
which W (f, g;x) ̸= 0 for each x ∈ I. Show that

det

 y y′ y′′

f f ′ f ′′

g g′ g′′

 = 0

is a second order, linear, homogeneous differential equation with fundamental solutions y1 =
f and y2 = g. Then, use this result to construct a differential equation which has solutions
ex and e1/x, include the interval on which these are the solutions.



PP 111 Show that the Cauchy-Euler problem

ao
dny

xn
+ a1

dn−1y

xn−1
+ · · ·+ an−1

dy

dx
+ any = 0

problem changes to a constant coefficient problem if we make the substitution x = et. Use
this result to derive the solutions of the Cauchy-Euler problem for which we find R = 1 three
times, or R = 1 + 2i twice.

PP 112 Novel methods of integration.

(a.) Solve
∫
x3ex dx by solving dy

dx
= x3ex using the method of undetermined coefficients.

(b.) Solve
∫
ex cos(2x) dx by studying the integral of

∫
e(1+2i)x dx. Hint: we know d

dx
eλx =

λeλx even for the case λ = 1 + 2i.

PP 113 Let y1 and y2 form the fundamental solution set of the second order linear differential equation

aoy
′′ + a1y

′ + a2y = 0

on an interval I. Show that between any two successive zeros of y1 there is exactly one zero
of y2.

PP 114 (Ritger & Rose section 5-4 problem 1a-d) find the general solution of:

(a.) y′′ = 0

(b.) y′′ − 2y′ = 0

(c.) y′′ − a2y = 0

(d.) y′′ + a2y = 0

PP 115 (Ritger & Rose section 5-4 problem 3) Suppose ay′′ + by′ + cy = 0 has distinct real charac-
teristic values of λ± = A ± B and hence a general solution y = c1e

λ+x + c2e
λ−x. Show that

the general solution can be rewritten as

y = eAx(b1 cosh(Bx) + b2 sinh(Bx)).

PP 116 (Ritger & Rose section 5-5 problems 1,2,3 and 8)

(1.) y′′ + 3y′ − 5y = 4e2x + 6e−3x

(2.) y′′ + 3y′ + 5y = 2 sin(3x)

(3.) y′′ + 9y = 4 cos(3x)

(8.) y′′ − 3y′ = 2x2 + 3ex

PP 117 (introduction to theory of adjoints, from page 95 of Boyce and DiPrima’s 3rd Ed.) If

p(x)y′′ + q(x)y′ + r(x)y = 0

can be expressed as [p(x)y′]′ + [f(x)y]′ = 0 then it is said to be exact. Omit x-dependence
in p, q, r, µ for brevity, if py′′ + qy′ + ry = 0 is not exact then it is possible to make it exact



with multiplication by the appropriate integrating factor µ. Show that for µ to accomplish
its stated task it must itself be the solution of the so-called adjoint equation

pµ′′ + (2p′ − q)µ′ + (p′′ − q′ + r)µ = 0.

where we have assumed p, q possess the stated derivatives. Find the adjoint equation for

(a.) constant coefficient case: ay′′ + by′ + cy = 0

(b.) Bessel Eqn. of order ν: x2y′′ + xy′ + (x2 − ν2)y = 0

(c.) The Airy Equation: y′′ − xy = 0

PP 118 Consider the differential equation y′′′−3y′′+2y′ = g(t). Is {1, et, e2t} a fundamental solution
set ? Explain your answer.

PP 119 Let y1(x) = x3 and y2(x) = |x|3. Show that W (y1, y2)(x) = 0 for all x ∈ R. However, explain
why {y1, y2} is linearly independent on R. Does there exist a linear ODE for which {y1, y2}
forms the fundamental solution set? Discuss.

PP 120 Solve

(a.) y′′ + 5y′ + 6y = 0,

(b.) y′′ + 4y′ + 4y = 0,

(c.) y′′ + 4y′ + 5y = 0.

PP 121 Solve

(a.) y′′ − 36y = 0 subject the initial conditions y(0) = 1, y′(0) = 0,

(b.) y′′ + 25 = 0 subject the initial conditions y(0) = 1, y′(0) = 0.

PP 122 Solve, here D = d/dx

(a.) D2(D2 − 9)[y] = 0,

(b.) (D2 + 6D + 18)2[y] = 0,

(c.) (D2 + 3D + 2)(D2 − 4)[y] = 0

PP 123 Give constant coefficient ODEs for which the following form general solutions. Please leave
your answer in D = d/dx factored notation. No need to multiply them out.

(a.) y = c1e
−4x + c2e

−3x,

(b.) y = c1e
10x + c2xe

10x

(c.) y = A cosh(3x+B)

(d.) y = c1 + Ae2x sin(3x+ ϕ)

PP 124 (fitting initial conditions) Given x(t) = c1 cosωt+ c2 sinωt is the general solution to

x′′ + ω2x = 0.

