
Math 334: Practice Problems: Higher Order DEqns

I will select some subset of these problems to collect. The more you work, the more you know. The
ordering of topics in these problems is rather lumpy, I’ve more or less cut and pasted multiple old
homeworks and quizzes one after the other.

PP 183 Find the first three nonzero terms in the power series solutions of

dy

dx
= x2 + y2

given y(0) = 1.

PP 184 Find the first three nonzero terms in the power series solutions of

dy

dx
= sin y + ex

given y(0) = 0.

PP 185 Find the first three nonzero terms in the power series solutions of

x′′ + tx = 0

given x(0) = 1 and x′(0) = 0.

PP 186 Duffing’s Equation. A nonlinear spring with periodic forcing is described by

y′′ + ky + ry3 = A cosωt.

If we set k = r = A = 1 and ω = 10 then find the first three nonzero terms in the Taylor
polynomial approximations tot he solution with y(0) = 0 and y′(0) = 1.

PP 187 Express the power series
∞∑
n=1

nanx
n−1 as a power series with generic term xk. That is, find

ko and ck for which
∞∑
n=1

nanx
n−1 =

∞∑
k=ko

ckx
k.

PP 188 Express the power series
∞∑
n=1

anx
n+1 as a power series with generic term xk. That is, find ko

and ck for which
∞∑
n=1

anx
n+1 =

∞∑
k=ko

ckx
k.

PP 189 Find the Taylor series for f(x) =
1 + x

1− x
about x0 = 0.

PP 190 Find the singular points of the differential equation (x+ 1)y′′ − x2y′ + 3y = 0.

PP 191 Find the singular points of the differential equation (t2 − t− 2)x′′ − (t+ 1)x′ − (t− 2)x = 0.



PP 192 Find the first four nonzero terms in the power series solution about x = 0 for:

z′′ − x2z = 0.

PP 193 Find the first four nonzero terms in the power series solution about x = 0 for:

y′′ + (x− 1)y′ + y = 0.

PP 194 Find the complete power series solution ( including a formula for the general coefficient)
about x = 0 for:

y′ − 2xy = 0.

PP 195 Find the complete power series solution ( including a formula for the general coefficient)
about x = 0 for:

y′′ − xy′ + 4y = 0.

PP 196 Find the complete power series solution ( including a formula for the general coefficient)
about x = 0 for:

z′′ − x2z′ − xz = 0.

PP 197 Find the minimum value for the radius of covergence of a power series solution about x0

(1 + x+ x2)y′′ − 3y = 0, x0 = 1.

PP 198 Find the minimum value for the radius of covergence of a power series solution about x0

y′′ − (tanx)y′ + y = 0 = 0, x0 = 0.

PP 199 Find the first four nonzero terms in the power series solution about x = 0 for:

x′ + (sin t)x = 0, x(0) = 1.

PP 200 Find the first four nonzero terms in the power series solution about x = 0 for:

y′′ − e2xy′ + (cosx)y = 0, y(0) = −1, y′(0) = 1.

PP 201 Find the first four nonzero terms in the power series solution about x = 0 for:

z′′ + xz′ + z = x2 + 2x+ 1.

PP 202 Find the first four nonzero terms in the power series solution about x = 0 for:

(1 + x2)y′′ − xy′ + y = e−x.

PP 203 If
∞∑
n=0

Bnx
n =

∞∑
n=2

n(n − 1)cnx
n−2 +

∞∑
n=0

cnx
n+2 then find the formula for Bn in terms of cn.

You will need to break into cases, B0, B1 verse Bn for n ≥ 2.



PP 204 Find the minimum radius of convergence about x = 0 for the solution of

(x2 − 2x+ 10)y′′ + xy′ − 4y = 0.

PP 205 Solve y′′ + (x+ 1)y′ − y = 0 up to 4-th order. Center the solution at zero.

PP 206 Find the first three nontrivial terms in the power series solution centered at zero of the
differential equation (x2 + 1)y′′ + 2xy′ = 0 with y(0) = 0 and y′(0) = 1.

PP 207 Is x = 0 an ordinary point of y′′ + 5xy′ +
√
xy = 0 ?

PP 208 Find all singularties of the following differential equations, or state no singularities:

(a.) y′′ + xy′ + 3y = 0,

(b.) (x2 − 3x2)y
′′ +

√
xy′ + x2y = 0

(c.) (1− x2)y′′ − 2xy′ + n(n+ 1)y = 0

(d.) (x2 − x)y′′ + x2y′ − 3xy = 0

(e.) ex − 1)y′′ + xy = 0

(f.) x(x2 + 2x+ 2)y′′ + (x2 + 1)y′ + 3y = 0

PP 209 Find the complete Frobenius solution of

x2y′′ + x

(
x− 1

2

)
y′ +

1

2
y = 0

(this one has real exponents r = 1 and r = 1/2)

PP 210 Find the Frobenius solution near x = 0 for x > 0 up to order x2 for

x2y′′ + sin(x)y′ − cos(x)y = 0.

