Your solutions should be neat, correct and complete. Same instructions as Mission 1 apply here.
Recommended Homework from Textbook: problems:
$5.2,5.3,5.7,5.14,5.24,5.31,5.32,5.34,5.40,5.42,5.63,5.72,5.77,5.80,5.103,5.114$.
I also reccommend you work on understanding whatever details of lecture seem mysterious at first.
Required Reading 3 [1pt] Your signature below indicates you have read:
(a.) I read Lectures $9,10,11,13$ and 15 by Cook as announced in Blackboard: \qquad
(b.) I read Chapters 5 and 6 of the required text: \qquad .

Problem 21 [3pts] Problem 5.36 (inclined plane)

Problem 22 [3pts] Problem 5.66 (inclined plane)

Problem 23 [3pts] Problem 5.68 (inclined plane)

Problem 24 [3pts] Problem 5.92 (inclined plane with pulleys)

Problem 25 [3pts] Problem 5.108 (v-dependent force)

Problem 26 [3pts] Problem 5.44 (flat race track with friction)

Problem 27 [3pts] A velocity-dependent friction force of $F_{f}=c v^{3}$ acts on a falling mass. Find the terminal velocity and draw a free-body diagram to illustrate the direction of the gravitational and friction forces. What are the dimensions of the constant c ?

Problem 28 [3pts] We define gradients $\nabla f=\frac{\partial f}{\partial x} \hat{\mathbf{x}}+\frac{\partial f}{\partial y} \hat{\mathbf{y}}$ for $f=f(x, y)$ or, for three dimensional cases, $g=g(x, y, z)$, we define $\nabla g=\frac{\partial g}{\partial x} \hat{\mathbf{x}}+\frac{\partial g}{\partial y} \hat{\mathbf{y}}+\frac{\partial g}{\partial g} \hat{\mathbf{z}}$. Geometrically, $f(x, y)=k$ has a solution set which is a curve, sometimes called the level- k curve. Geometrically, $g(x, y, z)=k$ has a solution set which is a surface, sometimes called the level k-surface. Calculate the gradient vector field of each function below.
(a.) $f(x, y)=x^{2}+2 y^{2}$,
(b.) $f(x, y)=e^{x y}$,
(c.) $g(x, y, z)=a x+b y+c z$ where a, b, c are constants,
(d.) $g(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{n}$ where $n \in \mathbb{Z}$.

Problem 29 [3pts] Let C_{1} be the helix parametrized by $\overrightarrow{\mathbf{r}}_{1}(t)=\langle\cos t, \sin t, t\rangle$ for $t \in[0,2 \pi]$. Also, let C_{2} be the line from $(1,0,0)$ to $(1,0,2 \pi)$ parametrized by $\overrightarrow{\mathbf{r}}_{2}(t)=\langle 1,0, t\rangle$. Both parametrizations have $0 \leq t \leq 2 \pi$.
(a.) if $\left.\overrightarrow{\mathbf{F}}_{1}=(x+y) \hat{\mathbf{x}}+(y+z) \hat{\mathbf{y}}+(z+x) \hat{\mathbf{z}}\right\rangle$ then calculate $\int_{C_{1}} \overrightarrow{\mathbf{F}}_{1} \bullet d \overrightarrow{\mathbf{r}}$ and $\int_{C_{2}} \overrightarrow{\mathbf{F}}_{1} \bullet d \overrightarrow{\mathbf{r}}$
(b.) if $\overrightarrow{\mathbf{F}}_{2}=x^{3} \hat{\mathbf{x}}+y^{2} \hat{\mathbf{y}}+z \hat{\mathbf{z}}$ then calculate $\int_{C_{1}} \overrightarrow{\mathbf{F}}_{1} \bullet d \overrightarrow{\mathbf{r}}$ and $\int_{C_{2}} \overrightarrow{\mathbf{F}}_{1} \bullet d \overrightarrow{\mathbf{r}}$

Problem 30 [3pts] Find the potential energy function for the vector field in the previous problem which is conservative. Calculate the work done by the force for any path which begins at $(1,0,0)$ and ends at $(0,0,2 \pi)$.