Show x(0) = xo and x′(0) = x1 implies c1 = xo and c2 = x1/ω.



PP 125 (reduction of order) Use the reduction of order formula y2 = y1
∫ exp(−

∫
pdx)

y21
dx to calculate

a second linearly independent solution for x2 + 2xy′ − 6y = 0 given y1 = x2.

PP 126 (reduction of order) Consider x2y′′ − 3xy′ + 5y = 0 for x > 0. You are given that y1 =
x2 cos lnx is a solution. Find y2 for which y1, y2 forms a fundamental solution set for the
given differential equation. One approach is to use the n = 2 reduction of order formula as
derived in 3.6 of my notes.

PP 127 (based on Cook section 3.7) Suppose T = D and S = 3− x2D. Solve

(a.) ST [y] = 0,

(b.) TS[y] = 0.

PP 128 Consider f(x) = x2+3i for x > 0. Find u, v such that f = u + iv. Furthermore, by
differentiation of u, v show that f ′(x) = (2 + 3i)x1−3i.
(the point: you can replace 2 with a ∈ R and 3 with b ∈ R and derive

d

dx
xa+ib = (a+ ib)xa−1+ib;

we see the power rule extends naturally to the case of a complex exponent of the power
function. This is an important fact as we deal with solving the Cauchy Euler problem ax2y′′+
bxy′ + cy = 0)

PP 129 Solve the following Cauchy Euler problems

(a.) 4x2y′′ + y = 0,

(b.) 25x2y′′ + 25xy′ + y = 0

(c.) x3y′′′ − 6y = 0

PP 130 Suppose that y1 is a nontrivial solution of y′′ + p(x)y′ + q(x)y = 0. We seek a method to
derive a second LI solution. Let y2 be such a solution and show that it must satisfy

d

dx

[
y2
y1

]
=

W (y1, y2)

y21
.

Now, use Abel’s formula to find a nice formula for y2.

PP 131 (from page 103 of Boyce and DiPrima’s 3rd Ed.) Consider for N ∈ N,

xy′′ − (x+N)y′ +Ny = 0.

(a.) show y1 = ex is a solution.

(b.) show that y2 = cex
∫
xNe−x dx is a second solution. (perhaps use the result of the

previous problem, or the theorem from my notes or Ritger & Rose)

(c.) set c = −1
N !

and show by induction that y2(x) = Tn(x) where Tn(x) denotes the n-th
order Taylor polynomial of ex centered at zero.

PP 132 Find minimal annihilators for each of the functions below:



(a.) f1(x) = x2ex

(b.) f2(x) = ex cos(4x)

(c.) f3(x) = x3 + ex cos(4x)

(d.) f4(x) = cos2(3x) + ex cosh(x)

Now, given what you’ve just thought through, set-up, but do not determine explicitly, the
particular solutions for:

(a.) y′′ − 2y′ + y = x2ex

(b.) y′′ + 16y = ex cos(4x)

(c.) y′′′ + y′ = x3 + ex cos(4x)

(d.) y′′′ + 36y′ = cos2(3x) + ex cosh(x)

PP 133 (Zill section 4.4 problem 17) Solve y′′ − 2y′ + 5y = ex cos(2x).

PP 134 Solve y′′ + 3y′ + 2y = t2 subject the initial conditions y(0) = 1 and y′(0) = 0.

PP 135 (Zill section 4.5 problem 63) Solve y(4) − 2y′′′ + y′′ = ex + 1.

PP 136 (Zill section 4.6 problem 8) Solve y′′ − y = sinh(2x).

PP 137 (Zill section 4.6 problem 14) Solve y′′ − 2y′ + y = et tan−1(t).

PP 138 Solve y′′ + 3y′ + 2y = x+ e−x + e3x.

PP 139 Solve y′′ + 2y′ + y = e−x

x+1
.

PP 140 Find integral solutions for y′′′ + 16y′ = f . (you need to use variation of parameters, I would
explicitly calculate the determinants of S1, S2, S3 as I discuss in the notes)

PP 141 Solve x2y′′− (x2+2x)y′+(x+2)y = x3. Note y1 = x is a fundamental solution of the DEqn.
Hint: find the 2nd. fundamental soln. and then use variation of parameters to find yp...

PP 142 Solve (xD + 3)(D2 − 4)[y] = 0. Be careful.

PP 143 Suppose L is a linear differential operator. Furthermore, suppose L[y1] = g1 and L[y2] = 2g1.
Solve L[y] = 0 using the given solutions.

PP 144 Find an integral solution for y′′+y = g with y(0) = yo and y′(0) = y1 and g is some integrable
function of time t.