PP 211 Solve x3y′′ − x2y′ − y = 0 for x >> 0 by making the substitution z = 1/x and solving the
resulting differential equation in z about the regular singular point z = 0. Find the first four
nonzero terms in the series expansion about ∞ (once upon a time this was Problem 41 in
§8.6 of Nagle, Saff and Snider, 5th edition)

PP 212 Find the complete (summation-notation) power series solution of the following integral:∫
x6 sin(x2) dx

PP 213 Find the first TWO nontrivial terms in a power series solution of exy′′ + xy′ + y = 0 given
that y(0) = 1 and y′(0) = 2.

PP 214 Find the singularities of x(x2 + 2x + 2)y′′ + (x2 + 1)y′ + 3y = 0 and determine the largest
open interval of convergence for a solution of the form y =

∑
n=0 an(x+ 2)n.

Think. Do not try to solve this, I’m asking you about the interval of convergence, I’m not
asking for what an are in particular



PP 215 Find the complete power series solution of y′′ − 9x2y = 0 given that y(0) = 1 and y′(0) = 0
by explicit substitution of a series solution into the given differential equation.

PP 216 Suppose y′′ + x
(x−2)(x2−6x+10)

y′ +
(

1
(x+3)3

+ 1
x2

)
y = 0.

(a) find all singular points

(b) classify each real singular point as either regular or irregular (not regular)

(c) plot the singularities in a complex plane

(d) find the largest possible open and real domain of the solution

y =
∞∑
n=0

an(x− 0.5)2

(e) find the largest possible open and real domain of the solution

y =
∞∑
n=0

an(x− 4)2

PP 217 Suppose y(0) = 1 and y′(0) = 2. Find the solution up to order 5 in x for the differential
equation

y′′ + (x2 − 1) cos(x)y′ + sinh(3x)y = 0.

PP 218 Find the complete power series solution centered at zero for dy
dx

− 2xy = 0.

PP 219 Find the first two nontrivial terms in the frobenius expansions for the fundamental solutions
y1 and y2 of

3xy′′ + (2− x)y′ − y

PP 220 Find the complete power series solution of y′′ + x2y′ + 2xy = 0 about the ordinary point
x = 0. Your answer should include nice formulas for arbitrary coefficients in each of the
fundamental solutions. You need to both set-up and solve the reccurrence relations as best
you can.

PP 221 Find the first four nonzero terms in the power series solution about zero for the initial value
problem y′′ + sin(x)y′ + (x− 1)y = 0 with y(0) = 1 and y′(0) = 0.

PP 222 Find the complete Frobenius solution of

x2y′′ + x(x− 1
2
)y′ + 1

2
y = 0.

(it turns out this one has real exponents)

PP 223 Solve x3y′′ − x2y′ − y = 0 for x >> 0 by making the subsitution z = 1/x and solving the
resulting differential equation in z about the regular singular point z = 0. Find the first four
nonzero terms in the series expansion about infinity.

PP 224 Consider y′′ + exy′ + sin(3x)y = 0. Find the first 3 nontrivial terms in a series solution
centered about x = 0 given that y(0) = 1 and y′(0) = 6.



PP 225 Find the complete power series solution of y′′ + 6x2y = 0 centered at x = 0.

PP 226 Suppose we define ez =
∞∑
n=0

1

n!
zn. Show that eiθ = cos(θ) + i sin(θ).

PP 227 Suppose
∞∑
k=0

(a2kx
2k + b2k+1x

2k+1 = ex + cos(x+ 2). Find explicit formulas for a2k and b2k+1

via Σ-notation algebra.

PP 228 Find a power series solution to the integrals below:

(a.)

∫
x3 + x6

1− x3
dx

(b.)

∫
x8ex

3+2 dx

PP 229 Calculate the 42nd-derivative of x2 cos(x) at x = 1. (use power series techniques)

PP 230 Find the complete power series solution of y′′ + x2y′ + 2xy = 0 about the ordinary point
x = 0. Your answer should include nice formulas for arbitrary coefficients in each of the
fundamental solutions. You need to both set-up and solve the reccurrence relations as best
you can.

PP 231 (Ritger & Rose 7-2 problem 7 part c) Find the first four nonzero terms in the power series
solution about zero for the initial value problem (x + 2)y′′ + 3y = 0 with y(0) = 0 and
y′(0) = 1.

