- 1. All you know is that au + bv = 6 for some integers a, b, u, v. What could (a, b) be? Also, is it possible that u and v are relatively prime?
- 2. Let $a, b \in \mathbb{Z}$. Suppose that a divides b and b divides a. Is it necessarily true that a = b? What can you say if f(x) divides g(x) and g(x) divides f(x) when $f(x), g(x) \in \mathbb{F}[x]$ for some field \mathbb{F} ?
- 3. Let p be a positive prime integer. Show $\sqrt[3]{p}$ is irrational.
- 4. Does $2000x \equiv 4 \mod 19875$ have any solutions? No serious calculations needed!!!
- 5. Write out a multiplication table for $\mathbb{Z}_3 \times \mathbb{Z}_2$. Find all units and zero divisors.
- 6. Let $U = \left\{ \begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix} \mid a, b, c, d, e, f \in \mathbb{R} \right\}$ be the set of 3x3 real upper-triangular matrices. Show that U is a subring of $\mathbb{R}^{3\times 3}$.
- 7. Let R be a ring and define $Z(R) = \{r \in R \mid ar = ra \text{ for all } a \in R\}$ to be the *center* of R. Show that Z(R) is a subring of R. What is $Z(\mathbb{Z})$? What is $Z(M(\mathbb{R}))$?
- 8. Show that $U(R_1 \times R_2) = U(R_1) \times U(R_2)$ for any two rings with identity R_1 and R_2 .
- 9. Let R be a commutative ring with 1, and $r \in R$. Define $L_r : R \to R$ by $L_r(x) = rx$ for all $x \in R$. Prove that L_r is injective iff r is a nonzero nonzero divisor. Prove that L_r is sujective iff r is a unit.
- 10. Let $a, b \in R$ (a ring). Show that -ab = (-a)b = a(-b) and -(-a) = a just using ring axioms. Use your results above to show that (-1)(-1) = 1 if R has a multiplicative identity 1. One more thing...show that 3(ab) = (3a)b = a(3b).
- 11. Let R and S be rings. Prove that $R \times S$ is isomorphic to $S \times R$. Let R be an integral domain. Prove that $R \times R$ is *not* isomorphic to R.
- 12. Let $a, b, c \in \mathbb{Z}$. Show that if c divides b and (a, b) = 1, then (a, c) = 1. Now prove the same result for polynomials with field coefficients.
- 13. Is $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ a unit in $M(\mathbb{Z})$? Why or why not? Is A a unit in $M(\mathbb{Z}_7)$?
- 14. Factor $x^4 9$ in $\mathbb{Q}[x]$, $\mathbb{R}[x]$, and $\mathbb{C}[x]$. Also, factor $x^4 9$ in $\mathbb{Z}_2[x]$.
- 15. Let \mathbb{F} be a subfield of \mathbb{C} , $\phi : \mathbb{F} \to \mathbb{F}$ be an automorphism of \mathbb{F} such that $\phi(c) = c$ for all $c \in \mathbb{Q}$ (ϕ fixes the rationals), and let $f(x) \in \mathbb{Q}[x]$. Show that $r \in \mathbb{F}$ is a root of f(x) iff $\phi(r)$ is a root of f(x).
- 16. Prove that $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ is a subfield of \mathbb{C} . Also, prove that $\phi : \mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[\sqrt{2}]$ defined by $\phi(a + b\sqrt{2}) = a b\sqrt{2}$ is an automorphism of $\mathbb{Q}[\sqrt{2}]$. In fact, using the previous problem, one can show that the only automorphisms of $\mathbb{Q}[\sqrt{2}]$ are ϕ and the identity map.
- 17. Let $f(x) \in \mathbb{F}[x]$ (where \mathbb{F} is a field) be a polynomial of degree 5. Suppose that f(x) has no roots in \mathbb{F} and no quadratic factors (no polynomial of degree 2 divides f(x)). Can I then conclude that f(x) is irreducible? Why or why not?