- Course Planner includes dates for Tests etc...
- Applied Linear Algebra Lecture Notes
- Matrix Calculator Site - Will show steps for rref and many other calculations.
- Eigenvector calculator, ugly numbers no problem. Also deals with complex case no problem. However, does not find generalized e-vectors.
- Note on why the CCP is true and how to reverse engineer a matrix with it (for this video)
- Note on definition of matrix w.r.t. basis for linear transformation on Rn (for this video)

- Computer Project A orthonormalization, construction of matrix with particular set of eigenvalues and vectors, applications.
- Computer Project B random matrix generation, orthonormalization, finding spectrum and diagonalizing, applications.
- Computer Project C orthonormalization, construction of matrix with particular Jordan form, applications.

I will post solutions of the following problem sets after I collect them throughout the Spring 2024 offering of Math 221. I'll probably just post them in Canvas during the semester.

- Mission 1 of Spring 2024
- Mission 2 of Spring 2024
- Mission 3 of Spring 2024
- Mission 4 of Spring 2024
- Mission 5 of Spring 2024
- Mission 6 of Spring 2024
- Mission 7 of Spring 2024
- Mission 8 of Spring 2024

- Test 1 solution from 2012
- Test 2 solution from 2012
- Test 3 solution from 2012
- Takehome Test 3 solution from 2012
- Quiz 1 solution from 2012
- Quiz 2 solution from 2012
- Quiz 3 solution from 2012
- Quiz 4 solution from 2012
- Quiz 5 solution from 2012
- Quiz 6 solution from 2012
- Quiz 7 solution from 2012
- Quiz 8 solution from 2012
- Quiz 9 solution from 2012
- Test 1 solution from 2017
- Test 2 solution from 2017
- Test 3 solution from 2017
- Quiz 1 solution from 2017
- Quiz 2 solution from 2017

Solutions to Homework from a previous year:

- Homework 1: on linear systems and Gaussian Elimination
- Homework 2: matrix properties, elementary and inverse matrices
- Homework 3: calculating inverse matrix, and determinants, Kramer's Rule
- Homework 4: spanning sets, linear independence, CCP, coordinate vectors
- Homework 5: row, column and null space of a matrix
- Homework 6: linear transformations
- Homework 7: dot-products, Gram Schmidt, orthogonal complements
- Homework 8: orthogonal operators and least square fitting
- Homework 9: inner products, real e-values and e-vectors
- Homework 10: e-value theory and complex e-values and vectors
- Homework 11: diagonalization and eigenbases
- Homework 12: solving systems of ODEqns via the matrix exponential/e-vector method

- Homework 1:
- Homework 2:
- Homework 3:
- Homework 4:
- Homework 5:
- Homework 6:
- Homework 7:
- Homework 8:
- Homework 9:
- Homework 10:

- Overview of Row Reduction including LU and PLU decomposition and the CCP (written by my brother William Cook of Appalachian State University)
- Chemical Balancing Example from a textbook
- a 4x7 rref example via the web calculator
- large rref example via the web calculator
- calculate rref of 4x4 example via the web calculator
- calculate inverse of 4x4 example via the web calculator
- Gram-Schmidt Algorithm example

Back to my Home

Last Modified: 3-3-2024