PP 232 (Ritger & Rose 7-2 problem 7 part d) Find the first four nonzero terms in the power series
solution about zero for the initial value problem y′′ + sin(x)y′ + (x− 1)y = 0 with y(0) = 1
and y′(0) = 0.

PP 233 Construct a differential equation with y1(x) =
sin(x)

x
for x ̸= 0 and y1(0) = 1, y2(x) = x as

its fundamental solution set. To accomplish this task do two tasks:

(a.) Argue from appropriate facts from the theory of determinants that L[y] = det

 y y′ y′′

y1 y′1 y′′1
y2 y′2 y′′2


is a linear ODE with solutions y1 and y2.

(b.) calculate L[y] explicitly as a linear ODE of the form py′′+ qy′+ ry = 0 where p, q, r are
perhaps given as Taylor expansions about zero.

PP 234 (from page 103 of Boyce and DiPrima’s 3rd Ed.) Consider xy′′ − (x + N)y′ + Ny = 0 for
N ∈ N

(a.) show y1 = ex is a solution.

(b.) show that y2 = cex
∫
xNe−x dx is a second solution. (perhaps use the result of the

previous problem, or the theorem from my notes or Ritger & Rose)



(c.) set c = −1
N !

and show by induction that y2(x) = Tn(x) the n-th order Taylor polynomial
of ex.

PP 235 (introduction to theory of adjoints, from page 95 of Boyce and DiPrima’s 3rd Ed.) If p(x)y′′+
q(x)y′ + r(x)y = 0 can be expressed as [p(x)y′]′ + [f(x)y]′ = 0 then it is said to be exact.
Omit x-dependence in p, q, r, µ for brevity, if py′′+qy′+ry = 0 is not exact then it is possible
to make it exact with multiplication by the appropriate integrating factor µ. Show that for µ
to accomplish its stated task it must itself be the solution of the so-called adjoint equation

pµ′′ + (2p′ − q)µ′ + (p′′ − q′ + r)µ = 0.

where we have assumed p, q possess the stated derivatives. Find the adjoint equation for

a. [constant coefficient case] ay′′ + by′ + cy = 0

b. [Bessel Eqn. of order ν] x2y′′ + xy′ + (x2 − ν2)y = 0

c. [The Airy Eqn.] y′′ − xy = 0

PP 236 Solve LI ′′1 +R1I
′
1+

1
C
(I ′1− I ′2) = 0 and R2I

′
2+

1
C
(I2− I1) = E ′(t) given that E(t) = 10 cos(2t),

L = 1 and C = 1 and R1 = 2 and R2 = 3 (in volts, seconds, Henries and Farads). These
differential equations stem from the circuit pictured below:

PP 237 Suppose D =

[
d1 0
0 d2

]
. Show that eD =

[
ed1 0
0 ed2

]
.

PP 238 Suppose dx
dt

= x+4y and dy
dt

= x+ y. Find the general real solution via the e-vector method.

PP 239 Suppose dx
dt

= 2x+y and dy
dt

= 2y. Find the general real solution via the generalized e-vector
method.

PP 240 Suppose dx
dt

= 4x − 3y and dy
dt

= 3x + 4y. Find the general real solution via the e-vector
method.

PP 241 Suppose dx
dt

= x+4y+ e6t and dy
dt

= x+ y+3. Find the solution with x(0) = 0 and y(0) = 0.
Please use matrix arguments (do not solve by the operator method, instead, use variation of
parameters for systems)

PP 242 Suppose X is a fundamental matrix for dx⃗
dt

= Ax⃗. Suppose B is a square matrix with

det(B) ̸= 0. Show that XB is a fundamental matrix for dx⃗
dt

= Ax⃗.

PP 243 Calculate etA for A =

[
1 4
1 1

]
. (Problem 238 should help)

PP 244 Use the Cayley Hamilton Theorem to calculate etA for A =

 2 1 −1
−3 −1 1
9 3 −4

. The Cayley

Hamilton Theorem simply states that a matrix solves it’s own characteristic equation; that is,
if p(λ) = 0 is the characteristic equation then p(A) = 0. For example, if p(λ) = (λ+ 2)3 = 0
then (A + 2I)3 = 0. The proof of this theorem is easy in the diagonalizable case, however



the general proof requires ideas about invariant subspaces often not covered in the under-
graduate course on linear algebra.

you may use technology to aid with the matrix calculations in the next three
problems. That said, you don’t really need it for these in my view

PP 245 Suppose dx
dt

= 5x− 6y− 6z, dy
dt

= −x+4y+2z and dz
dt

= 3x− 6y− 4z. Find the general real
solution via the e-vector method.