PP 145 Consider a third order linear differential equation for which sin(x), cos(x) and ln(x) appear
as the fundamental solution set. Call this differential equation L[y] = 0. Solve L[y] = 42
via variation of parameters. It is interesting to note that even though I asked you to supply
an explicit linear ODE L[y] = 0 to solve you should not need that explicit formula to solve
L[y] = 42.



PP 146 Green’s function for a linear ODE L[y] = f provides a method for solving the DEqn via inte-
gration. If we assume the initial conditions of the given ODE are all trivial then the operator
L can be inverted; L[y] = f with trivial initial conditions iff y = L−1[f ]. In particular, if
G(x, t) is a function for which y(x) =

∫ x

xo
G(x, t)f(t)dt is a solution of L[y] = f then we say

G is a Green’s function for L.

In the case of a second order differential equation with fundamental solutions y1, y2 ( with
L[y1] = 0 and L[y2] = 0 for LI y1, y2 ) we can construct a Green’s function as follows:

G(x, t) =
y1(t)y2(x)− y1(x)y2(t)

y1(t)y′2(t)− y2(t)y′1(t)

Then observe y =
∫ x

xo
G(x, t)f(t)dt gives a solution to L[y] = f by variation of parameters.

Find Green’s function for the following solution sets and write an integral solution for L[y] =
f for the given L and given initial conditions:

(a.) L = D2 + 9, y1 = cos 3t and y2 = sin 3t with y(0) = y′(0) = 0,

(b.) L = D2 + 3D + 2, y1 = e−x, y2 = e−2x with y(0) = −1 and y′(0) = 0,

PP 147 Use the Green’s function technique to solve

y′′ + 3y′ + 2y = sin(ex)

subject y(0) = −1 and y′(0) = 0. In other words, work out the integrals for part (b.) of the
previous problem given that f(x) = sin(ex).

PP 148 Suppose a spring is attached to a mass of 1 kg and the spring has spring constant 16 N/m.
This spring mass system is immersed in an oil which gives a retarding frictional force of
Fretard = −βv where v is velocity and β = 10 Ns/m. Find the equations of motion ( please
omit units, so in the usual notation m = 1, k = 16 and β = 10 ) in the cases

(a.) x(0) = −1 and x′(0) = 0

(b.) x(0) = −1 and x′(0) = 12

PP 149 Newton’s Law for a retarded spring-mass system with external force f yield

mẍ+ βẋ+ kx = f

Given m = 2, b = 0, k = 32 and f = 68e−2t cos(4t) find the equation of motion given the
system has initial conditions x(0) = ẋ(0) = 0.

PP 150 Consider Newton’s Second Law for mass-spring system under a sinusoidal force:

ẍ+ ω2x = Fo cos γt

given x(0) = ẋ(0) = 0. Here Fo, ωγ are nonzero constants.

(a.) Find x(t) given that γ ̸= ω

(b.) Calculate xr(t) = limγ→ω x(t)



(c.) Contrast the motion of x(t) and xr(t) as t → ∞

PP 151 Kirchoff’s Voltage Law for an RLC-circuit with voltage source E is given by

L
dI

dt
+RI +

1

C
Q = E

Since I = dQ
dt

we find LQ̈+RQ̇+Q/C = E . Given that L = 1 and R = 2 and C = 0.25 and
E = 50 cos t find the charge Q as a function of time t given the initial charge and current are
both zero for t = 0.

PP 152 If we study the motion of an spring

mẍ+ βẋ+ kx = F

such that β2 − 4mk < 0 then it is known as underdamped motion. If the external force
F = Fo cos(γt) then we find the motion is dominated by the particular solution as t → ∞.

Let ω =

√
4mk−β2

2m
, then the homogeneous solution xh(t) = e

−βt
2m (c1 cos(ωt) + c2 sin(ωt)) → 0

as t → ∞. Show that the particular solution of such a system is given by

xp =
Fo sin(γt+ ϕ)√

(k −mγ2)2 + β2γ2

where ϕ is a constant. Then, find the frequency γ which maximizes the magnitude of xp in
the following cases:

(a.) m = 1/2 and k = 19 and β = 1

(b.) m = 1 and k = 2 and β =
√
6.

PP 153 Find general solution of y′′ − 3y′ + 2y = 0 where y′ = dy/dx.

PP 154 Find general solution of y′′ − 6y′ + 9y = 0 where y′ = dy/dx.

PP 155 Find general solution of y′′ + 6y′ + 13y = 0 where y′ = dy/dt.

PP 156 Find general solution of (D − 2)3(D2 − 1)D2[y] = 0 where D = d/dx.

