Physics 232

MISSION 6: FARADAY'S LAW & APPLICATIONS

Please work each problem in the white space provided. Attach additional sheets if necessary. Print this one-sided and staple in the top left corner with a metal staple once complete. Each team turns in one document.

- **Problem 33** Suppose a magnetic field is zero everywhere except for a region $0 \le x \le L$ where a magnetic field of B = 2.0~T directed in the positive z-direction (out of the page). In other words, $\vec{B} = (2.0T)\hat{z}$ for $0 \le x \le L$ and $\vec{B} = 0$ elsewhere. Suppose a loop of wire travels in the positive x-direction in the xy-plane. Find the following: (assume the loop is a circle of radius less than L)
 - (a.) Find the direction of the induced current in the loop as the loop enters the region 0 < x < L

(b.) Find the magnitude of the induced current in the loop as the loop is inside the region $0 \le x \le L$

(c.) Find the direction of the induced current in the loop as the loop leaves the region $0 \le x \le L$

Problem 34 Suppose $B_z(t) = \alpha \sin(kt)$ is the z-component of the magnetic field in the xy-plane where $\alpha = 2.0 \ T$ and $k = 10 \ Hz$. This means the magnitude changes the same way at all points in the plane. Suppose a 25 cm^2 loop with resistance 3.0 Ω is placed in the xy-plane. What current is induced in the loop at time t?

Problem 35 The figure below shows a top view of a bar that can slide without friction. The resistor is 6.30 Ω and a 2.50 T magnetic field is directed perpendicularly downward, into the paper. Let $\ell=1.20~m$.

(a.) Calculate the applied force required to move the bar to the right at a constant speed of 1.90 m/s.

(b.) At what rate energy delivered in the resistor?

Problem 36 Given the diagrams below, indicate the direction of the induced current in each case:

(a.) .

(b.)

Problem 37 A solenoid of length 20.0 cm with N-turns has a current I=6.00 A flowing. If the magnetic field strength near the center of the solenoid is measured to have a magnitude 0.0188 T then what is N? Assume the edge-effects are neglible.

Problem 38 Find the current as a function of time for the RL-circuit pictured below for t > 0. Assume the pictured switch is closed at time t = 0.

Problem 39 Find the currents and voltages indicated below (assume the circuit has been connected a long time)

Problem 40 Write Maxwell's Equations in both integral and differential form (name each one).
Problem 41 Show that Maxwell's Equations imply the local conservation of charge.
Problem 41 Show that Maxwell's Equations imply the local conservation of charge.
Problem 41 Show that Maxwell's Equations imply the local conservation of charge.
Problem 41 Show that Maxwell's Equations imply the local conservation of charge.
Problem 41 Show that Maxwell's Equations imply the local conservation of charge.
Problem 41 Show that Maxwell's Equations imply the local conservation of charge.