PP 246 Suppose dx
dt

= 5x− 5y− 5z, dy
dt

= −x+4y+2z and dz
dt

= 3x− 5y− 3z. Find the general real
solution via the e-vector method.

PP 247 Suppose dx
dt

= 3x + y, dy
dt

= 3y + z and dz
dt

= 3z. Find the general real solution via the
generalized e-vector method.

PP 248 To solve dx⃗
dt

= Ax⃗ in the case A =

 −3 0 −3
1 −2 3
1 0 1

 by the following calculations:

(a) find the e-values and corresponding e-vectors u⃗1, u⃗2, u⃗3. (you may use technology)

(b) construct P = [u⃗1|u⃗2|u⃗3] and calculate P−1AP . (you may use technology)

(c) note the solution of APy⃗ = d
dt
[P y⃗] = P dy⃗

dt
is easily found since multiplying by P−1 yields

P−1APy⃗ = P−1P dy⃗
dt

= I dy⃗
dt

= dy⃗
dt
. Solve P−1APy⃗ = dy⃗

dt
. (this should be really easy, just

solve 3 first order problems, one at a time)

(d) APy⃗ = d
dt
[P y⃗] means x⃗ = P y⃗ solves dx⃗

dt
= Ax⃗. Solve the original system by multiplying

the solution from (3.) by P .

The method outlined above is more meaningful in a larger discussion involving coordinate
change for linear transformations. The coordinates y⃗ = P−1x⃗ are eigencoordinates. A
matrix is said to be
diagonalizable iff there exists some coordinate change matrix P such that P−1AP = D
where D is diagonalizable. Not all matrices are diagonalizable. We’ve seen this. When there
are less than n-LI e-vectors then we cannot build the P -matrix as above and it turns out there
is no other way to diagonalize a matrix. On the other hand, the generalized e-vectors always
exist and cojugating by P made of generalized e-vectors will place any matrix in Jordan-form
(possibly complex).

PP 249 Suppose A is an 7 × 7 matrix with complex e-value λ1 = 3i repeated and a real e-value of
λ2 = 1 repeated three times. You are given a complex vector u⃗1 = a⃗1 + i⃗b1 a second LI
complex-vector u⃗2 = a⃗2 + i⃗b2 such that

(A− 3iI)u⃗1 = 0 (A− 3iI)u⃗2 = u⃗1.

We assume a⃗1, a⃗2, b⃗1, b⃗2 are all real vectors. Furthermore, you are given u⃗3, u⃗4, u⃗5 LI vectors
such that

(A− I)u⃗3 = 0, Au⃗4 = u⃗4, Au⃗5 = u⃗5 + u⃗4

Find the general, manifestly real, solution.



PP 250 Suppose a force F (x) = 3x4+16x3+6x2−72x is the net-force on some massm = 1. Newton’s
Equation is ẍ = 3x4 + 16x3 + 6x2 − 72x.

(a) make the substitution v = ẋ and write Newton’s equation as a system in normal form
for x and v.

(b) find all three critical points for the system in (1.). (the potential should factor nicely)

(c) plot the potential plane and phase plane juxtaposed vertically with the potential at the
top and the phase plane at the base. Plot several trajectories and include arrows to
indicate the direction of physically feasible solutions.

(d) classify each critical point by examining your plot from (3.)

in this context the phase plane is also called the Poincare plane in honor of the mathematician
who did much pioneering work in this realm of qualitative analysis. Incidentally, given any
autonomous system dx

dt
= g(x, y) and dy

dt
= f(x, y) we can study the timeless phase plane

equation dy
dx

= f
g
to indirectly analyze the solutions to the system. Solutions to the phase

plane equation are the Cartesian level curves which are parametrized, with parameter t, by
the solutions to the system

PP 251 The Volterra-Lotka equations are a nonlinear system of ODEs which model the population
interaction between some prey with population x and predator of population y. For example,
dx
dt

= x(3 − y) and dy
dt

= y(x − 3). This means that when the predator population is over 3
then prey population declines. On the other hand, if the prey population goes beyond 3 then
the predator population grows. This competition can lead to a variety of outcomes. Find
all the critical points of the system and plot the phase plane via the pplane tool, plot about
20 interesting trajectories. Comment on the stability of the critical points. (you’ll need to
print this out and attach it to this homework)

PP 252 Show that nontrivial solutions for the cauchy-euler system tdx⃗
dt

= Ax⃗ of the form x⃗(t) = tRu⃗

must have R an e-value of A with u⃗ the corresponding e-vector. Solve tdx⃗
dt

= Ax⃗ in the case

A =

[
−4 2
2 −1

]
for t > 0.

