Your solutions should be neat, correct and complete. Same instructions as Mission 1 apply here.
Recommended Homework from Textbook: problems:
$9.3,9.7,9.13,9.22,9.35,9.39,9.45,9.78,9.84,9.99$
$10.1,10.4,10.11,10.17,10.34,10.39,10.40,10.43,10.50,10.64,10.67,10.79,10.97$, $13.5,13.14,13.16,13.22,13.29,13.32,13.37,13.43,13.52,13.62,13.75$.

I also reccommend you work on understanding whatever details of lecture seem mysterious at first.
Required Reading 6 [1pt] Your signature below indicates you have read:
(a.) I read Lectures 26, 27, 28, 29, 30, 31, 32 and 33 by Cook as announced in Blackboard:
(b.) I read Chapter 9, 10 and 13 of the required text: \qquad .

Problem 51 [3pts] A yo-yo has $300 J$ of energy in the form of rotational kinetic energy. The yo-yo also has an angular momentum of $L=20 \mathrm{~m}^{2} \mathrm{~kg} / \mathrm{s}$. What is the moment of intertia of the yo-yo ?

Problem 52 [3pts] A force $\overrightarrow{\mathbf{F}}=(3.0 N)(3 \hat{\mathbf{x}}-2 \hat{\mathbf{z}})$ is applied to a point mass $M=2.00 \mathrm{~kg}$ which has initial velocity $\overrightarrow{\mathbf{v}}=(30 \mathrm{~m} / \mathrm{s})(\hat{\mathbf{y}}+\hat{\mathbf{z}})$ at the point $(1,2,3) \mathrm{m}$. Find the torque on M and the angular momentum of M with respect to the origin.

Problem 53 [3pts] You push the edge of a door of large square door with side-length 2.00 m at the middle of the door. A mischevious genin-level ninja who just learned about mechanical advantage pushes at the edge of the door and stops your push with a smaller force. If you push with force F then what force did the ninja stop you ?

Problem 54 [3pts] A mass of 100 kg hangs via a very thin wire (with small mass) of the edge of a cylindrical barrel filled with cheese of density $30 \mathrm{~kg} / \mathrm{m}^{3}$. The barrel itself has a mass of 20 kg which includes the caps and the sides. The cylinder has length of $l=1.23 \mathrm{~m}$ and a radius of $R=0.466 \mathrm{~m}$. If the barrel rotates on an essentially frictionless axel then how far will the mass fall in the first second it is released from rest ? How much rotational energy and how much angular momentum will be given to the cheese barrel at that time ?

Problem 55 [3pts] Problem 13.85 (uniform earth PE, fall to center)

Problem 56 [3pts] Let masses $m_{1}=1.0 \mathrm{~kg}$ be placed at $(1.0 \mathrm{~m}, 0,3.0 \mathrm{~m})$ and $m_{2}=2.0 \mathrm{~kg}$ be placed at $(-1.0 m, 2.0 m, 0)$. Find the net gravitational force on $M=0.030 \mathrm{~kg}$ placed at the origin. What is the gravitational acceleration due to m_{1} and m_{2} at the origin?

Problem 57 [3pts] A planet has mass $M=3.54 \times 10^{27} \mathrm{~kg}$. A moon orbits the planet in a circular orbit of radius $R=2.0 \times 10^{8} \mathrm{~m}$. What is the period of the moon's orbit?

Problem 58 [3pts] Three planets of identical mass M orbit in a circular orbit of radius R. The planets are symmetrically placed. Find the speed of their orbit.

Problem 59 [3pts] Problem 10.81 (rolling stone with some slipping)

Problem 60 [3pts] Problem 13.79 (mars rocket orbital modification)