PP 157 SupposeD = d/dx and L = Dn+an−1D
n−1+· · ·+a2D

2+a1D+ao defines differential equation
L[y] = 0. Find smallest n and the coefficients ao, a1, . . . , an−1 ∈ R for which ex cos(2x) and
x3 are solutions to the differential equation L[y] = 0.

PP 158 Find general solution of y′′ − 9y = t2 + et + 1.

PP 159 Solve y′′ + y = 2 cos t+ sin t

PP 160 Solve y′′ + 4y = tan(2x).

PP 161 Find general solution of y′′ + 3y′ + 2y = t+ 1.

PP 162 Solve y′′ + y = cos t+ et

PP 163 Solve y′′ − 6y + 9y = 0 where y′ = dy/dt.



PP 164 Solve ((D + 3)2 + 36)[y] = 0 where D = d/dθ.

PP 165 Let D = d/dx. Observe (D4 + 9D2)[y] = x + cos(x) can be solved by the method of
undetermined coefficients aided by the annihilator method. We find the minimal particular
solution derived from the annhilator method is: (circle one answer)

(a.) yp = Ax+B + C cos(x) +D sin(x)

(b.) yp = Ax3 +Bx2 + Cx cos(x) +Dx sin(x)

(c.) yp = Ax3 +Bx2 + C cos(x) +D sin(x)

(d.) yp = A+Bx+ C cos(3x) +D sin(3x)

PP 166 A spring has mass m = 1, coefficient of damping β = 4 and a spring constant k = 5. Find
the general solution of Newton’s Second Law.

PP 167 Solve y′ − 3y = 2x+ 3.

PP 168 Find a particular solution for y′′ − 4y′ + 3y = 65 cos(2t).

PP 169 Find a particular solution of y′′ − 4y′ + 3y = et.

PP 170 Find the general solution of y′′ − 4y′ + 3y = 130 cos(2t) + 7et.

PP 171 Suppose L[y] = 0 is an n-th order differential equation where L = Dn + an−1D
n−1 + · · · +

a1D+ ao and D = d/dt and an−1, . . . , a1, ao ∈ R. If L[ et cos(2t) ] = 0 and L[ t3e−t ] = 0 then
find the smallest n which allows these solutions and give the explicit form of L in terms of
D = d/dt. You need not multiply out the formula, I am perfectly happy with L in factored
form.

PP 172 Find an integral solution for x > 0 to the Cauchy Euler problem
x2y′′ + xy′ + 9y = g where g is a continuous function.

PP 173 Solve the following differential equations:

(a.) y′′ − 8y′ + 7y = 0 where y′ = dy/dt,

(b.) z′′ + 10z + 25z = 0 where z′ = dz/dx,

(c.) u′′ + 7u = 0 where u′ = du/dt,

(d.) y′′ + 10y′ + 41y = 0 where y′ = dyd/dx

(e.) y′′′ + 4y′′ + 5y′ = 0 where y′ = dy/dx.

PP 174 Find the minimal annihilator for each of the following functions: for each define D as either
D = d/dx or D = d/dt as appropriate:

(a.) g = ex + sin(4x)

(b.) g = x2 + cosh(x)

(c.) g = te−3t + 2

(d.) g = cos(x) sin(3x)



(e.) g = et cos(6t)

PP 175 Set-up, but do not explicitly determine the coefficients, the form of yp via the method of
annihilators. Notice you found the annihilators in the previous problem.

(a.) y′′ − y = ex + sin(4x)

(b.) y′′ + y′ = x2 + cosh(x)

(c.) y′′ + 3y′ = te−3t + 2

(d.) y′′ + 4y = cos(x) sin(3x)

(e.) y′′ + 36y = et cos(6t)

PP 176 Solve y′′ − 4y′ = 6t+ et.

PP 177 Solve y′′ + 2y′ + y = cos(x) + 3 subject the initial conditions y(0) = 0 and y′(0) = 1.

PP 178 Consider mx′′ + bx′ + kx = 0 where m > 0 and b, k ≥ 0. Show that in every possible case
the motion of the solution is bounded.

PP 179 Find the general solution of

(a.) y′′ + y = 3 cos(2x)

(b.) y′′ + y = csc(x)

(c.) y′′ + y = 2 csc(x) + cos(2x)

PP 180 These require variation of parameters technique.

(a.) Solve y′′ − 2y′ + y = 1
t
et

(b.) Solve y′′ + y = sec3 θ.

PP 181 Solve the integral
∫
(x3 + 2x)ex dx = y by solving dy

dx
= (x2 + 2x)ex via the method of

undetermined coefficients

PP 182 Consider the differential equation given by: D = d/dx and

(D4 + 2D3 + 10D2 + 18D + 9)[y] = 0

You are given that y = sin 3x is a solution to the above. Use this data to help solve the
problem.