PP 253 Difference equations can sometimes be written in the form x⃗k+1 = Bx⃗k where k = 0, 1, 2, . . . .
It is easy to show that if x⃗o is the given initial state of the system then the k-th state is
found by x⃗k = Bkx⃗o. There is a natural connection with this difference equation and the
linear differential equations we have studied. Consider this: for small △t,

dx⃗

dt
= Ax⃗ ⇒ x⃗(t+△t)− x⃗(t)

△t
≊ Ax⃗(t) ⇒ x⃗(t+△t) = x⃗(t) +△tAx⃗(t)

Hence, x⃗(t+△t) = (I+△tA)x⃗(t). Identify that this approximation resembles the difference
equation where x⃗(t) = x⃗k and x⃗(t+△t) = x⃗k+1 and B = I +△tA.

(a) Suppose x⃗o = [2, 0]T is the initial state. Calculate the states up to k = 10 for x⃗k+1 = Bx⃗k

where B =

[
1.1 −1
1 1.1

]
.

(b) Solve dx⃗
dt

= Ax⃗ where A =

[
0.1 −1
1 0.1

]
given the initial condition x⃗(0) = [2, 0]T .



(c) plot the states from (1.) as dots and the solution from (2.) as a curve on a common
xy-plane. Comment on what you see. (what △t did I choose ? How could we make the
difference equation more closely replicate the differential equation?)

PP 254 Suppose A =

 1 2 3
4 5 6
7 8 9

. Calculate A2.

PP 255 Let A be as in the previous problem. Suppose v1 =

 1
2
0

 and v2 =

 −1
0
3

.
(a.) calculate Av1 c

(b.) calculate Av2

(c.) calculate A[v1|v2] (here [v1|v2] is the 3×2 matrix made from gluing (aka concatenating)
the column vectors v1 and v2)

(d.) Does A[v1|v2] = [Av1|Av2]?

PP 256 A square matrix X is invertible iff there exists Y such that XY = Y X = I where I is the
identity matrix. Moreover, linear algebra reveals that X is invertible iff det(X) ̸= 0. For

a 2 × 2 matrix X =

[
a b
c d

]
we define det(X) = ad − bc. Suppose X is invertible and

show X−1 = 1
ad−bc

[
d −b
−c a

]
. This formula is worth memorizing for future use in two-

dimensional problems. Please understand, all I’m asking here is for you to multiply X and

my propsed formula for X−1 to obtain I =

[
1 0
0 1

]
.

PP 257 Differentiation of matrices of functions is not hard. Let X(t) =

[
et t
1/t e−t

]
. Calculate:

(a.) calculate dX
dt

(b.) calculate dX−1

dt

(c.) simplify dX
dt
X−1 +X dX−1

dt
.

(d.) explain the previous part by differentiating X(t)X−1(t) = I. Note: the product rule
for matrix products is simply d

dt
(AB) = dA

dt
B + AdB

dt
.

PP 258 If two masses m1,m2 are coupled by a spring and then the whole system is attached to
springs between to walls (see figure 1 on page 230 of Ritger & Rose for a related picture)
then

m1ẍ1 = −k1x1 + k2(x2 − x1)

m2ẍ2 = −k2(x2 − x1)− k3x2.

PP 259 Suppose k2 = 0. Find the equations of motion.

PP 260 Suppose k1 = k3 = 0. Find the equations of motion.



PP 261 Suppose k1 = k3 = 1 and k2 = 2 with m1 = m2 = 1. Find the equations of motion.

PP 262 Solve x′ = 7x+ 3y and y′ = 3x+ 7y by the eigenvector method.

PP 263 Use the solution of the previous problem to solve x′ = 7x + 3y + 1 and y′ = 3x + 7y + 2
subject the initital condition x(0) = 1 and y(0) = 2.

PP 264 Solve x′ = −3x− 5y and y′ = 3x+ y with x(0) = 4 and y(0) = 0 by the eigenvector method.

PP 265 An ice tray has tiny holes between each of its three partititions such that the water can flow
from one partition to the next. Let x, y, z denote the height of water in the three water
troughs. The holes are designed such that the flow rate is proportional to the height of water
above the adjacent trough. For example, supposing x and z are the edge troughs whereas y
is in the middle we have dx

dt
= k(y − x). For simplicity of discussion suppose k = 1. Write

the corresponding differential equations to find the water-level in the y and z troughs. If
initially there is 3.0 cm of water in the x trough and none in the other two troughs then find
the height in all three troughs as a function of time t. Discuss the steady state solution, is
it reasonable?

PP 266 Let a, b be constants which are some measure of the trust between two nations. Furthermore,
let x be the military expenditure of Bobslovakia and let y be the military expenditure of the
Leaf Village. Detailed analysis by strategically gifted ninjas reveal that

dx

dt
= −x+ 2y + a

dy

dt
= 4x− 3y + b

Analyze possible outcomes for various initial conditions and values of a, b. Consider drawing
an ab-plane to explain your solution(s). Is a stable peace without a run-away arms race
possible given the analysis thus far?

PP 267 Suppose (A− λI)u⃗1 = 0 and (A− λI)u⃗2 = u⃗1 where λ = 3 + i
√
2 and

u⃗1 = [3 + i, 4 + 2i, 5 + 3i, 6 + 4i]T and u⃗2 = [i, 1, 2, 3− i]T .

(a.) find a pair of complex solutions of dx⃗
dt

= Ax⃗

(b.) extract four real solutions to write the general real solution (c1, c2, c3, c4 should be real
in this answer)

PP 268 Let I =

[
1 0
0 1

]
and let J =

[
0 −1
1 0

]
. Calculate eθJ where θ ∈ R. Express your answer

in terms of sine and cosine and relevant matrices.

PP 269 Solve x′ = 2x+ y and y′ = 2y by the method generalized eigenvectors.

PP 270 Introduce variables to reduce

y′′′ + 4y′′ + 2y′ + 6y = tan(t)

to a system of three first order ODEs in matrix normal form dx⃗
dt

= Ax⃗+ f⃗ .



PP 271 Introduce variables to reduce

y′′ + 4ty′ + 5y′ = 0, w′′ + 9e−tw = 0

to a system of four first order ODEs in matrix normal form dx⃗
dt

= Ax⃗.

PP 272 Linear independence (LI) of vector-valued functions {f⃗j : I ⊆ R → Rn | j = 1, . . . , k} is
defined in the same way as was previously discussed for real-valued functions. In particular,
{f⃗1, . . . , f⃗k} is LI on I ⊆ R if c1f⃗1(t)+ · · ·+ckf⃗k(t) = 0 for all t ∈ I implies c1 = 0, . . . , ck = 0.
We can check LI of n such n-vector-valued functions without any further differentiation; in
particular, if det[f⃗1(t)| · · · |f⃗n(t)] ̸= 0 for all t ∈ I ⊆ R then {f⃗1(t), . . . , f⃗n(t)} is LI on I.
Show the following sets of vector-valued functions are LI on R. (notice, my notation is that
(a, b) = [a, b]T , in other words, each of the expressions below has lists of column vectors.

(a.) { (et, et), (et,−et) }
(b.) { (cos(t),− sin(t)), (sin(t), cos(t)) },
(c.) { etu⃗1, , e

t(u⃗2+tu⃗1) , e
t(u⃗3+tu⃗2+

t2

2
u⃗3) } given u⃗1 = (1, 0, 0), u⃗2 = (0, 1, 1), u⃗3 = (1, 1, 1).

PP 273 (Cook 5.1)(problem 13 of section 4.9 in Zill) Solve:

2ẋ− 5x+ ẏ = et

2ẋ− x+ ẏ = 5et

PP 274 (Cook 5.1)(problem 7 of section 7.6 in Zill) Solve:

ẍ+ x− y = 0,

ÿ + y − x = 0,

subject the initial conditions x(0) = 0, ẋ(0) = −2 and y(0) = 0, ẏ(0) = 1. (you could use the
technique of section 4.9 or that of 7.6, either method should be a profitable exercise)

PP 275 (matrix multiplication) work problem 6 of Appendix II in Zill (page APP-18)

PP 276 Solve, via the eigenvector technique,

dx

dt
= 5x− y

dy

dt
= −x+ 5y.

PP 277 Plot the direction field of the system given in previous Problem using pplane. Plot a few
solutions. Can you see the e-vectors’ geometric significance? Include a print-out of your
investigation.

PP 278 Solve, via the complex eigenvector technique,

dx

dt
= 4x+ 2y

dy

dt
= −x+ 2y.



PP 279 Plot the direction field of the system given in the previous problem. Plot a few solutions.
Can you see the e-vectors’ geometric significance? Include a print-out of your investigation.

PP 280 Solve x′ = 7x+ 3y + 4z, y′ = 6x+ 2y, z′ = 5z by the eigenvector method.

PP 281 Use technology to find e-values and e-vectors for each of the matrices below. If possible, use
the solutions of dx⃗

dt
= Ax⃗ derived from e-vectors to write the general solution of dx⃗

dt
= Ax⃗. If

not possible, explain why.

(a.) A =

 3 2 4
2 0 2
4 2 3

.
(b.) A =

 3 1 0
0 3 0
0 0 5

.
(c.) A =

 0 0 1
1 0 −3
0 1 3


(d.) A =

 −1 −3 −9
0 5 18
0 −2 −7

.
(e.) A =

 1 0 −1
0 2 0
1 0 1

.
PP 282 Find fundamental matrices for each of the systems given in the previous half dozen problems

where reasonable.

PP 283 Suppose v⃗ is an eigevector with eigenvalue λ for the real matrix A. Show A2 also has e-vector
v⃗. What is the e-value for v⃗ with respect to A2.

PP 284 Write down the magic formula for the matrix exponential.

PP 285 Suppose A is a 3× 3 matrix with nonzero vectors u⃗, v⃗, w⃗ such that

Au⃗ = 3u⃗, (A− 3I)v⃗ = u⃗, Aw⃗ = 0.

Write the general solution of dx⃗
dt

= Ax⃗ in terms of the given vectors.

PP 286 Suppose (A− λI)u⃗1 = 0 and (A− λI)u⃗2 = u⃗1 where λ = 3 + i
√
2 and

u⃗1 = [3 + i, 4 + 2i, 5 + 3i, 6 + 4i]T and u⃗2 = [i, 1, 2, 3− i]T .

(a.) find a pair of complex solutions of dx⃗
dt

= Ax⃗

(b.) extract four real solutions to write the general real solution (c1, c2, c3, c4 should be real
in this answer)

PP 287 Let I =

[
1 0
0 1

]
and let J =

[
0 −1
1 0

]
. Calculate eθJ where θ ∈ R. Express your answer

in terms of sine and cosine and relevant matrices.



PP 288 Solve x′ = 2x+ y and y′ = 2y by the method generalized eigenvectors.

PP 289 Show why d
dt
etA = AetA. Is this enough to show etA is a fundamental solution matrix? If

not, say what else we need to know about the matrix exponential.

PP 290 Show x⃗(t) = etAx⃗o is a solution to dx⃗
dt

= Ax⃗ with x⃗(0) = x⃗o. In this sense, the matrix
exponential generates the solution of the system of ODEs with coefficient matrix A.

PP 291 (matrix inverse of 2 × 2) Suppose X(t) =

[
cosh t sinh t
sinh t cosh t

]
. Find X−1(t). (use the nice

formula in Example 5.2.7 of Cook)

PP 292 work out problem 15 of section 8.3.2 in Zill. That is, solve dx⃗
dt

= Ax⃗+ f⃗ where

A =

[
0 2
−1 3

]
and f⃗(t) =

[
et

−et

]
PP 293 work out problem 21 of section 8.3.2 in Zill. That is, solve dx⃗

dt
= Ax⃗+ f⃗ where

A =

[
0 −1
1 0

]
and f⃗(t) =

[
sec t
0

]
PP 294 Consider the differential equation y′′ − 2y′ + y = 0. I think we can all solve this one. Let

x1 = y, x2 = y′. Let A be the companion matrix which stems from the reduction of order
just listed. Solve dx⃗

dt
= Ax⃗ by translating the fundamental solution set {y1, y2} = {et, tet}

into the corresponding fundamental solution set {x⃗1, x⃗2}. Let u⃗1 = e−tx⃗1 and u⃗2 = e−tx⃗2.
Solve the following equations:

(A− I)u⃗1 = a⃗ (A− I)u⃗2 = b⃗.

In other words, find a⃗, b⃗ explicitly. Comment on which of the fundamental solutions to
{x⃗1, x⃗2} was an eigensolution.

PP 295 Suppose A has n-LI e-vectors and hence we can write the general solution for dx⃗
dt

= Ax⃗ as a
linear combination

x⃗ = c1e
λ1t + · · ·+ cne

λnt

Solve dx⃗
dt

= Akx⃗ where k ∈ N.

PP 296 If AT = A then we say A is a symmetric matrix. A rather deep theorem of linear algebra
states that a symmetric matrix has real eigenvalues and it is possible to select n-LI eigen-

vectors {u⃗1, . . . , u⃗n} for which Au⃗j = λju⃗j and u⃗i · u⃗j = δij =

{
1 i = j

0 i ̸= j
for all i, j ∈ Nn.

It follows that P = [u⃗1| · · · |u⃗n] has P
TP = I which means P−1 = P T . This means, if we’re

studying a system of differential equations dx⃗
dt

= Ax⃗ with AT = A we can change coordinates
to y⃗ = P T x⃗ and in that new y⃗-coordinate system the differential equation is simply:

dy1
dt

= λ1y1, . . . ,
dyn
dt

= λnyn. ⋆ .

This system is said to be uncoupled and it’s really the most trivial sort of system you can
come across; we can solve each equation in the uncoupled system without knowledge of the



remaining variables. Consider x⃗ = ⟨x, y, z⟩ and the differential equation dx⃗
dt

= Ax⃗ where

A =

 0 2 2
2 0 2
2 2 0

. Find an orthonormal eigenbasis for A and use it to change coordinates

on the given system. Verify the claim ⋆ in the context of A. Use the notation y⃗ = ⟨x̄, ȳ, z̄⟩,
so y1 = x̄ etc..

PP 297 Consider the solution-set of 4xy + 4xz + 4yz = 1. Change to the barred-coordinates x̄, ȳ, z̄
you discovered in the previous problem. Which Quadric surface is this?

PP 298 The Cayley Hamilton Theorem states that a matrix will solve its own characteristic equation.
For example, if P (x) = x3 + I then P (A) = A3 + I = 0. For this A, calculate etA in terms
of A. Recall, as you should know, etA = I + tA+ · · · =

∑∞
n=0

tn

n!
An.

PP 299 Solve x′ = −x− 4y and y′ = 8x+ 11y using matrix methods.

PP 300 Solve x′ = −7x− 6y and y′ = 15x+ 11y using matrix methods.

PP 301 Suppose A =

[
2 5
0 2

]
. Calculate etA.

Also, solve dr⃗
dt

= Ar⃗ given that r⃗(0) = (1, 2).

PP 302 Consider A is a 3× 3 matrix for which there exist nonzero vectors v1, v2, v3 such that:

Av1 = 10v1, Av2 = 10v2, Av3 = 10v3 + v1

derive the general solution for dr⃗
dt

= Ar⃗ with appropriate arguments based on the matrix
exponential.

PP 303 Let A =

[
1 2
2 1

]
let B = I + A where I =

[
1 0
0 1

]
. Also set M =

 8 5 9
6 3 0
7 0 0


(a.) Calculate AB and calculate BA. (this doesn’t usually happen)

(b.) We say e1 =

 1
0
0

 and e2 =

 0
1
0

 in R3. Calculate Me1 and Me2 then check that

M

 1 0
0 1
0 0

 = [Me1|Me2]. This ought to illustrate the column-by-column multiplica-

tion rule in the sense that M [e1|e2] = [Me1|Me2]. Recall this was important for us as
we analyzed how the solution matrix gives us a matrix where each column is itself a
solution

PP 304 Let A =

 1 2 3
2 1 3
3 3 0

. Calculate the following items for A,

(a.) show the eigenvalues of A are λ1 = −3, λ2 = −1 and ,λ3 = 6



(b.) find eigenvectors u⃗1, u⃗2, u⃗3 with eigenvalues λ1 = −3, λ2 = −1 and ,λ3 = 6 respective.
Normalize the eigenvectors so that each has length one.

(c.) show u⃗i • u⃗j = δij =

{
1 i = j

0 i ̸= j
.

(d.) Let P = [u⃗1|u⃗2|u⃗3] and show that P TP = I (this shows that P−1 = P T and that P is
what is known as an orthgonal matrix)

(e.) Calculate P TAP . You should get something really pretty.

Remark: the problem above illustrates the real spectral theorem which implies that a symmet-
ric matrix has an orthonormal eigenbasis and eigenvalues which are all real

PP 305 Find the general solution of dr⃗
dt

= Ar⃗ where A is was given in the previous problem.

PP 306 Let x′ = 2x − 3y and y′ = 3x + 2y. Find the general real solution via the techinque
of eigenvectors and/or generalized eigenvectors. In addition, set-up the solution to x′ =
2x − 3y + f1 and y′ = 3x + 2y + f2 via the method of variation of parameters for systems.
hint: I think this one requires calculation of a complex eigenvector

PP 307 Let x′ = 3x − 18y and y′ = 2x − 9y. Find the general real solution via the techinque of
eigenvectors and/or generalized eigenvectors. Then solve the initial value problem for the
given system of DEqns with initial data x(0) = 1 and y(0) = 0. hint: I believe this problem
will require you to find one eigenvector and one generalized eigenvector, both with the same
eigevalue

PP 308 Let I be the 2× 2 identity matrix and let

K =

[
0 1
1 0

]
.

Prove that etK = cosh(t)I+sinh(t)K. Is dr⃗
dt

= Kr⃗ a system of differential equations obtained
by reduction of order ? If so, do the solutions you found in etK coincide logically with those
you find by directly solving the corresponding 2-nd order problem ?

PP 309 Suppose A is a 4× 4 matrix with nonzero real vectors u⃗1, u⃗2, u⃗3 and u⃗4 for which:

Au⃗1 = 3u⃗1, (A− 3I)u⃗2 = u⃗3, (A− 3I)u⃗3 = u⃗1, Au⃗4 = 0

Find the general solution to dr⃗
dt

= Ar⃗. Do not assume it fits a pattern. You need to think.


